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Abstract 19 

Geometrical optical illusion (GOIs) are mismatches between physical stimuli and perception. GOIs provide 20 

an access point to study the interplay between sensation and perception, yet there is scant quantitative 21 

investigation of the extent to which different GOIs rely on similar or distinct brain mechanisms. We 22 

addressed this knowledge gap. First, 30 healthy adults reported quantitatively their perceptual biases with 23 

three GOIs, whose physical properties parametrically varied on a trial-by-trial basis. Biases observed with 24 

one GOI were unrelated to those observed with another GOI, suggestive of (partially) distinct underlying 25 

mechanisms. Next, we used these psychophysical results to tune a computational model of primary visual 26 

cortex that combines parameters of orientation, selectivity, intra-cortical connectivity, and long-range 27 

interactions. We showed that similar biases could be generated in-silico, mirroring those observed in 28 

humans. Such results provide a roadmap whereby computational modelling, informed by human 29 

psychophysics, can reveal likely mechanistic underpinnings of perception. 30 

 31 
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Introduction  34 

 The effortlessness of vision belies its mechanistic complexity as well as its perceptual fragility. 35 

Illusions are key phenomena to study vision. They provide a possibility to distinguish between sensation 36 

and perception. Illusions also have an ethological significance, as those organisms whose vision is capable 37 

of surmounting noise and ambiguity in visual scenes (e.g. camouflage) have a clear evolutionary advantage 38 

(Lesher, 1995). These phenomena also provide a more accurate depiction of the real world, playing a role 39 

in navigation (Lesher, 1995). Illusory figures present a solution to complex perceptual problems (Lesher, 40 

Figure 1. (Top Row) Examples of Geometrical-optical illusions. A) Hering illusion:  two parallel vertical lines appear as 

curved due to the presence of a radial background. B) Zöllner illusion: two parallel vertical lines are perceived as non-

parallel due to the presence of oblique inducers on the background. C) Poggendorff illusion: a perceived misalignment of 

the crossing oblique line is induced by the presence of a central surface. (Central Row) Visual stimuli used for the behavioral 

and the computational experiments. A. Hering illusion. The number of radial lines varies along the y-axis; the distance 

between the two vertical lines across the x-axis. B. Zöllner illusion. The number of inducer lines varies along the y-axis, the 

inducers’ angle across the x-axis. C. Poggendorff illusion. The width of the rectangle varies along the y-axis, the angle of 

the line segments across the x-axis. (Bottom Row) Bias calculation. Green line: geometrical real line. Red dotted line: 

corrected line. A. Hering illusion. The bias corresponds to the distance between the original line and the corrected line. B. 

Zöllner illusion. The bias refers to the angle (θ) created between the corrected and the parallel lines.  C. Poggendorff illusion. 

The bias is the distance along the right rectangle edge between the corrected right line segment and the physically aligned 

right line segment. 
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1995; Rock & Anson, 1979). In this paper, we focus our attention on a subset of illusory phenomena called 41 

Geometrical-Optical Illusions (GOIs). They were first described in the 19th century by Johann Joseph 42 

Oppel (Oppel, 1855) and subsequently studied by other German psychologists such as Ewald Hering 43 

(Hering, 1861), Rudolph Hermann Lotze (Lotze, 1852) and Karl Zöllner (Zöllner, 1860).   44 

 GOIs were defined as situations where “there is a mismatch of geometrical properties between the 45 

item in the object space (physical source of the stimulus) and its associated percept” (Westheimer, 2008). 46 

Figure 1 (top row) presents some classical examples of GOIs: the Hering, the Zöllner and Poggendorff 47 

illusions. For example, in the Hering illusion (Figure 1, top row, A), the presence of a radial background 48 

induces a misperception of the two parallel lines, which appear as bowed towards the outside although they 49 

are straight. Optical illusions were first studied from the psychophysical point of view, leading to qualitative 50 

models that first identified the underlying mechanisms in terms of cognitive, retinal, and perceptual 51 

processes. Behavioral tests using these illusions have been performed during the 1960s-1980s (Beckett, 52 

1989; Holt-Hansen, 1961; Oyama, 1975; Weintraub & Krantz, 1971), but there are both methodological 53 

limitations (e.g. hand-drawings were often used) and limited statistical analysis (i.e. most studies were 54 

purely observational and not quantitative). Therefore, the bias, i.e. the difference between the geometrical 55 

nature of the stimuli and the perceived one (amount of perceived curvature induced by the distance between 56 

original and corrected line, divergence and misalignment, respectively, for the GOIs depicted in Figure 1, 57 

top row), has not yet been investigated systematically. From the neurophysiological standpoint, several 58 

mechanisms have been proposed to contribute to illusory perceptual phenomena (Eagleman, 2001), such as 59 

lateral interactions between cells responsible for extracting basic features at the intracortical level, or 60 

feedback and feed-forward mechanisms across hierarchical levels of the visual pathway. Lateral inhibition 61 

refers to nearby neurons in the cortex spiking (near) simultaneously, due to competing features of the initial 62 

stimulus: the produced neuronal responses are themselves ambiguous in their coding. In the case of illusory 63 

contours, where geometrical objects such as lines or figures are perceived – although not physically present, 64 

feedback mechanisms have been postulated as – at least partly – responsible. Feedback modulations in the 65 

case of illusory perceptual phenomena allow for the incorporation of integration of information across 66 

longer distances, since higher-level cortices contain neurons with large receptive fields, and therefore the 67 

substantiation of Gestalt-like principles of perceptual grouping (Dura-Bernal, Wennekers, & Denham, 68 

2011; Murray & Herrmann, 2013a). The specific contributions of these mechanisms to perceptual outcomes 69 

remain to be fully characterized. 70 

Nonetheless, these psychophysical and neurophysiological observations have opened up the 71 

possibility of also investigating and computationally modeling the neural substrates of such illusory 72 

processing by means of the features (contour perception, brightness, depth) – determinants – of the stimuli 73 

(Lesher, 1995). Neural-based computational models of visual perception aim to provide mathematical 74 
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descriptions of such neurophysiological features. A stable prediction of the misperception in GOIs could 75 

be explained by a model considering three main neurophysiological features (B. Franceschiello, Mashtakov, 76 

Citti, & Sarti, 2019; Benedetta Franceschiello, Sarti, & Citti, 2017): 1) orientation selectivity process 77 

performed by visual areas V1 and V2 (Hubel & Wiesel, 1962), 2) interference between receptive profiles 78 

of simple cells in these areas, and 3) long-range connectivity (Bosking, William H., 1997). 79 

In terms of computational modelling, the orientation selectivity process is implemented by applying 80 

convolutional filters capable of extracting the most prominent orientation for each small portion of the 81 

visual field where the stimulus is represented. This interpretation holds in the case of possible interference 82 

between close-by receptive profiles. Many models have been proposed for this convolutional operation, 83 

among those the Derivative of Gaussians (DoG), introduced by Young (Young, 1987) and  Daugman 84 

(Koenderink & van Doorn, 1990), Gabor filters, introduced by Daugman (Daugman, 1985) and Jones and 85 

Palmer (Jones & Palmer, 1987), and cake wavelets (Duits, Felsberg, Granlund, & Romeny, 2007).  Gabor 86 

filters are particularly interesting as they have been proven to mimic accurately receptive profiles of simple 87 

cells in V1, as recorded neurophysiologically by De Angelis (De Angelis, Ohzawa, & Freeman, 1995). As 88 

for the long-range connectivity (or horizontal connectivity) of the primary visual areas, we refer to the 89 

mechanism “connecting” neurons spiking simultaneously while situated at relatively far distances (ca. 300-90 

400𝜇𝑚) from one another. Long-range connections enable the formation of contours, surfaces, and more 91 

complex objects and they have been mathematically described in terms of mean field equations (Bertalmío 92 

et al., 2020; Bertalmío & Cowan, 2009; Bressloff, Cowan, Golubitsky, Thomas, & Wiener, 2001; Schuster 93 

& Wagner, 1990), of statistics of the visual inputs (Bednar, 2014; Simoncelli & Olshausen, 2001) or by a 94 

geometrical description of the visual areas (Ben-Shahar & Zucker, 2004; Citti & Sarti, 2006; Hoffman, 95 

1980; Petitot, 2002). Among those computational models providing a description for GOIs, we find a 96 

statistical-based approach in (Fermüller & Malm, 2004) and a geometrical approach in (Ehm & 97 

Wackermann, 2012, 2016). The first models interpreting GOIs while having a neural-based approach are 98 

those in (Franceschiello, Benedetta, Sarti, Alessandro, Citti, 2017; Franceschiello et al., 2019). These 99 

provided a first qualitative reconstruction of the phenomena. By integrating psychophysical data from 100 

actual observers, we were therefore in a position to determine the contributions of the neural components 101 

of the in-silico simulations, providing for the first time a quantitative reconstruction of the phenomena.  102 

The contributions of the present paper are threefold. Firstly, and to our knowledge for the first time, 103 

we introduce a standardized, quantitative measure of perceptual bias for each of the three GOIs: Hering, 104 

