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ABSTRACT

Digital analysis of pathology whole-slide images is fast becoming a game changer in cancer diagnosis11

and treatment. Specifically, deep learning methods have shown great potential to support pathology12

analysis, with recent studies identifying molecular traits that were not previously recognized on13

pathology H&E whole-slide images. Simultaneous to these developments, it is becoming increasingly14

evident that tumor heterogeneity is an important determinant of cancer prognosis and susceptibility to15

treatment, and should therefore play a role in the evolving practices of matching treatment protocols16

to patients. State of the art diagnostic procedures, however, do not provide automated methods for17

characterizing and/or quantifying tumor heterogeneity, certainly not in a spatial context. Further,18

existing methods for analyzing pathology whole-slide images from bulk measurements require many19

training samples and complex pipelines. Our work addresses these two challenges. First, we train20

deep learning models to spatially resolve bulk mRNA and miRNA expression levels on pathology21

whole-slide images (WSIs). Our models reach up to 0.95 AUC on held-out test sets from two22

cancer cohorts using a simple training pipeline and a small number of training samples. Using23

the inferred gene expression levels, we further develop a method to spatially characterize tumor24

heterogeneity. Specifically, we produce tumor molecular cartographies and heterogeneity maps of25

WSIs and formulate a heterogeneity index (HTI) that quantifies the level of heterogeneity within these26

maps. Applying our methods to breast and lung cancer slides, we show a significant statistical link27

between heterogeneity and survival. Our methods potentially open a new and accessible approach28

to investigating tumor heterogeneity and other spatial molecular properties and their link to clinical29

characteristics, including treatment susceptibility and survival.30
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1 Introduction31

Digital pathology – the automated computer-vision analysis of pathology whole-slide images (WSIs) – is fast becoming32

a game changer in cancer diagnosis and treatment. Deep learning methods have been studied extensively in this context,33

and were recently shown to be efficient for certain tasks, such as detecting metastases [1, 2, 3], immune cells [4, 5, 6, 7],34

mitosis [8, 9] and tissue type [10, 11, 4] as well as for offering clinicians additional insights [12, 13, 14, 15]. In a recent35

study, [16] used deep learning to study immune geospatial variability and how it may affect the emergence of aggressive36

clinical phenotypes. These achievements led researchers to more recently explore whether such methods could go a step37

further, and identify molecular traits that are not known to be associated with cell/tissue morphology, such as mutations38

[17, 18], copy-number alterations [18, 19], gene expression [20, 18, 19] and hormone receptor status [15, 19, 21].39

Simultaneous to these technological advances, the importance of tumor heterogeneity is being increasingly recognizes40

as a major feature associated with resistance to treatments and as a determinant of prognosis [22, 21, 23, 24, 25].41

Polyclonality and tumor subclones – sub-populations of tumor cells that differ in molecular characteristics such as42

mutations, copy number aberrations and gene expression profiles – are a hallmark of cancer and may affect treatment43

outcome and disease progression [26, 27, 28, 7, 29, 30]. Bulk measurements, which offer high cell-coverage, have44

the potential to characterize tumor heterogeneity. A key downside, however, is that bulk measurements lack spatial45

context. Recent work showed that clonal estimation from single-region sampling is less accurate than that obtained46

by multi-region sampling and that single-region clonal composition estimations vary greatly between methods [31].47

Realizing the importance of spatial context, new technologies for spatial transcriptomics have begun to emerge and are48

being increasingly used by the scientific community [32, 33, 34, 35, 36] alongside other methods to spatially resolve49

molecular measurements. In [32], spatial transcriptomics data, collected from 23 breast cancer patients, was used to50

train a deep neural network to predict spatial variation in gene expression. In a cohort of 41 gastric cancer patients,51

