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Abstract 
Functional connectivity analyses of fMRI data have shown that the activity of the brain at rest is spatially 
organized into resting-state networks (RSNs). RSNs appear as groups of anatomically distant but functionally 
tightly connected brain regions. Inter-RSN intrinsic connectivity analyses may provide an optimal spatial level 
of integration to analyze the variability of the functional connectome. Here, we propose a deep learning 
approach to enable the automated classification of individual independent-component (IC) decompositions into 
a set of predefined RSNs. Two databases were used in this work, BIL&GIN and MRi-Share, with 427 and 1811 
participants respectively. We trained a multi-layer perceptron (MLP) to classify each IC as one of 45 RSNs, 
using the IC classification of 282 participants in BIL&GIN for training and a 5-dimensional parameter grid 
search for hyperparameter optimization. It reached an accuracy of 92%. Predictions on the remaining individuals 
in BIL&GIN were tested against the original classification and demonstrated good spatial overlap between the 
cortical RSNs. As a first application, we created an RSN atlas based on MRi-Share. This atlas defined a brain 
parcellation in 29 RSNs covering 96% of the gray matter. Second, we proposed an individual-based analysis of 
the subdivision of the default-mode network into 4 networks. Minimal overlap between RSNs was found except 
in the angular gyrus and potentially in the precuneus. We thus provide the community with an individual IC 
classifier that can be used to analyze one dataset or to statistically compare different datasets for RSN spatial 
definitions. 
 
Keyword Resting-state, artificial intelligence, neuroimaging cohort, independent-component 
analysis, Brain functional network, classification. 
  

1. Introduction 

The resting state is defined as a cognitive state of 
spontaneous activity that is not triggered by 
externally imposed tasks. In such a state, Biswal et 
al. (Biswal et al. 1995) used blood-oxygen-level 
dependent functional MRI (BOLD fMRI) 
techniques and showed for the first time that distant 
regions can have similar quasi-periodic low 
frequencies BOLD time courses. This interregional 
intrinsic connectivity phenomenon occurs between 
assemblies of regions that define so-called resting-
state networks (RSNs). Interestingly, these 
networks are somehow related to the way the brain 
supports cognition, which was initially 
demonstrated by Smith et al. (Smith et al. 2009) by 
comparing the 30000-subject activation studies in 
the brain-mapping database (Laird et al. 2005) and 
a dataset of resting-state acquisitions. It had been 
demonstrated that intrinsic connectivity is a 
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biomarker of events that occur throughout life, such 
as genetics (Richiardi et al. 2015; Kong et al. 2020), 
development and aging (Dosenbach et al. 2010; Zuo 
et al. 2010; Pervaiz et al. 2020), cognitive skills 
(Pervaiz et al. 2020) or mental content at the time 
of acquisition (G. Doucet et al. 2011). The signal-
to-noise ratio of resting-state BOLD fMRI is very 
low and contaminated by numerous extraneural 
sources of noise. Following tailored post-
processing corrections, two ways of efficiently 
managing these problems have been identified: 
increase the number of participants and use spatial 
averaging. The former strategy is implemented in 
so-called cohort studies with thousands of subjects 
(Miller et al. 2016; Pervaiz et al. 2020), although 
this strategy is not always possible, especially when 
studying neural pathologies or rare types of brain 
organization. The latter strategy requires the 
definition of a parcellation of the brain gray-matter 
tissue in regions, networks, modules (G. Doucet et 
al. 2011) or systems (Fox et al. 2005). Based on our 
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past work, we propose that the RSN level of 
integration can provide an ideal scale for describing 
the systemic brain organization of healthy 
individuals or patients. To date, the definition of 
RSNs comes mainly from the analysis of subject 
groups that vary in number from tens to hundreds 
of subjects (M. P. van den Heuvel and Hulshoff Pol 
2010; Yeo et al. 2011; G. E. Doucet et al. 2019; 
Pervaiz et al. 2020) primarily using group-based 
independent-component analysis (ICA) (Abou 
Elseoud et al. 2011; Beckmann et al. 2005; Calhoun 
et al. 2008; Damoiseaux et al. 2006; G. Doucet et 
al. 2011; Jutten and Herault 1991; Shirer et al. 2012; 
Smith et al. 2009) as well as other techniques (Chen 
et al. 2013; M. van den Heuvel et al. 2008; 
Varoquaux et al. 2011; Yeo et al. 2011). Under this 
framework, we previously proposed a methodology 
named MICCA (for multiscale individual 
component clustering algorithm, (Naveau et al. 
2012b)) to create an atlas based on individual 
subject ICA decomposition (Naveau et al. 2012a) 
using a hierarchical classification algorithm and 
ICASSO (Himberg et al. 2004). This methodology 
led us to propose an atlas with finer-grained 
partitions than were obtained from group-based 
processing methodologies. Note that this algorithm 
is not specific for ICA and can be applied to any 
technique that provides individual network-based 
decompositions of the data, e.g., seeding 
(Dosenbach et al. 2006; Margulies et al. 2007), 
snowball (Wig et al. 2014), restricted Boltzmann 
machine (Kim et al. 2020) or dictionary learning 
(Lv et al. 2015; Varoquaux et al. 2011). 
In addition to the methodology used for their 
construction, the atlases are dependent on the 
population selected and the acquisition device. If 
some RSNs have been reproduced across many 
studies (M. P. van den Heuvel and Hulshoff Pol 
2010), this reproducibility may be valid only up to 
some partitioning level and may strongly depend on 
the aforementioned variables. Using a badly fitting 
atlas can create strong biases in the analysis and 
lead to results that are difficult to interpret. The 
most straightforward example can be found in the 
analysis of patient or aged subject datasets. Because 
the majority of atlases are built from healthy young 
subjects, if one finds a decrease in the intrinsic 
connectivity between two networks in a patient 
compared to a healthy subject or in an older subject 
compared to young subjects, then this finding could 
be either interpreted as a true decrease or as a 
modification of the spatial support of one or both of 
the networks.  
In addition to accommodating the different 
populations, the price paid for fMRI sampling the 
whole brain every few seconds (or even less) is 
dependent on the image geometry of the 
instrumentation, namely, the field homogeneity, 
antenna type, acquisition sequence, and head 