Zollner and Poggendorff illusions. Furthermore, these perceptual illusions are analyzed together for the first 105 

time, enabling us to determine to what extent biases are related and by extension the degree to which distinct 106 

mechanisms contribute to each illusion. Second, we establish the practice of tuning the computational 107 

models in (B. Franceschiello et al., 2019; Benedetta Franceschiello et al., 2017) using psychophysical data: 108 
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computational models are strongly dependent on the choice of parameters. A part of them is only 109 

computationally driven, while another part represents neurophysiological correlates of the studied 110 

processes. Tuning the computational model means iteratively optimizing the parameters to achieve a 111 

replication of human behavior. The third contribution of this work is to derive neural-based conclusions 112 

from those neurophysiological-related parameters which permitted the computational model fitting, i.e. a 113 

quantitative reproduction of the phenomena. This allows us to finally reveal those mechanisms responsible 114 

for the perception of geometrical optical illusions.    115 

 116 

 117 

Materials and Methods 118 

Behavioral Experiment 119 

Participants. Thirty healthy unpaid volunteers (19 females; aged 22– 39years; mean±SD=28.4 ±4.3years) 120 

provided informed consent to participate in the experiment. All procedures conformed to the 2013 update 121 

of the Declaration of Helsinki and were approved by the Cantonal Ethics Committee. None of the subjects 122 

had current or prior neurological or psychiatric illnesses. All participants had normal or corrected-to-normal 123 

vision.  124 

 125 

Stimuli. The experiment included stimuli for the three different illusion tasks: Hering, Zöllner and 126 

Poggendorff. Visual stimuli were independently varied along 2 aspects of interest (i.e. our independent 127 

variables for each condition). For each illusion, nine sets of visual stimuli were presented as in different 128 

conditions, following a 3×3 factorial design.  129 

Hering stimuli. The neutral configuration of Hering stimuli consists of two parallel vertical lines 130 

(foreground curves) and a symmetrical arrangement of radial background lines, which meet in the center 131 

of the image, halfway between the two foreground lines. The participants then usually report the two 132 

straight, parallel vertical lines as appearing curved (Hering, 1861). In the present experimental set-up, 133 

participants had to adjust the vertical lines in order to appear subjectively straight and parallel. 134 

In our experiment, each stimulus is drawn in a rectangular region in the center of the screen with a gap 135 

above and below of 5% of the height of the screen (the height of the screen used was 20 cm), such that the 136 

vertical extent of the stimulus is the middle  90% of the height of the screen. The background of the stimulus 137 

consists of a number of lines disposed radially, see Figure 1, central row, (A). These lines are evenly spaced 138 

along the edges of the central square, as a rule always including the horizontal and diagonal lines and 139 

excluding the central vertical line (see Figure 1, central row, (A)). All stimuli consisted of black lines 140 

presented on a white background. 141 
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The nine different stimuli in the Hering condition were obtained by varying independently the number of 142 

radial lines and the distance between the two main vertical lines (Figure 1, central row, (A)). These two 143 

variables were chosen because they constitute the main components of the Hering illusion. Each stimulus 144 

included either 7, 11 or 15 radial lines (the corresponding values in the Psychopy code for stimuli 145 

presentation are 5, 7 and 9) and a distance between the two vertical lines of either 2.4 cm, 3.2 cm and 4 cm, 146 

(the corresponding values in the code are: 0.06, 0.08, 0.1). The values were fixed in order to have 147 

perceivable differences while experiencing the illusory effects. To recover the measure in cm, these values 148 

(0.12, 0.16 and 0.2) were multiplied by the height of the screen (20 cm).  149 

The two foreground curves are not always drawn straight, but the curves appear smooth in all 150 

configurations. The foreground curves can veer towards or away from the center of the image. We define 151 

the offset to be the initial horizontal distance (varied for each trial) between one of the straight vertical line 152 

in the neutral configuration and the corresponding foreground curve (see Appendix A for further 153 

explanations).  We varied the initial value of the offset by discrete steps (up to 4 steps in either direction). 154 

When the participant adjusts the offset parameter by pressing the up or down key, the value of the offset is 155 

adjusted by 1 step. We varied the initial value of the offset in order not to bias the participant towards a 156 

stable initial configuration. However, this parameter is not among our main experimental manipulations. 157 

The measure of this experiment is the final offset, which corresponds to the distance from the neutral 158 

configuration and represents what the participant perceives as straight/parallel, and it is measured in discrete 159 

steps. This is the perceived bias (Figure 1, bottom row, A). 160 

 161 

Zöllner stimuli.  The neutral configuration of Zöllner stimuli consists of two vertical lines each intersected 162 

by a number of segments (inducers), see Figure 1, central row, (B). Despite the fact that the vertical lines 163 

are parallel to each other, the participants perceive them as not parallel and instead report them to appear to 164 

converge and diverge from each other. In the present experimental set-up, participants had to adjust the 165 

angle of the vertical lines in order to appear subjectively parallel.  166 

In our experimental setup, the inducers are parallel segments spread evenly over the length of the vertical 167 

lines. The inducers intersecting the left vertical line are consistently oriented from top left to bottom right 168 

and the inducers on the right line form their mirrored image. The length of the vertical lines is 80% of the 169 

height of the screen (16cm). The distance between them is 4 cm (0.2 of the screen height). The length of 170 

the inducers is 2cm (0.1 of the screen height). 171 

The nine different stimuli in Zöllner were obtained by varying independently the two following parameters: 172 

the number of inducers and the angle of the inducers, Figure 1, central row, (B). In our example, only the 173 

angle is manipulated and the number of inducers, which could vary between 8, 9 and 10 inducers, is used 174 

as control. The angle can vary between 40º, 65º and 90º (from vertical). These latter values were fixed in 175 
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order to have perceptual differences while experiencing the illusory effects. The participants manipulated 176 

the angle of the vertical lines (both lines were rotated together in a mirrored way). The offset step size is 177 

0.1 degrees. The vertical lines in the Zöllner illusion were not always drawn parallel; sometimes they were 178 

tilted by a small angle, which is considered as the distance from the neutral configuration ; it is what we 179 

refer to as offset and it varies in discrete steps. We varied the initial offset between -0.6 º to 0.6 º. When the 180 

participant adjusts the offset parameter by pressing the up or down key, the value of the offset is adjusted 181 

by 1 step. The measure of this experiment is called final offset, which corresponds to the distance from the 182 

neutral configuration and represents what the participant perceives as parallel. This is their perceived bias 183 

(Figure 1, bottom row, (B).). 184 

 185 

Poggendorff stimuli. The neutral configuration of Poggendorff stimuli consists of two collinear segments 186 

separated by a central surface. The participants usually report the two collinear segments as misaligned. In 187 

the present experiment, participants had to adjust the vertical position of the right segment in order for the 188 

two segments to be subjectively perceived as collinear. 189 

In our experimental setup, the stimuli consist of a central black rectangle, with a fixed height of 16 cm and 190 

a width that varies from one presentation to another, and two black lines, one on the left side and one on 191 

the right. The nine different stimuli in Poggendorff were obtained by varying independently the width of 192 

the rectangle and the angle (slope) of the line segments, Figure 1, central row, (C). These two independent 193 

variables were chosen as they constitute the main components of the Poggendorff illusion. The width of the 194 

rectangle was varied between 2, 4 and 6 cm, and the angle of the line segments between 30º, 60º and 90º 195 

(from the vertical configuration). These values were chosen in order to have a significant difference in the 196 

perception of the illusory effects. The two segments always have the same slope. Both line segments extend 197 

to 4 cm horizontally away from the center of the screen. Therefore, their length depends on the width of the 198 

rectangle and on the slope. In the neutral position (zero offset), the right and left segments both align with 199 

the central point of the rectangle, as if to form a single line passing through that point. The left line is always 200 

fixed in this position. However, as in the other illusion tasks, there is an initial offset variable. Specifically, 201 

the right line can be offset by a variable amount ranging between -0.04 to 0.04 cm. When the participant 202 

adjusts the offset parameter by pressing the up or down key and moving the right line segment upwards or 203 

downwards, the value of the offset is adjusted by 1 step of 0.02 cm size. The measure of this experiment is 204 

the final offset, which is the vertical distance from the neutral configuration (alignment of the segments) 205 

and represents what the participant perceives as collinear. This is the perceived bias (Figure 1, bottom row, 206 

(C)). 207 

 208 

Procedure and Experimental design. Participants sat in a darkened, sound-attenuated room (WhisperRoom 209 
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MDI, 102126E) in front of a laptop screen (MacBook Pro end 2013, 13-inch, resolution: 2560 x 1600) that 210 

was presenting the different stimuli. The distance between participants’ eyes and the screen was kept 211 

constant at approximately 75 cm, for a vertical visual angle of 15°, which implies that the stimuli were 212 

projected in participants’ central vision.  The experiment consisted of three different blocks, one for each 213 

illusion task. Participants performed each illusion task one after the other; the order of which was 214 

counterbalanced across participants. Participants took short breaks between the different tasks. Within each 215 

block, the nine different sets of stimuli were presented randomly to the participants. Each stimulus remained 216 

on the screen for as long as the participant took to respond. Participants then pressed the spacebar in order 217 

to proceed to the next trial. The order of trials was randomized for each participant. Short instructions were 218 

presented at the beginning of each of the tasks, followed by a couple of practice trials for the participant to 219 

get familiarized with the tasks. Stimulus delivery and behavioral response collection were programmed and 220 

controlled by PsychoPy v3.0 (Peirce et al., 2019). The code for the experiments is publicly available at the 221 

following link: https://gist.github.com/nat-n/879d06244a694d47c4911098aac60656. 222 