[21] discovered an association between heterogeneity and survival using a genome-wide single-nucleotide variation52

array to estimate the number of clones. This was followed by fluorescence in situ hybridization (FISH) to derive53

clonal locations for 3 samples across 4 target regions. [37] combined single cell RNA sequencing (scRNA-seq) with54

spatial transcriptomics to map and characterize the different cell populations in heterogeneous pancreatic tumors. In55

multiple myeloma, [38] inferred spatial organization from scRNA-seq data, using a clustering-based approach, to56

characterize immunological alterations occurring in the tumor microenvironment during disease progression. Others57

have used a computational approach to infer spatial position probabilities for individual cells from scRNA-seq data,58

enabling the spatial reconstruction of single-cell gene expression [39]. In [24], single-cell pathology subgroups were59

spatially resolved using mass cytometry imaging, covering an average of 2, 246 cells per image across 381 images, to60

characterize clonal populations in breast cancer. One of their findings associated a specific single-cell pathology subtype61

that comprised multiple epithelial cell communities with poor survival. In a similar setting, spatially-derived statistics62

from single-cell data were shown to improve prognostic predictions [23]. These findings emphasize the importance of63

characterizing tumor heterogeneity in a spatial context. However, single-cell and spatial transcriptomics techniques64

are expensive and are still limited in cell coverage compared to WSIs. While WSIs hold the potential to spatially65

resolve bulk molecular measurements using complete cell coverage [16, 20, 40, 18, 19], existing pipelines often require66

multiple modelling steps, large training sets and expert intervention. Furthermore, there is currently no method to67

automatically derive heterogeneity, both visually and quantitatively, from H&E WSIs.68

In this paper, we present an automated method to both visualize and quantify tumor heterogeneity in the spatial context69

of WSIs using a simple pipeline, a small number of bulk-labeled training slides and no expert intervention. Applying70

our approach, we discover a significant link between tumor heterogeneity and survival outcome in breast and lung71

cancer. Briefly, we train deep neural networks to provide molecular cartographies of mRNA and miRNA expression72

from WSIs. We use a simple training-inclusion criteria to potentially reduce noise and facilitate model convergence73

speed and performance. We then use the inferred cartographies to produce heterogeneity maps and to quantify the level74

of heterogeneity within each WSI using our heterogeneity index (HTI). Applying our methods to breast and lung cancer75

slides, we show a significant link between heterogeneity and survival. An overview of our method is shown in Figure 1.76

Our main contributions are: (1) A simple pipeline that maps from WSIs to gene expression levels, reaching up to 0.9577

AUC on held-out random test sets. Our pipeline uses a single model architecture and requires only a small number of78

bulk-labeled training slides (with no expert annotations); (2) A method for constructing heterogeneity maps from the79

inferred gene-expression maps; (3) A heterogeneity index (HTI) that quantifies the level of heterogeneity within the80

WSI based on the spatial co-location of molecular traits; (4) A statistically significant link between tumor heterogeneity81

and survival outcome in two cancer cohorts. Our code is available online (Methods 4.5).82
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2 Results83

2.1 Training models to identify gene expression on pathology whole-slide images84

An overview of our methods is shown in Figure 1. We begin by obtaining formalin-fixed, paraffin-embedded (FFPE)85

hematoxylin and eosin (H&E) slides for TCGA BRCA and LUAD samples and matching mRNA and miRNA expression86

data (Methods 4.1). We discard any damaged, heavily stained or annotated slides as they can cause the model to focus87

on artifacts, including clues from pathologists’ markings. This results in 761 slides for breast and 469 for lung. We88

obtain matching normalized mRNA and miRNA expression data for a total of 10 molecular traits for breast and 5 for89

lung, as listed in Table 1. Breast mRNAs were chosen from the PAM50 genes [41] and lung mRNAs and all miRNAs90

(breast and lung) were based on the literature (see Methods 4.3 for further details).91

Each cohort is processed, trained and evaluated separately (Figure 1 (a) and (b)). We begin by randomly assigning92

subjects into a held-out test set (10%). We then randomly split the remaining subjects into train (80%) and validation93

(10%) sets 5 times (bootstrap sampling) to obtain 5 different and randomly selected train-validation sets. Note that94

these are further reduced in size by a simple inclusion criteria described below. We split on subjects rather than slides95

so that slides from the same subject are assigned to the same set to avoid similarities between test and train/validation.96