positioning in the antenna. Even if an atlas is used, 
we need a tool to adapt this atlas to the specificities 
of the scanner. 
Atlases are very popular (for example the regional 
anatomical-based atlas AAL (Tzourio-Mazoyer et 
al. 2002)). In addition to providing an anatomical 
reference, one of the main reasons for this 
popularity is that they fulfill the task of boosting the 
signal to noise ratio of both the task and resting-
state fMRI by averaging the signal in each region. 
This benefit is potentially even higher with RSN 
atlases in which the number of voxels in each RSN 
is higher than that in the regional atlases. Another 
benefit is that these atlases limit the number of tests 
that need to be calculated when using those 
variables for statistical analysis. The drawback is 
that the spatial topography of functional regions is 
strongly predictive of variation in behavior and 
lifestyle factors (Bijsterbosch et al. 2019; 
Bijsterbosch et al. 2018). The difficulty to interpret 
variations of the intrinsic connectivity in term of 
spatial support or decreases (see above) implies that 
analyses based on individually defined RSNs may 
surpass atlas-based analyses and may possibly 
become mandatory in some cases (Bijsterbosch et 
al. 2019). Indeed, individual-based analyses 
provide support for new descriptions of the brain 
intrinsic connectivity organization, such as that 
proposed by Braga et al. (Braga and Buckner 2017) 
and Margulies et al. (Margulies 2017). Individual-
based decomposition can also be used to address the 
question of overlap, which indicates cases that show 
a region belonging to at least 2 RSNs. Most of the 
atlases of RSNs are built without allowing overlap. 
When calculating the intrinsic connectivity between 
2 RSNs, overlaps are difficult to handle because 
they introduce some unwanted and non-biological 
correlation between the 2 RSN’ BOLD signal 
variations. Moreover, these atlases do not 
acknowledge areas that could belong to two or more 
networks and represent potential hubs of 
connectivity when modelling the brain functional 
organization as a graph (Bullmore and Sporns 
2009). Based on a group analysis, Yeo et al. (Yeo et 
al. 2014) and van den Heuvel et al. (M. P. van den 
Heuvel and Sporns 2013) demonstrated that there 
are in fact many regions of overlap between RSNs. 
The former group used a methodology where the 
constraint of unicity (no overlap) is probably less 
stringent than that in the spatially independent ICA 
used by the latter, and they also performed a group 
analysis; however, assessing the region that truly 
belongs to 2 networks is difficult because of the 
overlap created by the group averaging. One way to 
solve this problem is to initially search the overlaps 
at the individual level and then perform a group 
statistical analysis.  
Machine-learning algorithms, particularly artificial 
neural networks, became more powerful in recent 
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years, and the applications in biological research 
have led to their successful application in medical 
imaging (Heinsfeld et al. 2017; Plis et al. 2014; 
Zhang et al. 2016). In this context, machine learning 
appears to be a potential tool to tackle the problem 
of automatic classification of individual structural 
or functional brain maps. Given a set of individual 
brain maps labeled in N classes, the goal is to train 
a supervised machine-learning algorithm to 
automatically classify each map of a new subject 
into one of the N classes. Some promising results in 
this area have already been obtained for a small 
number of classes with perceptrons ((Vergun et al. 
2016) classification in 5 RSN classes) or 
convolutional neural networks (CNNs, (Chou et al. 
2018; Lv et al. 2015; Zhao et al. 2018)  
classification in 10 RSN classes). Note that in those 
works, the ground truth used for training was given 
by a manual classification. 
Our goal was to leverage the deep-learning methods 
to classify brain maps into a higher number of 
classes. In fact, the optimal number for ICA was 
proposed to be 45 RSNs (Abou Elseoud et al. 2011). 
Two datasets, namely, BIL&GIN (427 participants, 
(Mazoyer et al. 2016)) and MRi-Share (1811 
participants, (Tsuchida et al. 2020)), obtained from 
two different populations and two different 
scanners, were used in this analysis. The ground 
truth was not provided by a manual classification 
but from the automatic clustering method of 
individual independent components (ICs) from 282 
subjects of the BIL&GIN dataset using the MICCA 
(Naveau et al. 2012a; Naveau et al. 2012b) and 
ICCASO algorithms (Himberg et al. 2004). From 
this dataset, the number of classes was estimated at 
45 (including some spatially reproducible artifacts). 
We first designed and trained a multi-layer 
perceptron (MLP), which is one type of deep neural 
network (DNN), to automatically assign each IC 
extracted from individual fMRI sessions to one of 
the MICCA RSNs (or to a noise class), creating 
subject-specific functional brain maps without the 
need for manual labeling. In the second phase, the 
DNN was tested on the second part of the 

BIL&GIN dataset (145 subjects with unlabeled 
ICs), and the resulting labeling was tested against 
the MICCA labeling. In the third phase, the DNN 
predictor was applied to the MRi-Share dataset and 
once again compared to the MICCA labeling. As an 
application, this last analysis was used to provide 
both an atlas based on MRi-Share and an 
individual-based analysis of the subdivision of the 
default-mode network (DMN) of the brain.  

2. Methods  

Two databases, BIL&GIN (see 2.1) and MRi-Share 
(see 2.2), were used in this work (Table 1.). A 
graphical sketch of the analysis is presented in 
Figure 1, including the training of the MLP to select 
the best model (specific set of hyperparameters, see 
2.4) using the MICCA-labeled ICs of BIL&GIN 
(See 2.3) and testing the MLP on 3 datasets (see 
2.5). 

2.1. BIL&GIN dataset 

The first dataset came from the BIL&GIN 
database (Mazoyer et al. 2016). This database was 
designed to investigate the cognitive, behavioral, 
and brain-morphological correlates of hemispheric 
specialization. A total of 427 participants who 
underwent both an anatomical MRI and a resting-
state functional MRI were selected. Note that the 
BIL&GIN participant recruitment was biased 
toward young adults (age 27 ± 8 years [18-57], 
median of 24 years), balanced for sex (51% women, 
N = 219) and was enriched in left-handed 
individuals relative to the general population (46% 
versus 10%). The study was approved by the local 
ethics committee (Basse-Normandie, France).  

Table 1 Summary of the dataset 
Subject groups 
(num. subjects) 

Dataset IC groups for training and prediction 

 
G1 

(282) 

 
BIL&GIN 

PG1 (7,999 ICs): subject ICs successfully labeled by 
MICCA, used for training 
Pu-G1 (5,730 ICs): subject ICs unsuccessfully labeled by 
MICCA, used in new predictions 

G2 
(145) 

BIL&GIN PG2 (7,281 ICs): subject ICs unlabeled, used in new 
predictions 

G3 
(1811) 

MRi-Share PG3 (90,658 ICs): subject ICs unlabeled, used in new 
predictions 
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Two independent data groups were defined: G1, 
282 participants (age 26 ± 7 years [18-57]), and G2, 
145 participants (age 29 ± 9 years [18-57]). A full 
description of the BIL&GIN imaging dataset 
acquisition parameters and resting-state processing 
can be found in (G. Doucet et al. 2011; Mazoyer et 
al. 2016; Naveau et al. 2012b). A summary of the 
main parameters and steps of the analysis is given 
below. 
 
Acquisition. Imaging was performed on a Philips 
Achieva 3-Tesla MRI scanner. The session started 
with acquisition of structural MR brain images, 
including a high-resolution, three-dimensional T1-
weighted volume (sequence parameters: repetition 
time (TR) = 20 ms; echo time (TE) = 4.6 ms; flip 
angle = 10°; inversion time = 800 ms; turbo field 
echo factor = 65; sense factor = 2; field of view = 
256 x 256 x 180 mm3; 1 x 1 x 1 mm3 isotropic voxel 
size). Spontaneous brain activity was monitored 
using BOLD fMRI, while the participants were at 
rest for 8 min T2*-echo planar imaging (sequence 
parameters: 240 volumes; TR = 2 s; TE = 35 ms; 
flip angle = 80°; 31 axial slices; 3.75 x 3.75 x 3.75 
mm3 isotropic voxel size). Immediately before 
fMRI scanning, participants were instructed to 
“keep their eyes closed, to relax, to refrain from 
moving, to stay awake, and to let their thoughts 
come and go”. 
Processing. The analysis pipeline chains include 
temporal and motion correction, MNI stereotaxic 

normalization SPM5 (sampling 2x2x2 mm3) using 
the mediation of the T1-weighted anatomical data, 
spatial smoothing (6 mm full width at half 
maximum (FWHM)), linear/cerebrospinal fluid 
(CSF)/white matter/gray matter/movement 
detrending and temporal filtering (0.01-0.1 Hz). 
Data were individually processed using the ICA 
program called MELODIC (Multivariate 
exploratory linear optimized decomposition into 
independent components, version 3.14) available in 
the FMRIB Software Library (FSL, (Smith et al. 
2004)) The number of ICs was estimated by 
Laplace approximation (Minka and Thomas 2000). 
In the G1 subset, 13729 ICs were extracted (average 
of 49 ± 6 ICs per subject), and 7281 ICs were 
extracted in G2 (average of 50 ± 7 per subject). 
 