  223 

Depending on the illusion, participants were instructed to adjust the target lines (green lines in Figure 1, 224 

bottom row) in order to i) either make them appear subjectively parallel (Hering and Zöllner) or ii) to appear 225 

collinear (Poggendorff).  226 

To move the target lines, their task was to press either the up or down arrow keys on the keyboard. In the 227 

Hering illusion, the target lines were the two foreground curves (Figure 1, bottom row, (A)). These curves 228 

were bent outwards if the down button was pressed and inwards if the up key was pressed, according to the 229 

mathematical expression of the curve (see Appendix, section A). For the Zöllner illusion, the target lines 230 

were again the two vertical lines. The vertical lines shifted outwards if the up key was pressed and inwards 231 

if the down key was pressed (Figure 1, bottom row, (B)). In the Poggendorff illusion, the target line was 232 

the right line segment (Figure 1, bottom row, (C)). The right segment moved up if the up key was pressed 233 

and down if the down key was pressed.  234 

 235 

Hering design. A 3 (number of radial lines: 7, 11 and 15) by 3 (distance between vertical lines: 2.4 cm, 3.2 236 

cm and 4 cm) factorial design was adopted, resulting in 9 experimental conditions. Each of the nine 237 

conditions was presented 12 times, resulting in 108 trials in total. It should be noted that the initial value of 238 

the offset was not specified as an experimental factor. For each condition, we set several initial offset values: 239 

– 0.107 cm (1 time), -0.053 cm (3 times), 0 cm (4 times), 0.053 cm (3 times) and 0.107 cm (1 time), 240 

following a Gaussian distribution with mean equal to the condition we wanted to test most often. The bias 241 

here was defined as the horizontal distance between the original vertical line and the manipulated final 242 

curve, see Figure 1, bottom row, (A). An explanation that links the described “distance” and the curvature 243 
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of the final curve is presented in the Appendix, (A).  To calculate the distance, we summed the number of 244 

times the up and down arrow keys were pressed, giving it a positive value when the down key was pressed 245 

and a negative value when the up key was pressed. The resulting final offset, encoding the final position of 246 

the line according to the participant’s perception, was then multiplied by the offset step size, equal to 0.0267 247 

cm in the Hering illusion (see the Stimuli section). 248 

 249 

 Zöllner design. A 3 (number of inducers: 8, 9 and 10) by 3 (angle of inducers: 40º, 65º and 90º) factorial 250 

design was adopted, resulting in 9 experimental conditions. Each of the nine conditions was presented 12 251 

times, resulting in 108 trials in total. The initial value of the offset was not specified as an experimental 252 

factor.  For each condition, we set several initial offset values: – 0.6º (1 time), -0.4º (3 times), 0º (4 times), 253 

0.4º (3 times) and 0.6º (1 time), following a Gaussian distribution with mean equal to the condition we 254 

wanted to test most often. The bias referred to the angle created between the corrected and the parallel lines 255 

Figure 1, bottom row, (B). To calculate that angle, we summed the number of times the up and down arrow 256 

keys were pressed, giving it a positive value when the up key was pressed and a negative value when the 257 

down key was pressed. The resulting value (final offset) was then multiplied by the angle in degrees 258 

corresponding to how much the line moved each time we pressed an arrow, i.e. its offset step size equal to 259 

0.1 º. 260 

 261 

Poggendorff design. A 3 (width of the rectangle: 2, 4 and 6cm) by 3 (angle of the line segments: 30º, 60º 262 

and 90º) factorial design was adopted, resulting in 9 experimental conditions. Each of the nine conditions 263 

was presented 12 times, resulting in 108 trials in total. The initial value of the offset was not specified as 264 

an experimental factor.  For each condition, we set several initial offset values: – 0.04 cm (1 time), -0.02 265 

cm (3 times), 0 cm (4 times), 0.02 cm (3 times) and 0.04 (1 time), following a Gaussian distribution with 266 

mean equal to the condition we wanted to test most often. The bias for Poggendorff was calculated as the 267 

distance, computed along the right side of the rectangle, between the right line segment and the actual 268 

physically aligned segment, Figure 1, bottom row, (C). To calculate that distance, we summed the number 269 

of times the up and down arrow keys were pressed, giving it a positive value when the up key was pressed 270 

and a negative value when the down key was pressed. The resulting value (final offset) was then multiplied 271 

by the distance in cm that the line moved each time we pressed an arrow (offset step size equal to 0.02 cm) 272 

 273 

 274 

Behavioral analysis. IBM SPSS Statistics 25 (IBM Corp. Released 2017. IBM SPSS Statistics for 275 

Windows, Version 25.0. Armonk, NY: IBM Corp.) was used for data analysis. First, we tested whether the 276 

recorded data were normally distributed using a Shapiro-Wilk test. All data were normally distributed. 277 
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Hence, a 3 × 3 repeated measures ANOVA was used for each illusion task in order to analyze the effects 278 

of our experimental manipulations on the participants’ calculated biases. The factors that were used were: 279 

the number of radial lines (7, 11, 15) and the distance between the vertical lines (2.4 cm, 3.2 cm, 4 cm) for 280 

Hering, the number of inducers  (8, 9, 10)  and angle of inducers (40º, 65º , 90º) for Zöllner and the width 281 

of the rectangle (2 cm, 4 cm, 6 cm) and the angle of the line segments (30º, 60º, 90º) for Poggendorff. 282 

 283 

Computational experiment  284 

 285 

Theoretical formulation of the model. The cortically inspired computational models introduced in (B. 286 

Franceschiello et al., 2019; Benedetta Franceschiello et al., 2017) have proven to be effective in reproducing 287 

the qualitative responses of the primary visual cortices in response to geometrical optical illusions. The 288 

model, tested in (B. Franceschiello et al., 2019; Benedetta Franceschiello et al., 2017) from a purely image 289 

processing perspective, takes into account as a first step the orientation selection mechanisms discovered 290 

by Hubel and Wiesel (Hubel & Wiesel, 1962) and modelled computationally by Daugman (Daugman, 1985) 291 

and Jones and Palmer (Jones & Palmer, 1987). For a full description of the model, we refer readers to (B. 292 

Franceschiello et al., 2019; Benedetta Franceschiello et al., 2017). Here, we briefly summarize the 293 

approach. Gabor filters have the following formulation in their expression independent from time: 294 

 
𝜓ሺ𝑥, 𝑦, 𝜃ሻ =

𝛾

2𝜋𝜎2
ℯ
−൫μ1

2+𝛾μ2
2൯

2𝜎2 ℯ
2𝑖 𝑏തμ2
𝜎  

(1) 

μ1 = 𝑥 𝑐𝑜𝑠ሺ𝜃ሻ+ 𝑦𝑠𝑖𝑛ሺ𝜃ሻ 295 

μ2 = −𝑥𝑠𝑖𝑛 ሺ𝜃ሻ + 𝑦𝑐𝑜𝑠 ሺ𝜃ሻ, 296 

where ሺ𝑥, 𝑦ሻ ∈  ℝ2 represents the global coordinates on the initial image ; 𝑏,ഥ 𝜎 and 𝛾 are extra parameters 297 

determining the shape and size of the filter. 𝜓ሺ𝑥, 𝑦, 𝜃ሻ is a complex-valued function, therefore we can 298 

identify a real part and imaginary part. The real part is an even function with respect to ሺ𝑥, 𝑦ሻ: 299 

 
Re൫𝜓ሺ𝑥, 𝑦, 𝜃ሻ൯ =

𝛾

2𝜋𝜎2
ℯ
−൫μ1

2+𝛾μ2
2൯

2𝜎2 co s ቆ
2𝑖 𝑏തμ2
𝜎

ቇ 

 

(2) 

While the imaginary one an odd function with respect to ሺ𝑥, 𝑦ሻ: 300 

 
Im൫𝜓ሺ𝑥, 𝑦, 𝜃ሻ൯ =

𝛾

2𝜋𝜎2
ℯ
−൫μ1

2+𝛾μ2
2൯

2𝜎2 si n ቆ
2𝑖 𝑏തμ2
𝜎

ቇ 

 

(3) 

Odd and even parts of Gabor filters describe different types of receptive field profiles of simple cells 301 

observed in V1. Odd receptive field profiles are able to detect contours and therefore are used to detect the 302 

presence of a surface in an image, such as the central surface presented in the Poggendorff illusion. In this 303 
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case, 𝜃 ∈ ሾ−𝜋, 𝜋ሻ.  Even receptive field profiles are sensitive to line orientation, and for this reason  𝜃 ∈304 

ሾ0, 𝜋ሻ . 305 

As shown by Citti and Sarti (Citti & Sarti, 2006), the organization of simple cells in V1 responds to a group 306 

law that allows to retrieve ሺ𝑥, 𝑦, 𝜃ሻ position of simple cells receptive fields in the hypercolumnar structure 307 

of V1.  ሺ𝑥, 𝑦, 𝜃ሻ is retrieved by means of a rotation and a translation of a mother cell placed at the origin of 308 

our space, ℝ2×S1, where ℝ2 encodes the spatial features while S1  the orientation selection. 309 