Importantly, the split is performed before any molecular trait is processed to ensure that all traits see the same split.97

We then assign each slide into one of the sets according to its subject’s association and proceed to label the slides and98

prepare our training set.99

Per trait, we label each slide based on its sample’s expression percentile for that trait. We then split each slide into100

non-overlapping tiles of 512× 512 at ×20 zoom, resulting in hundreds to thousands of tiles per slide (depending on the101

slide’s size). Following previous methods [17], each tile inherits its labels from its parent slide. We label each slide102

(and tiles) based on its percentile expression level: high (1) for those above median low (0) for those below. This raises103

the concern that not all tiles are representative of its slide label (e.g. a tile representing a healthy portion of a tumor104

sample), leading to noisy labeling. To potentially reduce noise and facilitate faster model convergence, we set aside105

complete slides (all corresponding tiles) with expression levels between the 20th and 80th percentiles and use them for106

out-of-distribution evaluation (Figure 1 (b)). These samples do not participate in the model’s train/validation/test sets.107

This inclusion cirteria enables us to efficiently train on a small number of slides (e.g. for BRCA, removing these slides108

after taking 80% for training leaves us with 760× 0.8× 0.4 = 243 training slides). We proceed to use the labeled tiles109

to train our models.110

We train each trait separately and repeat this process 5 times (once for each of the random train/validation splits of the111

non-test samples). We use the Inception v3 classifier [42] as a single end-to-end model that predicts tile scores. This is112

the only model architecture used to obtain predictions. Additionally, no expert intervention is included at any step.113

Once trained, we obtain the trait’s validation performances for all 5 runs by measuring the slide-level AUC for each114

of the five models (we evaluate using slide-level AUC following, e.g., [17, 43]). To do so, we first transition from115

predictions on tiles to predictions on slides by computing the slide’s percent positively classified tiles (as in [17]). We116

then compute the slide-level AUC for each model using these scores as the slide-level prediction. The final model for117

each of the 5 rounds uses the weights that had the best slide-level AUC on that round’s validation set.118

Besides providing a better evaluation of our models’ performance, a key advantage of training multiple models on119

different train/validation splits is the option to combine them into an ensemble model [44]. We develop such an120

ensemble model for each trait by combining its top three models, as measured on their respective validation set, and121

taking their majority vote. For example, if the last three models from the 5 train/validation repeats yielded the best122

performances (each on their respective validation set) and their predictions for a given tile are: 0, 0, 1 then the ensemble123

will predict 0 for that tile by majority vote.124

For each trait, we evaluate both its 5 models and its ensemble model on the trait’s held-out test set (test slides with125

expression levels within the 0-20% and 80-100% percentiles for that trait) as well as on its OOD sets (slides within the126

20-80% percentiles). Neither of these test sets participated in the trait’s model development (train/validation) in any of127

the 5 rounds.128

2.2 Achieving high prediction performance for identifying gene expression on pathology whole-slide images129

We obtain high test performance rates across multiple traits. The number of slides in the test set varies across traits,130

depending on cohort (TCGA-LUAD is roughly half the size of TCGA-BRCA) and on label (expression) availability,131

and is therefore described per trait in brackets below. In Table 1, we observe that the average test performance measured132

across all 5 train/validation rounds (first column) obtains high AUCs for over half the traits. Most prominent are133

miR-17-5p (N=33), MKI67 (N=36) and FOXA1 (N=31) in breast as well as miR-17-5p (N=13) and KRAS (N=17)134
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(c) Producing molecular cartographies to obtain heterogeneity maps and indices

Tensor molecular cartographies are 
used to generate the heterogeneity map 

and to compute HTI.

Combination          Proportion 

miR-17                      0.43
Both                          0.31

MKI67                       0.26

HT-Index

−
C

∑
i=1

pi logC(pi) = 0.98

C = 3

Scores are converted into

predictions (>0.5 = high) to obtain  
molecular cartographies, which are 

concatenated into a tensor molecular cartography.

median

80%

20%

OOD 
testing

Inception 
v3

high / low 
scores

 Samples (tiles) within the 20-80% range for the trait are 
excluded from the train/val/test sets to reduce noise but are kept 

for out-of-distribution (OOD) testing.