2.2. MRi-Share dataset  

The second dataset was provided by the MRi-Share 
database (Tsuchida et al. 2020), a subpart of the i-
Share (Internet-based Student Health Research 
Enterprise, http://www.i-share.fr), a large 
prospective cohort of French university students 
that investigates student health status (both physical 
and mental). MRi-Share was designed to 
investigate the brain morphological and functional 
organization of a subset of i-Share participants. We 
included 1,811 MRi-Share participants (referred as 
G3) who completed full MRI examinations and did 

Fig. 1 Top: Short description of the MLP principles. Middle: Grid search (testing all hyperparameter combinations to 
find the best one), which requires the training of each model using PG1 ICs. The hyperparameters of the best MLP 
model and its evaluation metrics are given on the right side. This trained MLP model is the one used in subsequent 
classifications. Bottom: Using the trained MLP to classify unlabeled ICs and associate each IC with an RSN. On the 
far right, the number of PG2 ICs (Y-axis) classified in each RSN (X-axis) is shown as an example. 
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not show any abnormalities on their brain structural 
scans: the G3 group had an average age of 22.1 ± 
2.3 years ([18-35], median at 21.7 years), a higher 
proportion of women (72%, 1,300 women) and 
12.9% of left-handers (N = 233). The study was 
approved by the local ethics committee (Bordeaux, 
France). 
 
Acquisition. Imaging was performed on a Siemens 
Prisma 3-Tesla MRI scanner. The session included 
structural MR brain images, including a high-
resolution, three-dimensional MPRAGE T1-
weighted volume (sequence parameters: TR = 2000 
ms; TE = 2.03 ms; flip angle = 8°; inversion time = 
880 ms; field of view = 256 x 256 x 192 mm3; 1 x 1 
x 1 mm3 isotropic voxel size, in-plane acceleration 
= 2). Spontaneous brain activity was monitored 
using BOLD fMRI while the participants were at 
rest, to obtain 15 min multiband T2*-echo planar 
imaging (sequence parameters: 1058 volumes; TR 
= 850 ms; TE = 35 ms; flip angle = 56°; 66 axial 
slices; 2.4x2.4x2.4 mm3 isotropic voxel size, x6 
multislice acceleration 
(https://www.cmrr.umn.edu/multiband/). 
Additional sequences, as part of the diffusion 
imaging acquisition protocol, were acquired to 
estimate a field map used for distortion correction 
(see below). Immediately before fMRI scanning, 
participants were instructed to “keep their eyes 
closed, to relax, to refrain from moving, to stay 
awake, and to let their thoughts come and go”.  
Processing. The analysis pipeline concatenates 
distortion correction, motion correction, and MNI 
stereotaxic SPM12 (https://www.fil.ion.ucl.ac.uk) 
normalization (sampling 2x2x2 mm3) using T1-
weighted anatomical data, spatial smoothing (5 mm 
FWHM), and CSF/white matter/gray 
matter/movement detrending, despiking and 
temporal filtering (0.01-0.1 Hz). Data were 
individually processed using the ICA MELODIC 
program (see above). A total of 90,658 ICs were 
extracted (average of 50 ± 5.5 ICs per subject). 
 

2.3. MICCA unsupervised labeling  

Using an original unsupervised method named 
MICCA (Naveau et al. 2012b), RSNs were built 
using a spatial-overlap correlation criterion applied 
to the 282 individual ICA results from the G1 
group. There are two outcomes of the MICCA 
algorithm: assignment of each IC to one of 45 
classes plus one additional class and the creation of 
an atlas that describes the spatial support of these 
45 RSNs ((Naveau et al. 2012a), 
http://www.gin.cnrs.fr/en/tools/micca/). The 
additional 46th class, denoted “class-0”, includes 
all the ICs that could not be labeled with one of the 
45 classes. Overall, 58% of the G1 individuals’ ICs 
were labeled and 42% remained unlabeled and were 

assigned to class-0. The former group of ICs, 
referred to as PG1, consisted of 7,999 ICs, and the 
latter, Pu-G1 (“u” stands for unlabeled by MICCA), 
consisted of 5,730 ICs. This Pu-G1 class of 
unlabeled ICs was mostly composed of artifacts but 
also includes an unknown proportion of neural ICs. 
Regarding the second outcome of the algorithm, the 
RSN atlas was built by creating for each RSN a 
voxelwise t-map of all ICs of PG1 belonging to the 
same class. Figure 2 shows the cortical support of 
29 of the 45 RSNs. Five other RSNs were localized 
in subcortical and medial temporal areas, and 2 
were localized in the cerebellum. The 9 remaining 
RSNs were localized mostly in the white matter (1 
RSN), in the temporal and frontal poles that are 
areas affected by susceptibility artifacts (2 RSNs), 
and in draining veins (4 RSNs). The remaining 2 
RSNs showed band-like artifacts across both the 
white and the cortical matter and were identified as 
related to scanning defaults. 
 

2.4. Artificial neural network 
specifications 

Among machine-learning algorithms, two classes 
of DNNs are well adapted to multiclass monolabel 
classification problems such as ours: MLP and 
CNN. After testing different architectures (see the 
discussion for details), we selected the MLP 
approach. We implemented an MLP trained on the 
MICCA-labeled ICs (see 2.4.1.) using a 5-
dimensional grid search (see 2.4.2). KNIME 
(Berthold et al. 2009) was used for the data 
management workflows; Python-based Keras 
(https://keras.io), Scikit-learn (Pedregosa et al. 
2011) and TensorFlow (Abadi et al. 2016) were 
used for the DNN implementations; and Rstudio 
was used for visualization. All computations were 
run on a Centos computer with a Xeon ES2640 
(DELL, USA), 40 cores, and 256 GB RAM, and 
two NVIDIA P100 GPUs with 16 GB dedicated 
memory. 
 

2.4.1. Training and validation strategy 

The PG1 group of 7,999 ICs (see Figure 4A) was 
used as the training set of the DNN classifier. Each 
PG1 IC consisted of a 3-dimensional z-map 
downsampled to the spatial resolution of the 
preprocessed fMRI data (~8 mm FWHM in each 
dimension) as 23x27x23 voxel-sized images. Note 
that the z-map represents a measure of the 
probability for each voxel belonging to this IC 
based on the normalized correlation between the 
voxel’s signal and the temporal IC signal extracted 
by the ICA (Beckmann et al. 2005). 
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To quantify the accuracy of the classifiers, a 
stratified 5-fold cross-validation scheme was used. 
This method consists of dividing the data into 5 
groups, or folds, of equal size. Each fold was 
selected in turn as a validation set, while the other 4 
were used as training sets. Note that the ICs were 
balanced across RSN categories in the different 
folds, and the result was that each fold validation set 
contained between 56 and 10 ICs for the most- and 
least-populated classes (RSN#01 and RSN#45), 
respectively. 
 

2.4.2. MLP model architecture and 
implementation 

A grid-search approach was employed to search for 
the optimal values of 5 hyperparameters of the 
architecture of the MLP: 

 
● Number of layers: [2; 3; 4] 
● Number of units per layer (same for every 

layer): [512; 1,024; 2,048; 4,096; 5,120; 
6,144] 

● Type of activation function: [ReLU; tanh] 
● Learning rate: [10-5; 10-4; 10-3] 
● Dropout rate: [0; 0.25; 0.33; 0.4; 0.5; 0.66] 

 
For each combination of hyperparameters (N = 
648), a complete training and validation process 
was performed by the MLP. The metric used to 
assess the models’ quality was the average 5-fold 

validation loss. The hyperparameter combination 
giving the smallest loss was selected as the winning 
classifier. 
The weights of the different hidden units were 
randomly initialized using a Glorot uniform 
initializer, which is also called the Xavier uniform 
initializer (Glorot and Bengio 2010). Categorical 
cross-entropy was used as the loss function, and 
Adam (Kingma and Ba 2014) was used as the 
optimizer. An adaptive learning-rate method was 
implemented that reduces the learning rate when the 
loss plateaued. To avoid overfitting the training 
data, two different methods were used. First, a 
dropout strategy was used, and it consists of 
ignoring some randomly chosen units in each layer 
during the training. The ignored units changed in 
every iteration so that all of them were eventually 
trained. This method also helps the DNN learn more 
robust features (Srivastava et al. 2014). Second, an 
“early stopping” strategy was applied, which 
consisted of stopping the MLP training when the 
validation loss stops decreasing for a number of 
epochs, thus maintaining the loss at the minimum 
value and reducing overfitting. The trained model 
at the minimal validation loss epoch is then chosen. 
Additionally, because the classes showed an 
imbalanced distribution (Figure 4A), a class weight 
method was used, and it penalized errors more 
heavily for the underrepresented classes. The output 
dense layer uses the “softmax” activation function, 
with 45 units (one per class), to map the output as a 