If we identify the retinal plane with the ℝ2-plane, then the spike frequencies O (x, y, θ) of the neurons 310 

activating at the global coordinates (x, y) are modeled as the convolution between the visual stimulus I: 311 

𝐷 ⊂ ℝ2  → ℝ+ with the set of Gabor filters. The expression for this output becomes the following: 312 

 𝑂ሺ𝑥,𝑦,𝜃ሻ = ∫ 𝐼 ሺμ1, μ2ሻ𝜓ሺ𝑥,𝑦,𝜃ሻሺμ1, μ2ሻ𝑑μ1𝑑μ2𝐷
, (4) 

where {𝜓ሺ𝑥,y,θሻ}ሺ𝑥,y,𝜃ሻ∈ ℝ2×S1 is the set of Gabor filters, 𝐷 ⊂ ℝ2. By means of this mechanism, we mimic 313 

the orientation selectivity process, i.e. the short-range or intracortical connectivity, as described in the 314 

experimental works of Hubel and Wiesel (Hubel & Wiesel, 1962). In the Hering and Zöllner illusions, the 315 

maximum output among all possible instances of orientations is given by 𝐸ሺ𝑥, 𝑦, 𝜃ሻ = ‖𝑂ሺ𝑥, 𝑦, 𝜃ሻ‖, i.e. the 316 

Energy, or Complex module of the output presented in Equation (4). This output is specific for line 317 

detection, therefore 𝜃 ∈ ሾ0, 𝜋ሻ. In the Poggendorff illusion, the output has the following expression: 318 

 
𝑃ሺ𝑂ሻ = 𝑃ሺ𝑥, 𝑦ሻ = Reሺ𝑂ሺ𝑥, 𝑦, 𝜃ሻሻ2 + Imሺ𝑂ሺ𝑥, 𝑦, 𝜃ሻሻ,  

 (5) 

 319 

where again O (𝑥, 𝑦, θ) is the output of simple cells defined in Equation (4). This formulation facilitates the 320 

detection of both the presence of lines, thanks to the contribution of the Real part in Equation (2) and the 321 

presence and polarity of contours thanks to the term in Equation (3). Therefore 𝜃 ∈ ሾ−𝜋, 𝜋ሻ. P(𝑥, 𝑦) is then 322 

normalized and shifted to positive values, obtaining the following external cost C:        323 

 𝐶ሺ𝑂ሻ = 𝐶ሺ𝑥, 𝑦ሻ =
𝑐+𝑃ሺ𝑥,𝑦ሻ

√𝑐+𝑃ሺ𝑥,𝑦ሻ2
,        (6) 

where c is a suitable positive constant. Both the Energy Eሺ𝑥, 𝑦, 𝜃ሻ and the external cost C(O) simulate the 324 

intracortical connectivity of V1/V2.  325 

 Once every simple cell in the features space ℝ2×S1 has been assigned with an output by means of 326 

the simulated intra-cortical connectivity (Eሺ𝑥, 𝑦, 𝜃ሻ and C(O)), the next step is to explain how long-range 327 

horizontal connections, i.e. connections between cells of approximately the same orientation belonging to 328 

different hypercolumns (and by extension responding to different regions of the visual field) is taken into 329 
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account by the model. Citti and Sarti (Citti & Sarti, 2006) proposed to endow the ℝ2×S1 features space with 330 

a sub-Riemannian metric, which allows us to weigh differently the direction of propagation of the long 331 

range connectivity of V1 and V2.  In (B. Franceschiello et al., 2019; Benedetta Franceschiello et al., 2017) 332 

the model presented in (Citti & Sarti, 2006) is extended to take into account how the long-range connectivity 333 

is polarized by the output of simple cells. As the nature of the illusions is different, two different approaches 334 

are proposed, as detailed in (B. Franceschiello et al., 2019; Benedetta Franceschiello et al., 2017). 335 

Hering and Zöllner illusions. A connectivity metric tensor is defined by combining a long-range 336 

connectivity metric in ℝ2×S1 with the output 𝐸ሺ𝑥, 𝑦, 𝜃ሻ, for every orientation instance of the hypercolumn, 337 

as follows: 338 

 𝐸ሺ𝑥, 𝑦, 𝜃ሻ

∫ 𝐸ሺ𝑥,𝑦,𝜃ሻ 𝑑𝜃
𝜋

0

( cos2 θ sinθ cosθ
sinθ cos θ sin2 θ

). 
(7) 

The second part of the expression represents a 2-dimensional connectivity metric tensor along the directions 339 

{∂x, ∂y}, in the roto-translation group coordinate system. Summing up (integrating) the contribution along 340 

the hypercolumn we obtain a 2-dimensional deformation tensor with principal eigenvector along the 341 

orientation  �̅�, corresponding to the maximum output of the energy within the hypercolumn: 342 

 

𝑝ሺ𝑥, 𝑦ሻ = 𝛼−1
∫ 𝐸ሺ𝑥,𝑦,𝜃ሻ( cos2 θ sinθcosθ

sinθ cosθ sin2 θ
)𝑑𝜃

𝜋

0

∫ 𝐸ሺ𝑥,𝑦,𝜃ሻ𝑑𝜃
𝜋

0

,  𝛼 ∈ ℝ     

(8) 
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By plugging in the components of the inverse matrix of  𝑝ሺ𝑥, 𝑦ሻ inside the following equation: 343 

 

      

{
  
 

  
 𝛥𝑢1 =

𝜕

𝜕𝑥1
𝑝11 + 2

𝜕

𝜕𝑥2
𝑝12 −

𝜕

𝜕𝑥1
𝑝22               𝑖𝑛 𝐷

𝛥𝑢2 =
𝜕

𝜕𝑥2
𝑝22 + 2

𝜕

𝜕𝑥1
𝑝12 −

𝜕

𝜕𝑥2
𝑝11                        

𝜕

𝜕𝑛
𝑢1 = 0                                                              𝑖𝑛 𝜕𝐷

 
𝜕

𝜕𝑛
𝑢2 = 0                                                                          

         

(9) 

it is possible as detailed in (Benedetta Franceschiello et al., 2017) to recover the displacement field 𝑢ത = (u1, 344 

u2), see Figure 2 (by solving (9)). The differential equation introduced in the formula before approximates 345 

the connectivity patterns between different hyper-columns as some diffusive propagation of single cells 346 

responses, complementing the intra-cortical connectivity patterns.   347 

Poggendorff illusion. The basic idea presented in (B. Franceschiello et al., 2019) is to provide a natural 348 

environment for this type of illusion by means of geometrical elements and to model the perceptual curves 349 

Figure 2. (Top row) Representation of p. In blue, representation of a tensor field. In cyan, the eigenvector corresponding to the 

principal eigenvalue. A. Example of one stimulus of the Hering illusion (7 background lines and 4cm distance between vertical 

lines). B. Example of one stimulus of the Zöllner illusion (10 inducers and 65º for the inducer’s angle). (Bottom row) Computed 

displacement field 𝑢ത . A. Example for one of the stimuli of the Hering illusion (7 background lines and 4cm distance between 

vertical lines). B. Example of one stimulus of the Zöllner illusion (10 inducers and 65º for the inducer’s angle). 
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as length minimizers of a cortical metric. Starting from the sub-Riemannian metric in (Citti & Sarti, 2006), 350 

we weigh the long-range connectivity considering the intra-columnar response 𝑃ሺ𝑂ሻ, see Equation  (5), of 351 

simple cells in V1/V2. The polarized metric becomes: 352 

 

   𝐺 = (

1

𝐶𝜉ሺ𝑂ሻ
0

0
1

𝐶ሺ𝑂ሻ

),    

(10) 

where Cξ(O) = ξ2C(O), C(O) is defined in Equation (6). The top left term weights the ℝ2 component of the 353 

space while the bottom right the rotational S1 component. ξ > 0 is a real parameter, therefore allowing to 354 

modulate the anisotropy between the retinal (on ℝ2) and the hypercolumnar (S1) components. In the case of 355 

the Poggendorff illusion, the reconstructed perceived misalignment is described by the minimizing geodesic 356 

between two a priori known sets, obtained by fixing the point (x,y, θ) on the left side of the surface and 357 

looking for another point (x1, y1, θ) on the right side of the surface, where we fix everything except for y1. 358 

The illusory curves will be minimal with respect to the metric induced by the geometry of the primary 359 

visual cortex, i.e. the deformation curves arise as geodesics of the metric 𝐺, Equation (10).  360 

Computation of sub-Riemannian distances in general is a very difficult problem (Montgomery, 2006). By 361 

introducing a Riemannian approximation of the metric, the problem becomes solvable and geodesics 362 

(perceptual curves) arise as solutions of the Riemannian Eikonal equation (Mirebeau, 2018; Sanguinetti et 363 

al., 2015).   364 

 365 

Numerical Implementation. For the implementation of the mathematical models described above, we use 366 