Train

Test

x5 
re-sampling 

High  
expression

median

Low  
expression

Samples are labeled as 
 ‘high’ or ‘low’  

compared to the trait’s

median expression levels

Diagnostic slides for the cohort are

 obtained from GDC portal. Annotated or 

damaged slides are removed.

Cohort is split into train/val/test sets by 
patient to avoid similarities 


between the sets.

(a) Preprocessing

Validation

Slides are split into tiles, 
which inherit the  

sample’s label. White tiles 
are discarded.

A model is trained using the remaining train/validation samples (tiles). 

The trained model predicts for each tile a score between  

0 (low) and 1 (high) expression level for the trait, producing a heat map.

(b) Training

Molecular heat maps are generated 
for each trait using the predicted tile 

scores.

Figure 1: Overview of our methods: (a) prepossessing, (b) model training per trait and (c) producing tensor molecular
cartographies per slide from which heterogeneity maps and indices are derived.

in lung. Especially noteworthy is miR-17-5p as it performed exceptionally well in both cohorts (for which model135

development and testing is completely separate), further suggesting that mRNA and miRNA expression can be detected136

from tissue morphology and that this may be applicable for other cancer types.137

The use of ensemble models further improves the performance in nearly all traits. miR-17-5p improves from 0.83 to138

0.87 AUC in breast and from 0.85 to 0.95 AUC in lung. We observe similar effects for MKI67 and FOXA1 in breast139

as well as for KRAS in lung. In Figure 2 a (breast) and d (lung) we can see the test-set distribution of the ensembles’140

slide scores for the ground-truth labels across the different traits. We clearly observe that the images with bulk label141

above median have higher slide-level predictions. This is especially true for miR-17-5p (in both cohorts), MKI67,142

FOXA1, MYC, miR-29a-3p and ESR1 in breast as well as KRAS and CD274 (PDL-1) in lung. We also computed the143

correlation of our predicted levels to the actual percentiles (Supplementary S1). For example, in breast miR-17 we144

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.07.02.183814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.183814


A PREPRINT - SEPTEMBER 3, 2020

observe Spearman correlations of 0.63 (FDR p-value 8e−04), 0.21 (FDR p-value 0.02) and 0.13 (FDR p-value 0.01) in145

test, OOD-near and OOD-all respectively.146

To the best of our knowledge, these are the first models to automatically detect miRNA expression levels on H&E147

whole-slide images. Importantly, our method achieves these results using only a small number of training samples (243148

slides for BRCA and 150 for lung, as explained in Section 2.1), a single model architecture and no expert knowledge.149

Model convergence took less than 12h (worst-case) on a single server with 8 low-cost GPUs (Tesla K80).150

Table 1: Results for breast and lung cohorts for test and OOD sets. Slides are scored using the percent positively
classified tiles. Each of the 5 trained models is evaluated on the held-out test set and the two OOD sets separately.
Average AUC results and range (brackets) are shown on the left, followed by ensemble AUC results for test, OOD-near
and OOD-all. In bold are AUCs of at least 0.6.

Trait Per-slide AUC
Test

5-run average (range)
Test

ensemble
OOD-near
ensemble

OOD-all
ensemble

TCGA-BRCA miR-17-5p 0.83 (0.79-0.88) 0.87 0.62 0.56
MKI67 0.74 (0.53-0.87) 0.87 0.72 0.63
FOXA1 0.7 (0.6-0.76) 0.74 0.61 0.56
MYC 0.62 (0.58-0.67) 0.63 0.59 0.58
miR-29a-3p 0.62 (0.5-0.69) 0.67 0.65 0.55
ESR1 0.58 (0.55-0.63) 0.56 0.75 0.57
CD24 0.57 (0.47-0.67) 0.56 0.57 0.47
FOXC1 0.53 (0.46-0.57) 0.52 0.68 0.61
ERBB2 0.5 (0.46-0.57) 0.53 0.52 0.5
EGFR 0.5 (0.35-0.67) 0.42 0.57 0.57