Fig. 2 Twenty-nine color-coded cortical networks among the 45 RSN’s MICCA atlas. Each rendering set shows 4, 5 or 
6 RSNs aggregated into 6 partitions: DMN: default mode, sFPT: symmetric fronto-parieto-temporal, L&A: language 
and attentional, FRON: frontal, V&A: visual and auditory, and SM: sensorimotor. The renderings were computed 
using Caret software (Van Essen et al. 2001). 
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confidence distribution for the predictions (mapped 
between 0 and 1). The final trained classifier is 
composed of 5 models, each trained on one of the 5 
folds. For each RSN class, the confidence output by 
the classifier is the mean of the confidence yielded by 
those 5 models. The resulting predictions were used in 
the following analysis. 
 

2.5. New classification and analyses 

Once the model architecture of the MLP was 
defined and trained, we used it to classify 2 datasets 
that did not have previous RSN assignments.  
The first dataset was composed of all ICs extracted 
from the BIL&GIN dataset that were not previously 
labeled by MICCA, namely Pu-G1 (5,730 ICs) and 
PG2 (7,281 ICs). To test the robustness of the 
labeling, the spatial support of each RSN was 
compared to the spatial support of their MICCA-
derived equivalent (see 2.5.1). 
The second dataset was composed of all ICs 
extracted from the MRi-Share database (PG3, 
90,658 ICs). First, the spatial support of each RSN 
was compared to the MICCA RSN spatial support 
(see 2.5.1.), and then an RSN atlas was calculated 
(see 2.5.2). Finally, an individual-based analysis of 
the main subcomponents of the DMN subpartition 
was performed (see 2.5.3). 
In all analyses following the MLP predictions, the 
ICs classified with a confidence below 50% were 
considered artifactual and reassigned to the noise-
component class. Moreover, a “unicity” constraint 
was applied to the labeled data: for each set of ICs 
belonging to a specific individual, only one IC was 
assigned to each RSN. In cases where several ICs 
were competing for the same RSN, only the IC with 
the highest confidence was retained, and the others 
were discarded. This unicity method was used to 
make the results comparable to MICCA’s, since 
unicity was part of this algorithm. 
 

2.5.1. Spatial comparison of the MICCA 
and DNN results 

We evaluated the differences in RSN 
neuroanatomical support depending on the 
algorithm used—MICCA or DNN—by studying 
the spatial overlap of PG2 MLP labeling (resp. PG3 
MLP labeling) with G1 MICCA labeling. To do so, 
a group-based voxelwise comparison was 
performed for each RSN using SPM12 
(www.fil.ion.ucl.ac.uk/spm/), while balancing the 
samples in terms of the number of ICs, age, sex, and 
handedness. Differences in overlap were computed 
and tested for significance (voxelwise t-test with 
p<0.05, familywise error (FWE) corrected). 
 
 

2.5.2. MRi-Share RSN atlas building 

Based on the MRi-Share classification, an RSN 
atlas was created. First, all ICs belonging to the 
same class were averaged to define the spatial 
support of the corresponding RSN. For each RSN 
the voxel distribution was fit by a mixture model (a 
Gaussian and two gamma functions as implemented 
in MELODIC (Beckmann et al. 2005)), and only the 
voxels above a 0.95 threshold were kept for further 
analysis. The atlas was built using a “winner take 
all” rule applied to each voxel, i.e., each voxel was 
associated with the RSN exhibiting the highest 
value.   
 

2.5.3. MRi-Share DNN-based default-
mode network subpartitioning 

Using the labeling results of the DNN classifier, the 
DMN subnetwork mapping was explored on the G3 
dataset. An individual-based overlap analysis was 
performed instead of a group-based analysis to take 
into account overlaps at the individual level. We 
selected all RSNs that include part of the precuneus, 
which is considered to be the DMN’s functional 
core (Utevsky et al. 2014). Accordingly, we 
retained RSN #2, #8, #9 and #15 (see Figure 2 top 
row). Only the participants with an IC belonging to 
each of the 4 selected RSNs were considered in the 
analysis. Each individual IC was binarized using the 
associated mixture model and a threshold of 0.5, 
i.e., at the crossing between the positive gamma 
(modeling the active voxel) and the Gaussian 
distribution (modeling the noise). The mapping was 
performed by first associating each brain voxel, in 
each subject, to one of the 15 possible RSN 
“combinations”: none, 2, 8, 9, 15, 2&8, 2&9,…, 
2&8&9&15. Then, the mapping itself consisted of 
selecting for each voxel the combination most often 
represented among the selected individuals. Note 
that voxels belonging to fewer than 50% of the 
individuals in each of the 4 RSNs were sorted into 
the “none” class. 

3. Results 

3.1. DNN training and validation 

The grid search revealed several sets of 
hyperparameters with a comparable minimal loss 
(Figure 3A). The set with minimal loss was selected 
to define the best MLP: 3 layers of 5,120 units, with 
rectified linear unit (ReLU) activation with a 0.66 
dropout rate and a learning rate of 10-5. This set 
achieved 89% accuracy and 0.34 categorical cross-
entropy loss during cross-validation (Figure 3A). 
Note that approximately half of the tested 
hyperparameter sets displayed a comparably low 
loss (0.36 or below) and the first 100 MLP models 
displayed a loss below 0.35 (see the enlargement of 
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Figure 3A). This finding shows the remarkable 
stability of this type of algorithm when used for the 
type of classification problem encountered in 
studies such as ours. To observe the interaction of 
different hyperparameters on the loss, losses were 
projected for each pair of hyperparameters (Figure 
3C), and all other hyperparameters were fixed at 
their value obtained from the best MLP. We 
observed that the activation function ReLu had 
better loss than tanh. The optimal number of layers 
was reproducibly found to be 3. Some of the 

hyperparameters (units per layer, dropout rate, 
learning rate) were chosen on the borders of the 
search space; outside of the borders, technical 
limitations were met such as out of GPU memory, 
the training not converging or maximum time set 
for hyperparameter optimization. As expected, 
there was a correlation between the number of units 
per layer and the level of the dropout rate: the more 
units per layer there were, the higher the dropout 
rate needed to be to optimize the loss. Overall, we 

Fig. 3 Analysis of the training set parameters. A) Sorted mean loss computed on each of the 648 MLP models tested in 
the grid search. Note that 48 models showing a loss above 0.8 were not included in the figure. B) RSN f1-score of the 
selected model (minimal loss) across each RSN. Note that each RSN name is colored according to whether it is a brain 
network (black) or an artifact (orange). C) Interaction of the 5 hyperparameters on the loss; the losses were projected 
for each pair of hyperparameters. The red dots show the parameters of the optimal solution. 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.02.183772doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.183772


9 
 

observed that the minimal loss was systematically 
located at the bottom of a well-defined “valley”.  
To improve the model’s accuracy, we tested a 
consensus method aggregating the 5 best MLP 
models (according to the loss), which resulted in 
less than a 1% increase in accuracy. This minor 
improvement comes at the cost of drastically 
increasing the complexity and size of the training 
and prediction process; thus, the minimal-loss MLP 
was chosen for the testing analysis (See 3.2). 
 