MATLAB ver. R2019a. The initial images used for the behavioral test were extracted and resized manually, 367 

to optimize the computation time dependent on the size of the initial image. For the three illusions, the 368 

original stimuli were images of size 2880x1800 pixels, first cropped along the horizontal and vertical 369 

directions to obtain a square of size 1800x1800 pixels (Hering), a rectangle of 592x1267 pixels (Zöllner) 370 

and a rectangle of 770x1540 pixels (Poggendorff). The three images were then scaled by a factor 4.18, 3.34 371 

and 3.85, respectively, obtaining final images with sizes 430x430 pixels (Hering), 177x379 pixels (Zöllner) 372 

and 200x400 pixels (Poggendorff).  The resized images corresponding to the stimuli were convolved with 373 

a set of Gabor filters (N=36 orientations for the Hering and Zöllner, N = 32 for the orientation of lines 374 

extraction in the Poggendorff illusion and N=62 for the surface contour orientation extraction).  375 

The number N of orientations stated above was computed as equally spaced steps within the two intervals, 376 

the latter being 𝜃 ∈ ሾ0, 𝜋ሻ (for the Hering, the Zöllner and the Poggendorff) and 𝜃 ∈ ሾ−𝜋, 𝜋ሻ (for the 377 

Poggendorff), depending on the features extracted (i.e. lines or contours as detailed above). 378 
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The implementation of the Gabor filters is the one presented in (Petkov & Subramanian, 2007), setting the 379 

required parameter 𝜆 = 0.   According to Daugman  (Daugman, 1985), Gabor filters simulate the receptive 380 

field profiles of simple cells in V1/V2 responsible for the orientation tuning. The size of the Gabor patch, 381 

i.e. the dimensions of the filter windows in pixels, was varied across illusions by tuning 𝜎 . The 382 

implementation of Gabor filters in Matlab is available in 383 

http://www.cs.rug.nl/~imaging/spatiotemporal_Gabor_function/GaborKernel3d.m (Petkov & 384 

Subramanian, 2007). The Gabor filters’ parameters were fixed for all presentations of the same illusion: 385 

𝛾 = 0.5;  bത = 0.56; 𝜎 = 7.84 for the Hering; 𝛾 = 0.5; bത = 0.56; 𝜎 = 11.2 for the Zollner; 𝛾 = 1;  bത =386 

0.56; 𝜎 = 3 for the orientation of lines extraction in the Poggendorff; and 𝛾 = 1;  bത = 0.56; 𝜎 = 7 for the 387 

orientation of contours extraction in the Poggendorff. These parameters were fixed based on previous 388 

computational studies in accord with a qualitative reconstruction of the percept (B. Franceschiello et al., 389 

2019; Benedetta Franceschiello et al., 2017). In the Hering and Zöllner illusion a constant 𝑐 = 0.037, 0.03 390 

respectively scales the displacement vector fields 𝑢ത = (x1, x2) once applied to the initial image to reconstruct 391 

the percept. In the Poggendorff experiment, the parameter ξ – which modulates the anisotropy between the 392 

two direction, ξ∆x1 = ∆θ, where ∆x1, ∆θ are the discretization steps along x1 and θ – is chosen based on the 393 

entry angle for the transversal line and the width of the central surface. The geodesics are computed through 394 

the Sub-Riemannian Fast-Marching, as implemented in (Sanguinetti et al., 2015). The parameter 𝜖 indicates 395 

the Riemannian approximation and in our experiments is set equal 0.1. Table 1 shows the values of ξ for 396 

the presented experiments. 397 

 398 

Central 

Width 

Crossing Line 

Angle 
ξ 

2 cm 

30º 30 

60º 13 

90º 10 

4 cm 

30º 30 

60º 13 

90º 10 

6 cm 

30º 30 

60º 20 

90º 17 
Table 1. Chosen values for ξ 399 

Bias calculation in the computational results. The computational model, once tuned, was fitted with the 400 

outcome of the behavioral results according to the variable of interest of the three detailed geometrical 401 

optical illusions. As our goal is to compare the results obtained in the behavioral experiments with the 402 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.01.182329doi: bioRxiv preprint 

http://www.cs.rug.nl/~imaging/spatiotemporal_Gabor_function/GaborKernel3d.m
https://doi.org/10.1101/2020.07.01.182329


Retsa et al. 

17 

resulting biases of the computational protocol, the definitions of bias are the same as those given in the 403 

behavioral bias paragraph. However, the way the bias is extracted in the computational case is clearly 404 

different, but it has been standardized in order to reduce any variability induced by a manual extraction of 405 

the measures.  406 

 407 

Computational bias Hering illusion. To recall the definition, the bias is the horizontal distance between the 408 

straight vertical line of the neutral configuration and the curve computed by the model. To calculate it in a 409 

standardized way, we extracted the distance between point 1 and 2, see Figure 3 (A) for reference, which 410 

corresponds to the value in pixels of the displacement vector field 𝑢ത  = (u1, u2) computed at point 1, 411 

multiplied by the constant  c =0.037, see Numerical Explanation section.  412 

Computational bias Zöllner illusion. The bias refers to the angle created between the modelled vertical line 413 

and the original parallel one. To calculate the angle, we choose two points in the final image: the first one 414 

on the bottom of the left of the left perceptual reconstructed line (𝑥1, 𝑦1ሻ, and the second on the top of the 415 

same line (𝑥2, 𝑦2ሻ, see Figure 3 (B). The rotation angle is computed as atan ሺ
𝑥2−𝑥1

𝑦2−𝑦1
). The result is then 416 

converted from radians to degrees.  417 

Figure 3. Bias calculation for the computational modelling. 1 and 2 indicate the two reference points for the bias calculation. A. 

Hering illusion. The bias corresponds to the distance between the original vertical line position and the tangent in the point of the 

maximal curvature. B. Zöllner illusion. The bias refers to the angle rotation (θ) of the modelled line.  C. Poggendorff illusion. 

The bias is the distance along the right side of the central surface between the initial position of the right segment line and the 

modelled one. 
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Computational bias Poggendorff illusion. The bias for Poggendorff is again calculated as the vertical 418 

distance between the reconstructed segment corresponding to the perceptual alignment and the neutral 419 

configuration (in which the left and right segments are aligned). The computational bias then results as the 420 

difference in pixels between the original y-coordinate of the physically aligned segment and the y-421 

coordinate of the segment obtained through our algorithm (Figure 3 (C)).  422 

Tuning the computational model through behavioral results 423 

As described in the numerical implementation section, the computational models used to simulate the 424 

perceptual behavior of the visual cortex that generates the perception of geometrical optical illusions depend 425 

on a series of parameters. Such parameters do have an interpretation from the neurophysiological standpoint 426 

and therefore impact the fitting of the computational curves with the behavioral ones. By tuning the 427 

computational models, we refer to the practice of iteratively modifying these parameters in a fashion that 428 

would lead to optimally fit the computational biases with the behavioral ones. This practice is particularly 429 

advantageous in the case of neural-based models, like in our case, i.e. those models that depend on 430 

parameters characterizing low-level visual processes, including simple-cell feature extraction and long-431 

range connectivity. 432 

 433 

Comparison between computational and behavioral biases 434 

The computational results were then compared with the behavioral ones to tune the model and evaluate its 435 

prediction. Different sets of initial parameters for the size of receptive fields (encoded by the 𝜎 of the Gabor 436 

filter) were tried before choosing those described in the Numerical implementation subsection. The final 437 

value of 𝜎 was chosen as the instance maximizing the fitting between computational and behavioral curves 438 

(minimizing the error), and remained fixed across different conditions of the same illusion. The comparison 439 

between computational and behavioral biases of the Zöllner illusions was straightforward, as the compared 440 

variables are both in degrees. To ensure the same comparison between the distances extracted in the Hering 441 

and Poggendorff illusions, the bias is expressed in percentages; in the Hering illusion as 442 

𝐵𝑖𝑎𝑠

𝐿𝑒𝑛𝑔𝑡ℎ_𝑜𝑓_𝑡ℎ𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑥_𝑠𝑒𝑚𝑖_𝑎𝑥𝑖𝑠
∙ 100% ; in the Poggendorff illusion is computed as 

𝐵𝑖𝑎𝑠

𝑇𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒_𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒
 ∙443 

100%.  In this way, the behavioral measures extracted in cm become comparable with the computational 444 

measures in pixels. 445 

 446 

Results 447 
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Behavioral results  448 

Results of the psychophysical experiments are shown in Figure 4. Biases were calculated as detailed in 449 

Sect. 2.1.4.  The average size of the illusion (bias) for each task was submitted to a 3 × 3 repeated measures 450 

ANOVA (see 2.1.4), as the distribution of the data was Gaussian. Reported F and p values reflect 451 

Greenhouse-Geisser correction for non-sphericity when necessary. 452 

 453 

Hering illusion. There was a main effect of the number of radial lines (F (1.54, 44.63)=121.997, p<0.001, 454 

η2
p=0.808), indicating that the participants’ bias increased as the number of radial lines increased: the more 455 

the radial lines, the larger the bias. 7 lines (average bias = 0.0992), 11 lines (average bias = 0,1272), 15 456 

lines (average bias = 0,1417). No significant effect of the distance between the vertical lines was observed 457 

(F (1.29, 37.42)=0.8, p=0.4). However, there was a significant interaction between the number of radial 458 

lines and the distance between the vertical lines (F (2.9, 84.17)=5.79, p<0.01, η2
p=0.166). Bias was 459 

significantly above 0 in all conditions (Hering: t(29) >= 12.30, p < .001). Inspection of the results suggests 460 

that whereas for the medium number of lines (11), the distance between the vertical lines has no effect on 461 