TCGA-LUAD miR-17-5p 0.85 (0.72-0.95) 0.95 0.43 0.54
KRAS 0.64 (0.33-0.9) 0.73 0.56 0.52
CD274 (PD-L1) 0.61 (0.57-0.63) 0.6 0.64 0.51
miR-21-5p 0.55 (0.47-0.62) 0.54 0.75 0.63
EGFR 0.44 (0.22-0.78) 0.39 0.48 0.46

2.3 Performance for out-of-distribution (OOD) samples151

An added advantage in setting aside the OOD slides is the ability to further challenge our models on out-of-distribution152

samples. We use the ensemble models for each trait. In Table 1 we report two types of AUC results on the OOD set: one153

for the next decile tier after the test set’s percentiles, i.e. 0.2-0.3 and 0.7-0.8, which we designate as near-distribution154

(OOD-near) and another for the full OOD set (OOD-all). As before, the number of slides available in the two OOD155

sets depends on the cohort and the intersection between slide and label availability for the trait. In the OOD-near set,156

breast has between 140 and 158 and lung has between 79 and 103 slides (roughly 20% from each cohort’s slides).157

The OOD-all set has between 423 and 454 slides for breast, and between 256 and 283 for lung (roughly 60% of158

each cohort’s slides - the remainder after using the top and bottom 20% for model development). We are able to test159

our models on such large test sets since, by design, none of the slides in their percentile range were included in the160

trait’s train/validation/test sets and therefore they were all held out. Our results demonstrate that the models extend161

to out-of-distribution samples relatively well. This can also be observed in Figure 2 b,c (breast) and e,f (lung) which162

depict the distribution of scores per label for the OOD-near and OOD-all sets. This is especially evident in the breast163

cancer cohort. For example, the score distributions for MKI67 for the "above median" (pink) class tend to be higher164

than those for the "below median" (gray) class. The overall better breast results are likely due to the larger amount of165

data available for training, emphasizing the importance of collecting larger data sets.166

2.4 Tensor molecular cartographies of gene expression as a window to tumor heterogeneity167

After confirming the performance of our models, we proceed towards our goal of analyzing tumor heterogeneiy (Figure168

1 c). We do so by producing, for each slide, multiple molecular cartographies, each representing a single molecular169

trait. We then combine the molecular cartographies into a tensor molecular cartography to obtain a richer spatial170

representation of the molecular traits detected within the slide. Creating a molecular cartography for a single trait is171

straight forward: we simply spatially arrange the binary predictions of a slide’s tiles in a matrix so that the position of a172

tile’s score in the matrix corresponds to its position in the pre-tiled slide, as illustrated in (Figure 1 c left). Once we173

obtain several molecular cartographies for a single slide, we stack them into a tensor molecular cartography (Figure 1 c174

middle) that now represents the slide across several traits.175
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a b

d

Test OOD-allOOD-near

b c

e f

Figure 2: WSI score distribution for test, OOD-near and OOD-all sets compared to the actual bulk-measured values
(lower values in gray). Scores are computed using the ensemble model for each trait (percent positive tiles by majority
vote of the best 3). Middle white lines reflect the median slide score. Whiskers extend to 1.5× IQR. (a)-(c) breast test,
OOD-near and OOD-all respectively; (d)-(f) lung test, OOD-near and OOD-all (respectively). In the test set, especially
worth noting are miR-17-5p in both cohorts, MKI67, FOXA1, MYC, mir-29a-3p and ESR1 in breast as well as KRAS
and CD274 (PD-L1) in lung. In the OOD sets most notable are MKI67, FOXA1, MYC, ESR1 and FOXC1 in breast as
well as miR-17-5p and miR-21-5p in lung.