The selected MLP model showed a high and 
relatively stable f1-score across all RSNs (mean 
0.87, SD 0.08; Figure 3B) despite a notable class 
imbalance. In addition, a 2-dimensional projection 

of the classification results with the t-SNE method 
(Maaten and Hinton 2008) shows a qualitative high 
similarity between the results obtained from 
MICCA (Figure 4A) and those from the validation 
steps of the MLP (Figure 4B). Note that the t-SNE 
coordinates were computed based on the matrix of 
all paired IC voxel value correlations from the full 
BIL&GIN dataset (PG1, Pu-G1, and PG2). 
Additionally, the effects of applying the 0.5 
confidence cutoff and the unicity constraint were 
tested on the validation data labeled with the MLP, 
since those post-hoc steps were used in the rest of 
the study. This led to a 1.5% increase in accuracy 
with the cutoff and an additional 1.7% increase in 
accuracy when applying both the cutoff and unicity, 

Fig. 4 BIL&GIN processing. For each row, the figure on the left shows, for each RSN, the number of associated ICs 
(right Y-axis) and the equivalent % of labeled ICs per subject (left Y-axis); the figure on the right shows the t-SNE 
projection. A) MICCA labeling, B) DNN validation, C) PG2 labeling, and D) MICCA labeling and Pu-G1 combined. 
Only the Pu-G1 prediction was traced on the corresponding t-SNE graph. Note that the RSN names under the histograms 
were colored according to whether they were identified as a brain network (black) or an artifact (orange). 
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for a 3.2% increase in total, reaching an accuracy of 
over 92%. 
 

3.2. Predictions on BIL&GIN 

The selected optimal classifier was used to process 
both the Pu-G1 and PG2 BIL&GIN datasets. On 
PG2, 58% of the ICs were labeled to an RSN class 
(excluding the Class-0). The t-SNE of PG2 (Figure 
4C) was similar to both the t-SNE of MICCA 
labeling and that of DNN validation (Figure 4A & 
B). The percentage of detection per RSN of PG2 
(Figure 4C) shows the same trend as that of MICCA 
(see Figure 4A) except for some networks, namely, 
RSN#27, #32, #33, and #34, that were 
overrepresented in the PG2 analysis. This was 
expected considering that all the ICs of G2 were 
classified and only some of those in G1 were. After 
adding the ICs labeled by the MLP on the Pu-G1 
ICs to the MICCA set, the overall percentage of 
labeled ICs in G1 reached 69%, and the detection 
percentage per RSN (Figure 4D) showed the same 
“overrepresentation” as in the G2 analysis. 
 
The balanced group-based voxelwise comparison 
performed between PG2 MLP-labeled and PG1 
MICCA-labeled ICs did not show any significant 
voxelwise difference (p<0.05, FWE corrected) on 
any of the RSNs. Figure 5A shows the overlap 
analysis for 3 networks (RSN#09: default mode 
proper, RSN#11: dorsal attentional and RSN#14: 
language network). For the 45 RSNs, the average 
dice was 0.75 ± 0.01 (mean ± SD, N = 45), and 
when restricted to the 32 RSNs localized in the gray 

matter, it was 0.79 ± 0.08 (mean ± SD, N = 32). 
Note that among the latter RSNs, the lowest dice 
index was found to be 0.50, for RSN#42, which 
primarily encompasses the frontal medial pole. 
 

3.3. Prediction on MRi-Share (PG3) 

3.3.1. Spatial comparison of the MICCA 
and DNN results 

DNN classified 55.1% of the MRi-Share PG3 group 
ICs in one of the 45 RSNs (Figure 6 top). Among 
the 29 cortical networks of BIL&GIN, 27 RSNs 
appeared in the MRi-Share dataset analysis with a 
comparable or higher frequency. The 2 under-
represented networks were RSN#28 (localized 
mainly in the temporal poles) and RSN#42 
(localized mainly in medial frontal areas). For the 
27 networks, the balanced group-based voxelwise 
comparison between PG3 MLP-labeled and PG1 
MICCA-labeled results (see Figure 6, bottom) had 
an average dice index of 67.8 ± 4% (mean ± SD, N 
= 27). Figure 5B shows examples of the balanced 
group-based voxelwise comparison performed 
between PG3 MLP-labeled and PG1 MICCA-
labeled ICs for 3 RSNs (default mode, dorsal 
attentional, and language networks). Compared 
with the same analysis with the PG2 BIL&GIN 
dataset (see 3.2), we only observed small significant 
differences between the spatial support of the 
RSNs. On all 27 cortical RSNs, the proportion of 
voxels appearing in MICCA but not in MRi-Share 
(p <0.05 FWE corrected) was on average 4.6 ± -
3.1% and the proportion of voxels in MRi-Share but 

Fig. 5 Balanced analysis of the overlap, based on a 0.05 FWE threshold, between the two dataset classifications, i.e., 
PG2 (BIL&GIN, A) and PG3 (MRi-Share, B), with respect to the MICCA classification of PG1. Red represents the 
common voxels, and purple and orange represent voxels with non-significant and significantly higher PG1-MICCA 
values, respectively. Green and cyan represent voxels with non-significant and significantly lower PG1-MICCA values, 
respectively. No significant difference was observed in the PG2-MLP vs PG1-MICCA analysis. Note that only the left 
cerebral hemisphere is shown. 
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not MICCA was 2.4 ± 2.6%. Those numbers 
defined on average an overlap percentage of 93 ± 
4%. Among the subcortical (n=2) and temporal 
medial (n=3) RSNs, only RSN#25, encompassing 
the thalamus, appeared in MRi-Share with the same 
frequency as in MICCA. Regarding the other 11 
networks, RSN#30, covering the cerebellum, 
appeared with a higher frequency in MRi-Share, 
while all others exhibited a lower frequency in 
MRi-Share, with a dice index below 50%, or were 
absent.  
 

3.3.2. MRi-Share RSN atlas 

By using the MRi-Share PG3 MLP classification, a 
brain atlas (Figure 7) was built in the same manner 
as the original MICCA atlas (Figure 2). The atlas 
was built from the 27 cortical RSNs (Figure 7), with 
in addition one RSN encompassing the thalami and 
one the cerebellum. Note that the under-represented 
RSNs (see 3.3.1.) were not considered because they 
show up in too small a number of participants. Four 
percent of gray-matter voxels remain unlabeled; 
those voxels were mainly found at the lower part of 
the brain in areas exhibiting susceptibility artifacts. 
The main difference between the original MICCA 
and the MRi-Share-derived MLP atlas is first in the 
RSN#28 localized in the temporal poles. This 
network appeared in very few subjects in the MRi-

Share dataset, and the temporal pole regions were 
affected to RSN#26 and RSN#23 in the left and 
right hemispheres, respectively. Similarly, the 
frontal-medial-temporal region of RSN#42 was 
taken over by another of the frontal networks 
(FRON), namely, RSN#38. The other difference in 
the symmetric fronto-parieto-temporal (sFPT) 
networks was that the segregation between the left 
and right homotopic networks was complete while 
the temporal regions appear on the contralateral 
hemisphere in BIL&GIN.  
 

3.3.3. Default-mode network 
subpartitioning 

With 1,537 datasets showing the 4 DMN 
subnetworks (RSN#2, #8, #9, #15), G3 allowed us 
to accurately explore the overlaps between DMN 
subnetworks. The results showed a remarkably 
similar mapping between brain hemispheres 
(Figure 8) in two clusters, each showing all 4 RSNs: 
one centered on the precuneus, as expected, and 
another centered on the lateral parietal regions. The 
different networks are generally well defined with 
little overlap (Table 2) as ~82% of the voxels 
belong to only one network. While overlaps of 3 
(less than 1%) or 4 networks (0%) are minimal or 
null, overlaps of 2 networks (≅18%) are of 2 types. 