Figure 4. Behavioral Results. Hering illusion: Mean sizes of illusion for the three different number of background lines are shown as a 

function of the three distances between the two vertical lines. Error bars: standard error of the mean. Zöllner illusion: Mean biases (in 

absolute value) for the three different number of inducers are shown as a function of the three levels of angles.  Error bars: standard 

errors. Poggendorff illusion: Mean sizes of illusion (in absolute value) for the three different widths of the central surface are shown as 

a function of the three levels of angles. Error bars: standard errors.  
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the bias, for both the 7 lines and the 15 lines conditions distance affects the bias but in opposite ways. Post-462 

hoc one-way ANOVAs that examined the effect of distance for each line condition, separately, confirmed 463 

these observations. Specifically, no effect of distance was found for the 11 lines condition. In contrast, a 464 

significant effect of distance was found for both the 7 lines condition (F(1.34, 38.91)=5.46, p=0.01, 465 

η2
p=0.16) and the 15 lines condition (F(1.49, 43.2)=3.45, p=0.05, η2

p=0.106). In the case of the 7 lines 466 

condition, participants’ bias was significantly smaller for the 2.4cm distance condition (bias=0.0923) 467 

compared to both 3.2cm (bias =0.1025) and 4cm (bias =0.1027) (p=0.01) (Table  2). Finally, in the case of 468 

the 15 lines condition, participants’ bias was found to be significantly smaller for the largest distance 469 

condition (bias=0.1332) compared to the medium distance condition (bias=0.1464) (p<0.05) (Table  2). 470 

The bias for the smallest distance condition was very similar to the medium distance one (bias=0.1455) 471 

(Table  2).  472 

Radial lines 
Vertical lines 

distance 

Averaged 

behavioral bias  

(distance, cm) 

Standard error 

of behavioral 

bias 

Predicted 

computational 

bias (distance, 

pixels) 

15 lines 

2.4 cm 0.1455 0.0107 2.41 

3.2 cm 0.1464 0.0107 2.51 

4 cm 0.1332 0.0096 3.01 

11 lines 

2.4 cm 0.1253 0.0088 2.83 

3.2 cm 0.1273 0.0100 2.76 

4 cm 0.1288 0.0093 3.19 

7 lines 

2.4 cm 0.0923 0.0073 3.08 

3.2 cm 0.1025 0.0081 2.70 

4 cm 0.1027 0.0083 2.85 

Table 2 Behavioral and computational results for Hering illusion. Average bias and standard errors are shown per stimulus 473 

Zöllner illusion. There was a significant main effect of inducer angle on the measured bias (F (1.18, 474 

34.29)=105.309, p<0.001, η2
p=0.784), indicating that the illusion size is larger when the inducers’ angle is 475 

40º (average bias=-0.312º) compared to both 65º (average bias=0.081º) and 90º (average bias=0.078º) (see 476 

for comparison Table 3). Neither the effect of the number of inducers (F (2, 58)=0.384, p=0.683, η2
p=0.013) 477 

nor the interaction between the two factors (F (4, 116)= 0.486, p=0.746, η2
p=0.013) were significant. Bias 478 

was significantly above 0 when lines inclination was 90° (t(29) >= 3.02, p < .005) and 65° (t(29) >= 2.56, 479 
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p < .016; stats for 8,9,10 lines). In the illusory conditions - i.e. when lines inclination was 40° - bias was 480 

below 0 (t(29) <= -6.48, p < .001), Table 3.   481 

Number 

inducers 

Inducers’ 

angle 

Averaged 

behavioral bias 

(deg) 

Standard error of 

behavioral bias 

Predicted bias 

computational 

(deg) 

10 inducers 

40º -0.3108 0.048 0.3918 

65º 0.0806 0.027 0.0953 

90º 0.0858 0.024 0.0000 

9 inducers 

40º -0.3110 0.047 0.2899 

65º 0.0838 0.033 0.0957 

90º 0.0686 0.023 0.0000 

8 inducers 

40º -0.3156 0.046 0.3940 

65º 0.0779 0.028 0.1942 

90º 0.0785 0.022 0.0000 

Table 3 Behavioral and computational results for Zöllner illusion. Average bias and standard errors are shown per stimulus. 482 

Poggendorff illusion. There was a significant main effect of the rectangle’s width on the measured bias (F 483 

(1.5, 33.3)=13.319, p=0.001, η2
p=0.315). Participants’ bias increased as the rectangle’s width increased: 484 

2cm (average bias = -0.114cm), 4cm (average bias = -0.151cm), 6cm (average bias=-0.193cm). A 485 

significant effect of the angle of the line segments was also observed (F (1.4, 40.87)=67.167, p<0.001, 486 

η2
p=0.698). The smaller the angle, the larger the bias: 30° (average bias =-0.307cm), 60° (average bias=-487 

0.204cm), and 90° (average bias=0.053cm). Furthermore, the interaction between these two factors was 488 

also significant (F(1.98,57.56)=19.193,p<0.001, η2
p=0.398). Bias was significantly above 0 in control 489 

conditions (i.e., 90°; t(29) >= 6.67, p < .001) and significantly below 0 in the illusory conditions (i.e. 30° 490 

and 60°, t(29) <= -5.52, p < .001). Inspection of the results suggested that the width of the rectangle affected 491 

participants’ bias in the 60° and 90° angles condition. Post-hoc one-way ANOVAs that examined the effect 492 

of rectangle’s width for each angle condition separately demonstrated that whereas the rectangle’s width 493 

had no effect on the participants’ bias in the 30° angle, in both 60° and 90°, rectangle’s width significantly 494 

affected the bias (F(1.13, 32.82)=63.34, p<0.001, η2
p=0.686 and F(1.13, 32.85)=68, p<0.001, η2

p=0.701, 495 

respectively). In both 60° and 90° conditions, participants’ bias increased as the rectangle’s width increased 496 

(Table 4). In 60°: 2cm (bias = -0.098cm), 4cm (bias = -0.190cm), 6cm (bias=-0.324cm), all significantly 497 
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different from each other (p<0.001); and in 90°: 2cm (bias=0.029cm), 4cm (bias=0.052cm), 6cm 498 

(bias=0.076cm), all significantly different from each other, p<0.001, Table 4.  499 

 500 

Central width 
Crossing line 

angle 

Averaged 

behavioral bias 

(distance, cm) 

Standard error 

of behavioral 

bias 

Predicted bias 

(distance, 

pixels) 

6 cm 

30º -0.3310 0.0599 60 

60º -0.3242 0.0305 12 

90º 0.0765 0.0091 0 

4 cm 

30º -0.3153 0.0376 36 

60º -0.1904 0.0164 6 

90º 0.0524 0.0064 0 

2 cm 

30º -0.2742 0.0231 18 

60º -0.0976 0.0088 6 

90º 0.0288 0.0043 0 

Table 4. Behavioral and computational results for Poggendorff illusion. Average bias and standard errors are shown per stimulus 501 

 502 

Computational model results 503 

Hering illusion. Predicted biases for this illusion are shown in Table 2. An example of a constructed percept 504 

is shown in Figure 6. Predicted biases were calculated as detailed in the Methods section. For 15 radial 505 

lines, the bias increases as the distance between the two vertical lines does: 2.4cm (bias = 2.41 px), 3.2cm 506 

(bias = 2.51 px), 4cm (bias = 3.01 px). In the 11 background lines condition, the computed bias is similar 507 

for the 2.4 cm and 3.2 cm conditions: 2.83 px and 2.76 px, respectively; for the 4 cm case the bias is 3.19 508 

px. For 7 radial lines, the bias oscillates around the same values: 2.4cm (bias = 3.08 px), 3.2cm (bias = 2.70 509 

px), 4 cm (bias = 2.85 px). The computed bias slightly increases as the number of radial lines passes from 510 

7 to 11: 7 lines (average bias = 2.88 px), 11 lines (bias = 2.93 px). It decreases in the 15 lines example (bias 511 

= 2.64 px). The distance between the two vertical lines seems to play a role on the predicted bias in the 512 
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computational approach when the distance passes from 3.2 to 4 cm: 2.4cm (average bias = 2.77 px ), 3.2cm 513 

(average bias = 2.65 px), 4cm (average bias = 3.01 px). 514 

Zöllner illusion. Computed biases for this illusion are shown in Table 3. An example of a constructed 515 

percept is shown in Figure 5. For 10 inducers, the bias decreases from the 40º condition to the 65º condition: 516 

40º (bias=0.3918º), 65º (bias = 0.0953º); and it goes to zero in the 90º condition. For 9 inducers, the bias 517 

decreases from the 40º condition to the 65º condition. In the case of angle of the inducers equal to 40º, the 518 

computed bias is 0.2899º, for 65° is 0.0957°. It goes to 0° when the angle is 90°. For 8 inducers, the bias is 519 

0.3940º when the angle of inducers is 40º and it decreases to 0.1942º when the angles are 65º, to 0º when 520 

the angle is 90º. 521 

There is a clear relation between the computed bias and the angle of the inducers, since the illusory bias 522 

increases when the inducers’ angle decreases from 40º (average bias =0.36º) to both 65º (average bias = 523 

0.1284º) and 90º (average bias =0.0000º). However, there is no clear relation between the bias and the 524 

Figure 6. Hering stimuli: 15 background lines and 4 cm of distance between the vertical lines. 