We use the tensor molecular cartography to visualize heterogeneity – this will later serve us to confirm our method for176

quantifying heterogeneity. As shown in Figure 1 (c right), we do so by identifying which tiles are positive for each177

possible combination of traits and assign different colors to each combination. For example, using two traits, A and B,178

we obtain a tensor of depth 2 (one molecular cartography per trait) and each tile is colored as one of three options: A179

(only), B (only) and Both. Figure 3 shows examples for such heterogeneity maps, along with their level of heterogeneity,180

as obtained using HTI described below. Such molecular maps of pathological images could be used by pathologists, in181

addition to routinely stained diagnostic markers, to further classify and identify cancer subtypes, potentially leading to182

better informed clinical decisions.183

2.5 Quantifying tumor heterogeneity from tensor molecular cartographies184

As intra-tumor heterogeneity has been proposed as an obstacle to effective treatment and cancer eradication, we propose185

an approach to compute and quantify the level of heterogeneity in a given image from its tensor molecular cartography.186

We used a variation on Shannon’s entropy, commonly used to measure diversity and heterogeneity in various settings187

[45, 24]. Formally, we compute:188

HTI = −
C∑
i=1

pi logC(pi) (1)

where C is the maximum number of non-empty trait combinations that may be observed on a slide and equals 2|traits|−1189

(the number of subsets excluding the empty set), and pi is the proportion of tiles for which exactly all models in190

combination i provided a positive prediction.191
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0.59

0.93 0.95

0.46

0.070.01

0.48

0.93

0.54

0.95

a b

Figure 3: Heterogeneity maps and corresponding HTIs. (a) Breast cancer cohort with traits MKI67 (pink) and miR-17
(green). Brown indicates that both traits manifest (both models predicted positive). (b) Lung cancer cohort with traits
KRAS (blue) and miR-17 (brown). Gray indicates both traits manifest. Corresponding HTIs appear directly above.
Rows appear in increasing HTI order from top to bottom (top 0-0.1, middle 0.4-0.6, bottom 0.9-1).

For example, given a tensor molecular cartography for two traits A and B (e.g. FOXA1 and MKI67), C = 3 (3 possible192

non-empty trait combinations: A (only), B (only) and Both). If the slide is homogeneous with nearly all of its tiles193

falling into one of these 3 options (say Both), then pBoth ≈ 1, pA ≈ 0, pB ≈ 0 (each of the single-trait molecular194

cartographies is nearly all 1s), resulting in an HTI of 0. If, however the slide is heterogeneous with 1/3rd of the tiles195

falling into each option then: pBoth = 1/3, pA = 1/3, pB = 1/3 and we obtain an HTI of 1. The logarithm base C196

guarantees that HTI ∈ [0, 1]. If A and B are two molecular traits (e.g. FOXA1 and MKI67), a high HTI would reflect197

there may be two subclones whereas a low HTI would reflect single clonal dominance.198

We note that HTI can be applied to any set of binary matrices (or vectors) of identical shape, each of which describes the199

presence of a single trait. As such, it can be used in other settings involving the localization of clinically relevant traits.200

Figure 3 depicts several heterogeneity maps and their associated HTIs.201

2.6 A statistically significant link between tumor heterogeneity and survival202

We sought to understand whether tumor heterogeneity is linked to survival outcome and whether the link can be inferred203

through the spatial analysis of pathology whole-slide images. To do so, we combine the test and OOD slides and split204

them into high and low heterogeneity groups based on their HTIs. Specifically, for a given cohort, we first generate205

tensor molecular cartographies per slide using the ensemble models of the top two performing molecular traits for206

that cohort (from Table 1). We then compute HTI for each slide as described in Section 2.5 and split them into two207

groups: > 0.5 and ≤ 0.5 (high and low heterogeneity respectively). We perform survival analysis on these groups using208

Mantel’s log-rank test and Kaplan-Meier curves. We use only slides in the combined set of OOD and test slides. Since209

OOD slides are trait-dependent, we use only slides in the intersection of the two OOD sets.210

Figure 4 describes the survival analysis results for each cohort using the top two traits by test performance from Table211

1 in each (MKI67 and miR-17 for breast and miR-17 and KRAS for lung). In breast, high heterogeneity (blue) is212

significantly different from low heterogeneity (orange) with a log-rank p-value of 0.04 (Figure 4 (a)). In lung, we213

observe significant differences between higher and lower HTIs when heterogeneity differences are more distinct (> 0.7214

vs ≤ 0.3), with a log-rank p-value of 0.07 (Figure 4 (c)).215
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a b cBRCA MKI67 and miR-17 LUAD KRAS and miR-17 LUAD KRAS and miR-17 Extreme Cases