Fig. 6 A) For each RSN, the % of 
labeled ICs per subject for MICCA 
(blue) and I-SHARE (red). B) Dice 
index of the overlap analysis of 
MICCA and MRi-Share based on the 
SPM balanced analysis results. The 
RSNs are ordered as in Figure 2 for 
the cortical networks: default mode 
(DMN, 4 RSNs), symmetric fronto-
parieto-temporal (sFPT, 4 RSNs), 
language and attention (L&A, 5 
RSNs), frontal (FRON, 5 RSNs), 
visual-auditory (V&A, 5 RSNs), 
sensorimotor (SM, 5 RSNs). The other 
networks are in subcortical and 
medial temporal areas (SC&MT, 5 
RSNs), in cerebellum (Cere., 2 RSNs), 
in white matter (White, 1 RSN), or are 
susceptibility artifacts (Susc., 2 
RSNs), draining vein (Vein., 4 RSNs) 
and scanner-related artifacts (Art., 2 
RSNs). Note that each RSN name 
under the histograms was colored 
according to whether it was identified 
as a brain network (black) or an 
artifact (orange). 
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First, there are small bands of overlap at the border 
between 2 regions. These overlaps may be created 
by the conjunction of spatial normalization and the 
spatial smoothing of the ICs (measured at FWHM 
= 6.4 mm in each orthogonal direction). This may 
also be the case for the overlap between RSN#2 and 
RSN#9 in the left hemisphere, although it is less 
clear in the right hemisphere. Second, the overlap 
of RSN#8 and RSN#15 in lateral clusters centered 
on the left and right angular-2 regions (according to 
the AICHA atlas, (Joliot et al. 2015)) seems to 
indicate that this region belongs to both networks.  

4. Discussion  

In this study, we explore the capacity of an artificial 
neural network to perform automatic classification 
of all individual independent components extracted 
by an ICA of resting-state fMRI data.  
 

4.1. Choice of DNN methodology 

As briefly explained in the section on the methods, 
two additional types of DNN were explored before 
deciding on the MLP model implemented in the 
present study. Both were CNN architectures, 
namely VGG (Simonyan and Zisserman 2015) and 
ResneXt (Xie et al. 2017), which were updated to 
use 3D convolutions and batch normalization (Ioffe 
and Szegedy 2015). To determine which would be 
the most fitting, a scattershot approach was first 

Fig. 7 Twenty-seven cortical networks of the MRi-Share MICCA atlas. Each caret rendering set shows 4, 5 or 6 
RSNs aggregated into 6 partitions: DMN: default mode, sFPT: symmetric fronto-parieto-temporal, L&A: 
language and attentional, FRON: frontal, V&A: visual and auditory and SM: sensorimotor. For each partition 
and hemisphere, the most representative display (lateral or medial view) was chosen. 
 

Table 2 Overlap analysis of 4 DMNs in MRi-Share. From 
left to right: list of the 15 possible combinations (boldface), 
the absolute voxel count, and the voxel count of each 
combination in terms of a percentage of the total voxel 
count. Dots indicate overlapping combinations without 
voxels. 
 
Combination 
of overlapping 
RSN 

Voxel count 
(abs.) 

Voxel count 
(%) 

   
R_2 3259 21 
R_8 2541 16 
R_9 3693 24 
R_15 3250 21 
R_2_8 290 2 
R_2_9 868 6 
R_2_15 253 2 
R_8_9 540 3 
R_8_15 835 5 
R_9_15 55 <1 
R_2_8_9 73 <1 
R_2_8_15 . . 
R_2_9_15 1 <1 
R_8_9_15 . . 
R_2_8_9_15 . . 
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used for hyperparameter selection on these three 
classical architectures.  
The relatively small size of the dataset (training on 
6,400 images, validation on 1,600 images) was 
more problematic for the CNN networks, which 
overfit quickly in fewer than 5 epochs. Moreover, 
this problem could not be overcome by traditional 
data augmentation methods, such as rotations, flips, 
or translations. Indeed, the data here are represented 
as voxel high values in specific areas of the image, 
with all images normalized to the same MNI space 
during the preprocessing step. The different metrics 
used to evaluate the models also showed better 
results for the MLP compared to the CNN. For 
example, a non-optimized MLP (ReLu activation 
function, 10-3 learning rate, 0.5 dropout rate, 2 
layers, and 512 units per layer) achieved a lower 
loss (0.38 vs. 0.52 for ResNeXt), a higher accuracy 
(88% vs. 85%) and a better f1-score (0.86 vs. 0.82). 
Those problems might have been resolved by fine-
tuning the CNN hyperparameters; however, the 
CNN-based models took much longer to train than 
the MLP-based ones, and the grid-search approach 
applied to the MLP was not applicable to the CNNs 
in a sensible amount of time. In addition, the 
accuracy and loss results obtained with the first 
non-optimized MLP were much more promising, 
which prompted our final choice. 
In comparable classifications of individual-
extracted RSNs, the CNN was used in two studies 
(Chou et al. 2018; Zhao et al. 2018). The reported 
accuracies were 99% for the average of 2 of the 
RSNs (Chou et al. 2018) and 95% for 10 RSNs 
(Zhao et al. 2018). On 45 RSNs, we reach an 

accuracy of 92%; however, when calculating the 
same index on the first 2 and on the first 10 most-
populated classes, we obtain an accuracy of 95% 
and 93%, respectively. In another study, a 
perceptron-based classification in 5 RSNs (Vergun 
et al. 2016) showed a 90% accuracy (95% for us). 
Some points make a comparison between these 
globally good results difficult. The 3 cited studies 
used manually labelled individual RSNs as “ground 
truth”, while in our case, an automatic clustering 
method produced the ground truth. There is an 
advantage in the former methodology because only 
individual RSNs with clear classification in one of 
the chosen RSN classes were used in the training 
and testing phases of the concurrent methods. In 
other words, certain classification mistakes likely 
occurred in our initial set of 7,999 individual ICs 
lowering the measured accuracy. In addition, 
because of the manual labelling, the number of 
classes was necessarily restricted and the 
classification problem was less complex than ours. 
Note that the proxy we used for reporting accuracy 
with a comparable number of RSNs (2/5/10) was 
still calculated on the classification of 45 RSN 
classes. For example, in the other studies, the DMN 
appears as one network, while in our cases, it 
appears as 4 RSNs that share many spatial borders. 
Overall, we considered that our MLP-based method 
was in the same range of accuracy as the CNNs 
while handling at least 4 times more classes and it 
was also better than the previously tested 
perceptron.  
In addition to the perceptron strategy, other 
machine-learning approaches have been tested by 

Fig. 8 Overlap analysis of 4 DMN sub-networks identified with the MLP in the MRi-Share dataset. The main overlap 
can be found on the lateral surface RSN #8 and #15 (purple) and on the medial surface RSN #2 and #9 (yellow). Note 
that because of its small size, the overlap among RSN #2, #9, and #15 does not appear in the figure. The color legend 
is split into 2 parts to improve visibility. The white line delineates the precuneus. 
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Vergun et al. (Vergun et al. 2016) on a limited 
dataset of 30 healthy individuals, including support 
vector machines (SVM), decision trees, Naive 
Bayes. Among those, the perceptron and SVM 
methods gave the best results (accuracy of 90%) but 
were only applied to a small number of classes (5). 
More generally, DNNs are better classifiers with 
large high-dimensionality data sets (Heinsfeld et al. 
2017; Zhennan Yan et al. 2016).  