A. Original stimulus. B. Constructed stimulus. In red, the two original vertical lines are shown, 

obtained with c = 0.02. 

Figure 5. Zöllner stimuli: 10 inducers of 40º. A. Original stimulus. B. Constructed 

stimulus. In red, the two original vertical lines are shown 
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number of inducers on the predicted bias: 10 inducers (average bias = 0.16º), 9 inducers (average bias = 525 

0.13º), 8 inducers (average bias = 0.1961º).  526 

Poggendorff illusion. Modelled biases for this illusion are shown in Table 4. An example of a constructed 527 

percept is shown in Figure 7. For a central surface width of 6 cm, the bias decreases as the angle increases: 528 

30º (bias= 60 pix), 60º (bias = 12 px), 90º (bias = 0 px). For the 4 cm width condition, the same happens: 529 

30º (bias = 36 px), 60º (bias = 6 px), 90º (bias = 0 px). And as well for the 2 cm width: 30º (bias = 18 px), 530 

60º (bias = 6 px), 90º (bias = 0 px). Comparing the predicted biases based on the central surface width, the 531 

bias increases as the width of the rectangle increases: 2 cm (average bias = 8 px), 4 cm (average bias = 14 532 

px), 6 cm (average bias = 24 px). Whereas, when the angle of the crossing line is considered, the bias 533 

decreases when the angle increases: 30º (average bias = 38 px), 60º (average bias =  8 px), 90º (average 534 

bias = 0 px). 535 

Comparison behavioral and computational results  536 

The comparison between the results of the two approaches: behavioral and computational results are shown 537 

in Figure 8, Figure 9 and Figure 10, listed in Table 5, Table 6 and Table 7, and detailed by geometrical 538 

optical illusion (Hering, Zollner and Poggendorff, respectively. B stands for behavioral curve, C for 539 

computational and D for difference curve in the figures). A comprehensive 3D visualization of the 540 

differences between behavioral and computational biases across illusion is reported in Figure 11. The 541 

comparison refers to the difference between the tuned computational model, as detailed in the 542 

corresponding Methods section, and the behavioral results. An example of not-fitted computational curve 543 

 

Figure 7. Poggendorff stimuli: 30º for the crossing line angle and 6 cm of central surface 

width. A. Original stimulus. B. Computed geodesics. The perceptual curve is shown in 

cyan. C. Constructed stimulus. In red, the computed percept 
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is given for the Hering illusion (c = 0.017) in Figure 8, where it is clearly depicted how the behavioral 544 

values serve as benchmarks to run multiple simulations of the computational model until an optimal fitting 545 

is reached (c = 0.037). In the Hering illusion, the difference curves are flat and differ overall by less than 546 

0.50% (which represents about 30% of the maximum perceived bias), with the best fit achieved in the 11 547 

lines case. Both of the computational models used here to mimic the perceptual behavior rely on the 548 

simulation of neurophysiological processes such as single cells responses and long-range connectivity in 549 

the visual areas. These models deal with different GOIs in a similar fashion to how the human visual system 550 

Figure 8. Comparison computational and behavioral results for the Hering illusion. Left block: Comparison of the behavioral and 

computational biases, in the left column the computational model does not fit the behavioral results (c = 0.017) while in the right column 

of the block it does (c = 0.037). In the computational cases − values for the predicted bias for the different number of background lines 

are shown as a function of the three distances between the two vertical lines. In the behavioral − mean sizes of illusion for the three 

different number of background lines are shown as a function of the three distances between the two vertical lines. Right: Differences 

between the behavioral and computational biases fitting the behavioral values.  Values for the differences between the observed bias 

and the predicted bias for the different number of background lines are shown as a function of the three distances between the two 

vertical lines.   
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responds, making the differences across GOIs look similar for human behavior and computational 551 

modeling. 552 

 553 

 554 

 555 

 556 

Figure 9. Comparison computational and behavioral results for the Zöllner illusion. Left: Comparison of the behavioral and 

computational biases. Computational − Absolute values for the predicted bias for the three different number of inducers are shown 

as a function of the three levels of angles.   Behavioral − Mean biases (in absolute value) for the three different number of inducers 

are shown as a function of the three levels of angles. Right: Differences between the behavioral and computational biases’ values.  

Values for the differences between the observed bias and the predicted bias for the different number of inducers are shown as a 

function of the three different angles for the inducers. 
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 557 

 558 

Figure 10. Comparison computational and behavioral results for the Poggendorff illusion. Left: Computational − Absolute values 

for the predicter bias for the three different widths of the central surface are shown as a function of the three levels of angles. 

Behavioral − Mean sizes of illusion (in absolute value) for the three different widths of the central surface are shown as a function 

of the three levels of angles. Right: Differences between the behavioral and computational biases’ values. Values for the differences 

between the observed bias and the predicted bias for the different widths of the central surface are shown as a function of the three 

different angles for the crossing line. 
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 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

Radial 

Lines 

Vertical Lines 

Distance 

Behavioral bias 

(percentage)  

Computed bias 

(percentage) 

Difference 

(percentage) 

15 lines 

2.4 cm 1.82 1.24 0.58 

3.2 cm 1.83 1.29 0.54 

4 cm 1.67 1.55 0.11 

11 lines 

2.4 cm 1.57 1.46 0.11 

3.2 cm 1.59 1.43 0.16 

4 cm 1.61 1.64 0.03 

7 lines 

2.4 cm 1.15 1.59 0.44 

3.2 cm 1.28 1.39 0.11 

4 cm 1.28 1.64 0.36 

Number 

Inducers 

Inducers’ 

Angle 

Behavioral bias 

(deg) 

Computed bias 

(deg) 

Difference 

(deg - abs) 

10 inducers 

40º 0.3108 0.3918 0.081 

65º 0.0806 0.0953 0.0147 

90º 0.0858 0.0000 0.0858 

9 inducers 

40º 0.3110 0.2899 0.0211 

65º 0.0838 0.0957 0.0120 

90º 0.0686 0.0000 0.0686 

8 inducers 

40º 0.3156 0.3940 0.0784 

65º 0.0779 0.1942 0.1163 

90º 0.0785 0.0000 0.0785 

Table 5. Behavioral and computational results for Hering illusion. The difference between the results of both approaches is 

shown in the last column. The biases are shown per stimulus. 

Table 6. Behavioral and computational results for Zöllner illusion (in absolute values). The difference between the results of both 

approaches is shown in the last column. The biases are shown per stimulus. 
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 580 

 581 

 582 

 583 

 584 

  585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

Central Width 
Crossing Line 

Angle 

Behavioral bias 

(percentage) 

Computed bias 

(percentage) 

Difference 

(percentage) 

6 cm 

30º 2.32% 16% 13.78% 

60º 2.27% 3.21% 0.94% 

90º 0.54% 0% 0.54% 

4 cm 

30º 2.21% 9.63% 7.42% 

60º 1.33% 1.60% 0.27% 

90º 0.37% 0% 0.37% 

2 cm 

30º 1.92% 4.81% 2.90% 

60º 0.68% 1.60% 0.92% 

90º 0.20% 0% 0.20% 

Table 7. Behavioral and computational results for Poggendorff illusion (in absolute values). The difference between the results of 

both approaches is shown in the last column. The biases are shown per stimulus. 
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 595 

Figure 11.  3D visualization of the differences between behavioral and computational bias for each of the three illusions. 596 

 597 

Discussion and conclusions 598 

 Three different GOIs have been studied in the present work: the Hering, the Zöllner and the 599 

Poggendorff illusions from psychophysical and computational standpoints. The recorded behavioral biases 600 

for the three illusions served as a basis for tuning the parameters of the computational model in order to 601 

obtain computational curves replicating numerically the behavioral biases. Our results provide a roadmap 602 

whereby computational modelling, informed by human psychophysics, can reveal likely mechanistic 603 

underpinnings of perception.  604 

 To the best of our knowledge, this was the first time these three illusions were behaviorally studied 605 

together and that a standardized definition of bias was quantified, with up-to-date experimental methods. 606 

The determinants of the biases in these three GOIs share an angular component given by the intersection of 607 

the foreground line (or surface) with radial lines, segments (inducers) or one crossing line (Hering: number 608 

of radial lines and distance between the vertical lines; Zöllner: the number and angle of inducers; 609 
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Poggendorff: width of the central surface and the angle of the crossing line). This angular component seems 610 

to reflect the intracortical connectivity of hypercolumns: neurons belonging to the same hypecolumn - and 611 

spiking simultaneously - might be a first determinant of misperception (bias). Second, the distance between 612 

lines (or the width of the surface) is depicted by the global integration of local selected features, therefore 613 

being more representative of the way through which long-range connectivity represents visual stimuli.  614 

 With this in mind, our results indicate that for the Hering illusion, the number of radial lines does 615 

influence the perception; more radial lines resulted in larger bias, in agreement with Holt-Hasen, 1961 616 

(Holt-Hansen, 1961). A similar effect was observed for the Zöllner illusion: the inducers’ angle had an 617 

effect on the perceived bias, which increases as the intersect angle decreases, in agreement with 618 

observations in Oyama, 1973 (Oyama, 1975). On the other hand, no significant main effect of distance 619 

between the two vertical lines was reported in the Hering, only an interaction between the two variables 620 

indicating that the distance was affecting participants’ performance in the minimum and maximum radial 621 

lines conditions but not the medium one. If we consider the perceptually more complex phenomenon of the 622 