Figure 4: Survival analysis with respect to HTI derived from two traits in breast and lung cancer. For each trait
combination in (a) and (b), slides were split into high and low HTI (> 0.5 and ≤ 0.5 or blue and orange respectively).
In (c) slides were split into > 0.7 and ≤ 0.3 HTI. Each survival curve is shown with a 95% confidence interval.
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3 Discussion216

This work offers a method for analyzing tumor heterogeneity from the rich spatial data available in H&E WSIs. Using217

deep learning we created high resolution maps of multiple mRNA and miRNA expression levels within a whole-slide218

image and combined these maps into a tensor molecular cartography. We then used the tensor cartographies to spatially219

visualize and quantify tumor heterogeneity in the form of heterogeneity maps and HTI scores. While other methods,220

such as single-cell profiling and spatial transcriptomics, can also be used to infer heterogeneity, they are expensive, may221

lack sufficient spatial context and only cover a few thousand cells.222

We applied our method to both breast and lung cancer pathology whole-slide images (H&E). We trained several models223

per trait and tested each of these models on both a held-out test set and two large out-of-distribution sets, containing224

hundreds of WSIs the models have never before encountered. Test results show that several mRNA and miRNA can be225

identified and localized automatically within whole-slide images with high AUCs. Furthermore, our results demonstrate226

this can be achieved using only a small number of training slides, a single model architecture and no expert intervention.227

Especially notable are our results for miR-17, which obtained high AUCs (up to 0.95) in both lung and breast. This is228

interesting in light of indications that miR-17 is over-expressed across many cancer types [46].229

Using our models, we generated a tensor molecular cartography for each slide, enabling us to both visualize the230

distribution of traits, in the form of heterogeneity maps, and to compute HTI. By representing each patient with their231

HTI and performing survival analysis, we showed that high tumor heterogeneity is significantly linked to poor survival,232

especially in breast cancer. We stress that this link cannot be identified through obvious means by directly using233

expression levels (Figure 5) or through the PAM50 [41] breast cancer types, which are not associated with HTI (Figure234

6). This analysis highlights the potential clinical value in producing tensor molecular cartographies and heterogeneity235

maps from H&E WSIs.236

Our methods open a window to further analyses. For example, from a molecular biology perspective, generating237

heterogeneity maps of miRNAs from the same family may be interesting in light of recent findings showing they are238

context (e.g. tissue) dependent [47]. Similarly, miRNA/mRNA relationships (as explored in [48, 49]) may be analyzed239

from a spatial perspective. From a technical aspect, it may be interesting to explore whether transfer learning between240

molecular traits or cohorts is possible and to what extent. Also a multilabel approach may be possible, although it may241

require larger datasets and careful label-balancing to obtain satisfactory results across all traits.242

As heterogeneity plays an increasingly key role in cancer treatment, providing researchers and practitioners with a243

solution to view the distribution of clinically relevant traits that are not currently visible on slides may be of great value.244

Since H&E slides are a standard component of routine diagnostic protocols, a natural solution may be offered by the245

fast and automated digital mapping of the molecular landscape within H&E slides. One such solution is offered through246

our simple pipeline for producing tensor molecular cartographies and heterogeneity maps from WSIs.247

As our approach requires a single model architecture, uses a small number of training slides and does not call for expert248

annotations, it can apply to many more traits and in broader contexts. As a future direction we hope to combine our249

approach with single-cell data and spatially resolved transcriptomics data to obtain finer resolution mapping, improving250

the relevance of both H&E and transcriptomics. Molecular cartography from H&E potentially enables a new approach251

to investigating tumor heterogeneity and other spatial molecular properties and their link to clinical characteristics. An252

interesting aspect of such endeavors will be to link spatial properties to treatment susceptibility and precision care.253

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.07.02.183814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.183814