 

4.2. Grid-search-based training  

After selecting the DNN type, a careful choice of its 
hyperparameters was also needed. The grid-search 
approach yielded several good options, among 
which the best was chosen (lowest mean loss on the 
validation folds). However, all of the best 100 MLP 
models (i.e., MLPs with specific sets of 
hyperparameters) showed little difference in their 
mean loss compared to their variability, as 
illustrated by the difference between the maximal 
and the minimal loss of each specific fold set (supp. 
Figure 1). As a result, most of these models could 
probably be used interchangeably. The mean 
accuracy and mean f1-score of each model show 
again a similar equivalence of the 100 best models 
but still indicate slightly better results in general for 
the best-ranked models. Overall, this finding 
demonstrates the high stability and accuracy of 
MLPs.  
While almost all hyperparameters show a clear and 
unique minimal loss, interestingly, the dropout rate 
systematically shows a local minimum between 0.2 
and 0.3. Therefore, if speed is necessary or 
processing power is more limited, a dropout rate of 
0.25 could be used (0.87 f1-score, equivalent to the 
chosen MLP model). Unexpectedly, the results thus 
show that instead of the recommended 0.5 dropout 
rate (Srivastava et al. 2014), in our application, the 
best options are either higher or lower, highlighting 
the importance of the grid search (or equivalent 
procedure) in determining the optimal dropout rate. 
Additionally, the best learning rate and dropout rate 
are both located at extreme ends of the tested 
values, which indicates that even better results 
could have been obtained had the grid search been 
a little wider. However, further increasing the 
dropout rate or reducing the learning rate would 
lengthen the time needed to train the DNN.  
We also tested an alternative hyperparameter 
optimization method, namely, sequential model-
based global optimization (or Bayesian 
optimization) (Bergstra et al. 2011), to determine 
whether the time needed to search for an optimal set 
of hyperparameters could be reduced. This random-
search approach has been gaining popularity 
recently (Shahriari et al. 2016) and seemed to be 
promising. Indeed, the grid search revealed that the 

hyperparameter space was mostly smooth, thus 
reducing the risk of the algorithm falling into a local 
minimum. Additionally, most of the 
hyperparameter space showed good results (more 
than 70% of the tested MLP models had a mean 
validation loss below 0.4), meaning that even if the 
Bayesian algorithm did not find the best set of 
hyperparameters, it should still be adequate for the 
present use. Using this optimization method, the 
optimum value was reached after testing only 120 
models, compared to the 648 required in the 
traditional grid search. This dramatic reduction 
could therefore be used in similar applications in the 
future to increase the size of the searched space 
while reducing the time needed for the search and 
thus further optimize the DNN model used. 
Nonetheless, the grid-search approach was still 
necessary to control the validity of this new method. 
It also revealed the existence of a local minimum in 
the learning-rate space, which might be problematic 
in other projects (but not here), and should be kept 
in mind for future applications. 
 

4.3. Prediction analyses 

Once the DNN had been defined and refined, the 
first goal was to perform an array of tests to confirm 
its efficiency. These tests demonstrated the high f1-
score of classification during training, equivalent t-
SNE projections, and quasi-perfect overlap 
mapping between data classified by MICCA and 
data from the same database (BIL&GIN) classified 
by the DNN. Moreover, its capacity to generalize 
from what it learned from MICCA-labeled ICs is a 
strength that becomes apparent with PuG1. This 
showed that the DNN was capable of extracting 
relevant RSNs from the ICs MICCA had discarded, 
thus showing a higher classification performance, 
although most of those newly labeled PuG1 ICs 
were put in categories that regrouped non-gray-
matter areas. The only notable exception is 
RSN#27, which is located in the GM but in areas of 
susceptibility-induced artifacts. This finding makes 
it likely to be more variable than other RSNs, which 
leads to a lower detection rate with MICCA 
(because of the initial thresholding that excludes 
ICs with low spatial overlaps), while all the ICs 
were processed with the DNN.  
Our second goal was to test our prediction DNN on 
another database acquired on a different scanner 
with a different MRI sequence and preprocessed by 
a different pipeline. The main differences between 
MRi-Share and BIL&GIN fMRI data acquisition 
are that the former used a multiband sequence of a 
longer duration with better temporal and spatial 
sampling than the latter. In the preprocessing, only 
the MRi-Share data were corrected for spatial 
distortions, and the spatial smoothing was 
ultimately weaker (FWHM of 6.4 mm, compared to 
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8.6 mm in BIL&GIN). Note that because of the 
multiband MRI sequence, the field of view for 
MRi-Share data extended to the lower part of the 
head and encompassed the whole cerebellum, even 
in participants with very large heads. While the 
resultant classification and mapping were globally 
homogeneous for 27 of the 29 cortical networks in 
both datasets, two networks localized in the anterior 
medial frontal lobes and the temporal poles 
(discussed below) were scarcely identified in MRi-
Share. For the former, detection was low in 
BIL&GIN, and we do not have a clear explanation 
except that the network is located in areas that were 
corrected for spatial distortions in MRi-Share but 
not in BIL&GIN. In addition to the above-
mentioned RSNs localized in the temporal pole, 
differences occurred in the lower part of the brain 
in 3 other RSNs. For those, further investigation 
will be required (see future works). On the one 
hand, the multiband accelerated sequence could 
have trouble reconstructing slices in areas affected 
by susceptibility variations. On the other hand, the 
networks covering both temporal poles were also 
associated with clusters in the outer CSF in 
BIL&GIN, thus making it a potential artifactual 
network (see 4.4 for further evidence). In addition 
to the 8 RSNs classified as artifacts, other missing 
or poorly overlapping networks were located inside 
the Sylvian fissure (2 RSNs) and the white matter 
(1 RSN). For the former group, this outcome was 
expected; some differences were probably related to 
the differences between the two MRI scanners that 
affect differentially the imaging of the vein and 
outer-brain artifacts located in the CSF. White-
matter ICs were detected in greater proportion in 
BIL&GIN than MRi-Share, which might be 
because the preprocessing was upgraded for the 
latter database to better remove signal variation in 
the white matter and ventricular CSF. This 
improvement in the preprocessing could also 
explain why 2 RSNs located in the Sylvian fissures 
were not found. Even in BIL&GIN, they were 
already considered suspicious because they were 
found in a minimal number of participants and 
consisted of clusters centered on the intrasylvian 
CSF, but they were reported because of overlapping 
gray matter. Note also that in BIL&GIN, the spatial 
smoothness was higher than that in MRi-Share; 
moreover, the subjects were young in both 
databases and thus do not exhibit sulci enlargement 
associated with aging. The filtering level difference 
was also responsible for a high proportion of the 5% 
of voxels observed in MICCA-BIL&GIN but not in 
DNN-MRi-Share, which presents voxels that 
mostly appear as a thin band surrounding the area 
common to both analyses. Voxels found in DNN-
MRi-Share but not in MICCA-BIL&GIN (3%) 
were aggregated as a small cluster in the lower part 
of the brain that could be tentatively ascribed to an 

increase in the signal to noise ratio because of the 
much shorter acquisition repetition time in MRi-
Share compared to BIL&GIN (850 ms vs. 2000 
ms).  
 