Poggendorff illusion, its determinants, i.e. the angle of the crossing line and the width of the central surface, 623 

both had an influence on the perception of the illusion, in accordance with previous studies (Jones-Buxton 624 

& Wall, 2001; Weintraub & Krantz, 1971). In fact, the participants’ bias increased as the rectangle’s width 625 

increased, while the smaller the angle, the larger the bias. This seems to suggest that the presence of a 626 

rectangle surface constitutes a much stronger determinant for the formation of long-range connections than 627 

two straight lines (Hering illusion). Also, an interaction between the two factors (width and angle) at a 628 

behavioral level was observed. It is also worthwhile to observe that in the behavioral results of the three 629 

illusions, the observed bias is always significantly different from zero. This would indicate that participants 630 

do not have a sharp “non-illusory” effect while tested. Instead, while observers do indeed have the 631 

perceptual experience of what is not an illusion, there is nonetheless a slight bias reported. We did not find 632 

a relationship between the sizes of the biases across the three different illusions: this suggests that the 633 

described mechanisms (intracortical and long-range connectivity) contribute to a different extent to these 634 

illusions.  635 

 The behavioral results served as a basis for tuning the computational models, i.e. iteratively 636 

exploring the set of parameters representing the intra-cortical (𝜎;  𝛾;  bത – Gabor filters parameters) and 637 

long-range connectivity (c; ξሻ within the model to produce a computational bias matching the recorded 638 

behavior. Computational models have the unique value of enabling the in-silico exploration of the 639 

boundaries of the neurophysiological mechanisms modelled without the need of running an in vivo 640 

experiment to do so. Within the same illusions, all predicted (computational) biases have been computed 641 

by fixing the size of receptive profiles and the constant c, related to 𝛼−1 of Formula 8. The size of receptive 642 
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fields both mediates for local interaction between simple cells belonging to the same hypercolumn, together 643 

with playing the role of a subsequent level of visual cortices (V2), known to have larger receptive fields. A 644 

fine tuning of the parameters detailed above helped to compromise between the contribution of intra-645 

cortical connectivity and long-range connectivity: the need for large-size (𝜎ሻ receptive fields has been 646 

identified by means of the model, pointing out the likely contribution of higher-level visual processes such 647 

as those in V2 and perhaps elsewhere (Murray & Herrmann, 2013b). The strength of neuro-geometrical 648 

models give a clear and elegant framework to explain the cellular organization and construction of visual 649 

percepts, which can be easily applied to other illusions, such as the Kanizsa triangle (Citti & Sarti, 2006) 650 

or basic perceptual phenomena (line completion) (Favali, Citti, & Sarti, 2017).  651 

 The computational models replicated well the Zollner behavioral results as well as specific 652 

conditions of both the Poggendorff and Hering illusions. Undoubtedly, the current neuro-geometrical 653 

models despite the fact that they approximate the neurophysiological time features of long-range 654 

connectivity, i.e. the speed at which such connections take place in the hypercolumnar structure of V1 and 655 

V2, they cannot accomplish a perfect correspondence with neurophysiology. However, despite its 656 

limitations, the computational model provides insight into the relevant neurological processes likely 657 

underlying these illusions. Its effectiveness in predicting “spatial-related” phenomena such as the Zollner 658 

illusion, where any effect of distance between the vertical lines seems to play a central role, indicates that 659 

the main neural mechanism involved is this illusion is the intra-cortical connectivity of V1, which is thought 660 

to transpire on a relatively fast timescale. On the other hand, it is also worthwhile to consider those 661 

conditions that were poorly fitted in the Poggendorff illusion. Here, the effect of the width of the rectangle 662 

seemed to produce a larger bias compared to the one obtained from the behavioral results. This suggests 663 

that further investigating the temporal component of perception of these stimuli, (i.e. feedback mechanisms 664 

from higher-level visual cortices into primary visual cortex), might improve our understanding of how 665 

visual neuronal processes create such images. Our computational and behavioral results could therefore be 666 

complemented by brain mapping and neuroimaging studies with high temporal resolution, such as EEG 667 

(Biasiucci, Franceschiello, & Murray, 2019).  668 

 A limitation of the computational modelling implemented here is that it was not possible to generate 669 

variability in performance that is similar to the inter-individual variability observed in human participants.  670 

This could be artificially generated via Monte-Carlo simulations able to automatically generate a variance 671 

around the Gabor filters’ parameters or the long-range connectivity parameters. However, this would 672 

presuppose that the parameters affecting Gabor filters or long-range connectivity are the only factors 673 

causing the illusory effects.  674 
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 To conclude, the present study combining a carefully designed behavioral and computational 675 

paradigms highlights the likely neurophysiological mechanisms e.g. intra-cortical connectivity and long-676 

range connectivity in V1/V2 implicated in the Hering, Zollner and the Poggendorff illusions and provides 677 

a roadmap for future studies using psychophysical data to tune computational models. 678 
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 817 

Appendix 818 

A) Mathematical expression for the curves manipulated manually by the participant. 819 

In the Hering illusion the stimulus consists of a pair of vertical straight lines, on top of a collection of 820 

straight lines passing through a central point. The observer perceives the straight vertical lines as slightly 821 

curved away from the central point in the horizontal direction. Our goal is to identify an equation for the 822 

perceived curve that can be manipulated within an experimental design.  823 

This illusion has some clear symmetries, namely flipping across the vertical axis or across the horizontal 824 

axis does not change anything. Therefore we can reduce our consideration to the top right quadrant and 825 

then extend by reflection.  826 

In this quadrant we will consider curves leaving a fixed point on the top edge and reaching the bottom edge 827 

at a variable point and being orthogonal to both edges at the intersection point. The first point and the 828 

tangent directions are fixed, but the position of the second point is what makes the curve deviate from the 829 

neutral configuration (i.e. when the curves are vertical straight lines). The subjects can choose the position 830 

of the second endpoint until it matches to what they perceive as straight, given an initial offset (see Methods 831 

section). 832 

Since we are imposing three fixed conditions (one control point and two tangent directions), we need a 833 

family of curves with at least four degrees of freedom; three degrees are fixed by these three conditions, 834 

and the subject has one degree of freedom to play with. The easiest such family is given by the algebraic 835 

curves defined by polynomials of degree at most three and real coefficients (this family is a real vector 836 

space of dimension 4; lower degree would not give us enough flexibility; higher degree would result in 837 

extra degrees of freedom). 838 

In order to set up our computations, let us choose the vertical axis as the x-axis, oriented upwards, and the 839 

horizontal axis as the y-axis, oriented to the right. For simplicity, we are going to align the x-axis along the 840 

right vertical straight line in the neutral configuration. In this way the curves we care about will intersect 841 
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the y-axis in points of the form (0,B) for some 𝐵 ∈ ℝ, 𝑤𝑖𝑡ℎ 𝐵 = 0 corresponding to the neutral 842 

configuration, and they will intersect the x-axis at the endpoint (C,0), where C is half of the edge length of 843 

the original picture, equal to 45% of the total screen height where the experiment was performed. While 844 

the parameter C is fixed, the value of B is precisely what the subject manipulates.  845 

 846 

The equation for such a polynomial of degree 3 in these coordinates is given by 847 

 848 

𝑦 = 𝑓𝐵ሺ𝑥ሻ =
2𝐵

𝐶3
𝑥3 −

3𝐵

𝐶2
𝑥2 + 𝐵 =

2𝐵

𝐶3
ሺ𝑥3 −

3𝐶

2
𝑥2 +

𝐶3

2
ሻ 849 

 850 

Once again, here C is a fixed quantity, while B is allowed to vary, describing the 1-parameter family of 851 

curves we need. The choice of B is equivalent to some geometrically meaningful quantities, which can be 852 

computed from the first and second derivatives. 853 

 854 

𝑓𝐵
′ሺ𝑥ሻ =

2𝐵

𝐶3
ሺ3𝑥2 − 3𝐶𝑥ሻ, 𝑓𝐵

′′ሺ𝑥ሻ =
2𝐵

𝐶3
ሺ6𝑥 − 3𝐶ሻ 855 

 856 

For instance, notice that the coordinates of the unique point of flex of the above curves are  857 

 858 

(
𝐶

2
,
𝐵

2
) 859 

 860 

and the tangent line at this point has equation 861 

 862 

𝑦 = −
3𝐵

2𝐶
𝑥 +

5𝐵

4
 863 
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which means it has slope 
−3𝐵

2𝐶
. To get another geometric parameter, notice that the curvature at the endpoints 864 

can be computed in terms of the second derivative at those points, which is 865 

|𝑓𝐵
′′ሺ0ሻ| = |𝑓𝐵

′′ሺ𝐶ሻ| =
6𝐵

𝐶2
  866 

It should be remarked that in our setting 𝐵 << 𝐶, so that both the slope and the curvature are essentially 867 

zero, hence not useful from the numerical point of view, even though they are a good theoretical measure 868 

of how far these curves are from the straight lines. To have a numerically useful parameter we stick 869 

therefore to B, namely the distance in cm (or bias) along the whole paper; we emphasize once again that 870 

the choice of B is equivalent to these geometric features. 871 

 872 
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