A PREPRINT - SEPTEMBER 3, 2020

a b

Figure 5: Left panel (a): Survival analysis using bulk-measured expression levels for miR-17 (top) compared to our
approach (bottom) when applied to the same patient basis available for both. Right panel (b): distribution of HTI for
above and below median ground-truth expression levels for MKI67 (top) and miR-17 (bottom).

ba

Figure 6: Distribution of HTI per ER status (a) and PAM50 type (b) in the data used for survival analysis.
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4 Methods254

4.1 Data255

All whole-slide images are available online at the GDC repository (https://portal.gdc.cancer.gov/256

repository), by selecting Diagnostic Slide under Experimental Strategy for the relevant project (e.g. TCGA-BRCA).257

Matching expression levels were obtained from the GDC’s website at: https://gdc.cancer.gov/about-data/258

publications/pancanatlas (see RNA and miRNA). Matching survival data were obtained from cBioportal259

at: http://www.cbioportal.org/study/clinicalData from the following files: "Breast Invasive Carcinoma260

(TCGA, Firehose Legacy)" and "Lung Adenocarcinoma (TCGA, Firehose Legacy)".261

4.2 Training262

All of our models were developed in TensorFlow [50] using the Inception v3 classifier [42] with the last layer modified to263

one output. All models are trained from random initialization, following previous work showing improved performance264

by fully training Inception v3 [17]. Each of the 5 train/validation rounds is trained on mini-batches of labeled tiles from265

the training set using the Adam optimizer [51]. Models were evaluated on the labeled validation tiles every 1/16th epoch266

(full pass on all training tiles) to avoid overfitting caused by tile similarities between mini-batches (each slide contains267

hundreds to thousands of tiles, many of which are likely to be similar to one another). No data augmentations were268

performed, except for random horizontal and vertical flips of the training tiles to further reduce overfitting. Learning269

rate started at 0.001 and was decayed when performance on the validation set plateaued for 10 steps, with early stopping270

after 30 steps of no validation improvement. Each final trained model used the weights that performed best on its271

validation set.272

To potentially reduce noise and facilitate faster model convergence, we set aside complete slides (all corresponding273

tiles) with expression levels between the 20th and 80th percentiles. These were used for out-of-distribution evaluation274

and did not participate in the model’s train/validation/test sets. This enabled us to efficiently train on a small number275

of slides. For example, for BRCA, after removing these slides, and taking 80% for training, we were left with276

760× 0.4× 0.8 = 243 training slides.277

Each model was trained on a single Tesla K80 machine with 8 GPUs and took at most 12 hours until convergence on278

the validation set (when the aforementioned early stopping was invoked). Mini-batch size per GPU replica was 18, for a279

total of 18× 8 = 144 tiles per training step.280

4.3 mRNA and miRNA selection281

mRNAs: For breast, we sorted PAM50 [41] genes by their expression variance in our dataset and selected from the top282

(highest variance). CD24 is not in PAM50, but is one of the highest expression-varying mRNAs in the cohort and is283

over-expressed in many cancers [52]. For lung, we based our selection on previous research, e.g. [53, 17, 54, 55].284

miRNAs: Selection of miRs is based on previous work identifying miR-17 and miR-29 among the top up-regulated285

and down-regulated miRNAs (respectively) in breast cancer [49]. Others have also associated miR-17 [56, 57, 58]286

and miR-29 [59, 60] with breast cancer. miR-17 was also chosen for lung since the miR-17 family was shown to be287

universally over-expressed in many cancers, including lung [46], and has been directly associated with lung cancer288

[61, 62, 63] as has miR-21 [64, 65].289

4.4 Survival analysis290

Each patient is represented by a single HTI to perform survival analysis. Where patients were associated with more291

than one whole-slide image (e.g. a patient with diagnostic slides DX1 and DX2), the DX1 slide was used to determine292

HTI. For data used for survival see Methods 4.1. Analysis was performed using the Lifelines package for Python293

(https://lifelines.readthedocs.io/en/latest/).294

4.5 Code availability295

The code used for this work is publicly available under: https://github.com/alonalj/PathoMCH.296
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