4.4. Atlas creation 

The first application led to the creation of a classical 
atlas, meaning without overlap between RSNs, 
using the 1,811 datasets of the MRi-Share database. 
The MICCA individual ICA-based methodology 
previously applied to the 282 subjects of the 
BIL&GIN database provided a parcellation in 45 
RSNs, of which 31 were localized mainly in the 
cortical gray matter (Naveau et al. 2012a). In MRi-
Share the number of cortical RSNs decreased to 29. 
One of the “missing” network, strictly localized in 
the anterior frontal medial pole, was poorly detected 
in the MICCA labelling and was overlapping two 
other networks. Increasing the sampling size of the 
ICs could have solved this issue (see conclusion and 
perspective). The other missing RSN was localized 
in both the temporal poles and in the CSF, in the 
BIL&GIN database. The cortical regions were 
classified in MRi-Share as “language and 
attentional” networks, which makes sense since 
they included areas known to belong to the 
language network (Price 2012; Vigneau et al. 
2006). This unmasking effect is a consequence of 
imposing the unicity for the voxel assignment to an 
RSN when creating an atlas. The unicity is used by 
all the atlases of RSNs (see review by (G. E. Doucet 
et al. 2019)) because it is complex to perform a 
statistical analysis on bio-markers calculated using 
overlapping networks and thus artifactually 
correlated signals. Compared to the literature, we 
found the 10 most-cited RSNs (see review of (M. P. 
van den Heuvel and Hulshoff Pol 2010)). However, 
due to the higher granularity in our study, each of 
those encompassed up to 4 of our RSNs. The DMN 
RSN overlap 4 RSNs in our study, the primary 
motor RSN covered 4 of our RSNs, the left and right 
parieto-frontal RSNs each 2 of our RSNs and the 2 
visual RSNs overlap 4 of our RSNs. Among the 
additional networks, we find a network matching 
the location of the dorsal attentional network 
(RSN#11) that was surprisingly absent from the 
review by Van den Heuvel et al. (van den Heuvel 
and Hulshoff Pol 2010). Its hemispheric 
symmetrical localization is possibly the reason we 
were able to identify this network because other 
studies would split this network into the two fronto-
parietal networks that are localized in each 
hemisphere. We also observed that those 10 
networks do not cover the whole brain gray matter. 
With other algorithms, Yeo et al. (Yeo et al. 2011) 
and Gordon et al. (Gordon et al. 2015) covered most 
of the brain with 17 and 16 RSNs, respectively, and 
in both works, a match was found for the dorsal 
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attentional network. With 27 identified cortical 
networks in our partition, the number of RSNs was 
higher than that chosen for those other works. 
However, according to Aboud et al. (Abou Elseoud 
et al. 2011), such numbers could be even higher 
than what they hypothesized, namely, an optimal 
group ICA model order of 80 RSNs leading to 45 
gray matter RSNs. In our case, the number of 
classes is defined automatically but dependent on 
the number of ICs of the individual ICA (average of 
50) that was computed with the Laplace 
approximation (Minka and Thomas 2000). Thus, 
this number of RSNs could probably be reached by 
setting manually the IC number in the ICA 
decomposition to a higher value. However, 
according to the tests performed by Abou Elseoud 
et al. (Abou Elseoud et al. 2011), it would also 
increase the risk of false positives. Note that one 
feature of our algorithm is that it allows for a subject 
to show only part of those networks because each 
IC is classified (or rejected) independently from the 
others. This behavior is reasonable when 
classifying individual ICA outputs because only 
part of the variability is taken in account in the 
decomposition (in average of 40% in our case) or 2 
or more RSNs can be aggregated in one RSN. 
Because of the classification, we know which RSNs 
are potentially missing; thus, a post-hoc analysis 
could be designed to search for those. Of course, 
certain RSNs may not be functional and thus will be 
truly missing or the spatial support may be different 
from what is found in the general population.  
To summarize, our algorithm provides the tools for 
studying the individual variability of the brain 
resting-state organization. Even at the “atlas” level, 
we advocate that the improved robustness of mixing 
two databases is a strong incentive to further 
process other databases (see the future work section 
below). 

 

4.5. DMN overlap 

Overlap between RSNs has been scarcely studied in 
the literature except in a few studies, such as Yeo et 
al. (Yeo et al. 2014) and van den Heuvel et al. (M. 
P. van den Heuvel and Sporns 2013). Nevertheless, 
the implication of having or not areas belonging to 
2 or more networks is essential for understanding 
the resting-state brain organization, such as 
identifying these networks as a hub of IC in the 
graph analysis (Bullmore and Sporns 2009). 
Overlap analyses are strongly impacted by the 
number of RSNs, and in most atlases (see (G. E. 
Doucet et al. 2019) for a review), the DMN is not 
split into sub-components. However, studies have 
demonstrated that in both in animals (Margulies et 
al. 2009) and humans (Andrews-Hanna et al. 2010; 
Yeo et al. 2014), different parts of the precuneus 
belong to different networks that support different 

cognitive functions. In the study by Yeo et al. (Yeo 
et al. 2014), they described the DMN as split among 
5 sub-networks and identified overlaps in the 
precuneus, the lateral temporal cortex, the posterior 
parietal cortex and the medial prefrontal cortex. 
Compared to their analysis, we find 2 overlaps 
approximately at the same location (precuneus and 
lateral parietal cortex); however, we were also able 
to more precisely identify their locations. In fact, 
they used group analysis, which favors sensitivity 
over the precision, while our individual-based 
methodology favors precision over sensitivity. In 
addition, their DMN definition does not completely 
match our definition. The van den Heuvel et al. 
study (M. P. van den Heuvel and Sporns 2013) uses 
both functional data (for extracting the 8-RSNs 
decomposition) and on diffusion imaging data (i.e., 
structural anatomy) for the definition of a hub, 
which is described as a region that links two or more 
RSNs. While showing the smoothness of the group 
analysis used to extract the RSNs, the hub of the 
precuneus shows a comparable localization to ours; 
moreover, we both find that the extension of the 
precuneus hub/overlap area was larger in the right 
hemisphere than the left hemisphere. The lateral 
posterior parietal cortex also shows a greater 
overlap in the right than left side, which is 
consistent with our findings and localization in the 
angular gyri. Consistent with Yeo et al. (Yeo et al. 
2014), an overlap was also described in the medial 
prefrontal cortex, although it was not present in our 
results. This area was in RSN#16 in our study, and 
it covers mainly the anterior cingulate and has been 
linked by RSN intrinsic connectivity analysis to the 
salience networks, but not to the DMN (See Figure 
2, (G. Doucet et al. 2011)), and it does not extend to 
the precuneus. As shown in the supplementary 
material (Supp. Figure 2), its inclusion in the 
overlap analysis shows the same regional overlap in 
the medial frontal pole as that described by the other 
studies.  
Overall, in this overlap analysis of the 
subcomponent of the RSN, including the 
precuneus, it appears that using an independent-
component analysis and individual overlap 
computation led to minimally overlapping ICs. In 
fact, while a group analysis shows a large overlap 
area extension, such an overlap was also observed 
in our study because of the spatial smoothing 
performed during data preprocessing to increase the 
signal to noise ratio. 

5. Future work and conclusion  

The present work has demonstrated the 
performance and robustness of the MLP for 
individual dataset classification. As such it opens 
several lines of research that we intend to pursue. 
First, using recent GPUs with more memory, we 
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will be able to apply deep learning methods on 
image data having better spatial resolution and thus 
to possibly perform a decomposition with a higher 
number of RSNs. Second, the atlas creation 
methodology will be upgraded to take into account 
the overlap analysis on the full set of RSNs. For this 
purpose, we hope to get the authorization to use the 
largest available database, the UK-biobank 
(currently over 40K participants). To address the 
issue of networks covering mainly the lower part of 
the brain, which was identified in BIL&GIN but not 
in MRi-Share, we will also process databases with 
conventional functional sequences. We will also 
explore ways to increase the classification power, 
first by including the ICs discarded because of the 
unicity criteria, then by analyzing the fraction of the 
variance that had been discarded in the first step of 
the independent component analysis. To 
summarized, we provide the community with a new 
powerful tool for automatic classification of ICs 
and although additional improvements are still 
planed, we demonstrated its usefulness in 
individual-based analyses. 

6. Information Sharing Statement. 

The classifier and documentation are provided for 
free upon request to the author of the publication. 
The classifier and documentation are provided with 
the licensing Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International. 
Both BIL&GIN and MRi-Share data are open to 
collaborations and partnerships and supports local, 
national, and international collaborations from the 
public or private sector. For BIL&GIN requests to 
access the database should be sent through the GIN 
website (https://www.gin.cnrs.fr/en/current-
research/axis2/bilgin-en/). For MRi-Share, requests 
to access the database should be sent at contact@i-
share.fr. 
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