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Abstract  1 

Simple sensory stimuli or motor outputs engage large populations of neurons in the mammalian cortex. 2 

When stimuli or outputs repeat, the robust population response contrasts with fluctuating responses of 3 

individual neurons, known as trial-by-trial variability. To understand this apparent discrepancy, a detailed 4 

identification of the underlying spatiotemporal correlations is required. Here, we analyze spatial 5 

correlations in the instantaneous fluctuations between neurons relative to the neuronal population. Using 6 

2-photon imaging of visual and auditory responses in primary cortices of awake mice, we show that these 7 

correlations grow linearly with the size of the observed cortical area. We extend these observations to the 8 

cortical mesoscale by analyzing local field potentials in behaving nonhuman primates. In network 9 

simulations, we demonstrate this linear growth in spatial correlation to emerge at criticality. Our findings 10 

suggest that trial-by-trial variability is a signature of critical dynamics in cortex maintaining robust, long-11 

range spatial correlations among neurons. 12 

 13 

Introduction  14 

Even simple stimuli or movements engage large numbers of neurons in the mammalian cortex. These 15 

robust population responses are contrasted by the heterogeneity and fluctuations of single neuron 16 

responses observed during repeated stimuli or motor outputs. This response variability or trial-by-trial 17 

variability has been consistently found in vivo for neurons that are non-selective to a particular stimulus 18 

feature (Deweese & Zador, 2004) as well as highly selective neurons (Heggelund & Albus, 1978; Tolhurst 19 

et al., 1983; Vogels et al., 1989; Shadlen & Newsome, 1998) and in vitro under network and stimulus 20 

conditions of reduced complexity (e.g. (Haroush & Marom, 2019)). While part of the variability has been 21 

attributed to single neuron properties, e.g. through a non-linear transfer between the membrane potential 22 
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and firing rate (Carandini, 2004; Charles et al., 2018), numerous findings point to a significant role of the 23 

network dynamics to the observed variability. In particular, response variability is shared among neurons 24 

(Cohen & Kohn, 2011) through shared gain (Goris et al., 2014), includes the interactions between selective 25 

as well as non-selective neurons (Kotekal & MacLean, 2019), is supported by local cortical motifs such 26 

as fan-in (Dechery & MacLean, 2018) and depends on the balance of excitation and inhibition (Haroush 27 

& Marom, 2019). This potential role in network dynamics is in line with early findings that response 28 

variability strongly correlates with ongoing synaptic activity preceding a stimulus (Arieli et al., 1996). 29 

The diversity and variability encountered in single neuron responses to even simple, repeated stimuli 30 

raises the question whether there exist certain principles that underlie this variability in the face of coherent 31 

network responses. These principles in order to be general should be independent from the specific 32 

stimulus given or motor output achieved, which translates into the general question of how individual 33 

elements, by interacting locally, can achieve a coherent, global population response. Correlation length 34 

measures can be used to identify the relationship between global, coherent system responses and 35 

fluctuating system components (Wilson, 1979). By studying the correlation in the fluctuations of system 36 

components, one can determine the distance at which they behave independently. It is well-established 37 

that the correlation length diverges at criticality (Wilson, 1976) in the thermodynamic limit. For finite 38 

systems, however, this asymptote behavior can be demonstrated by showing that the correlation length 39 

grows with system size. This relationship between correlation length and system size has been identified 40 

in the context of bird flocks, where a flock still maintains a coherent trajectory in space despite fluctuations 41 

in single bird trajectories (Cavagna et al., 2010; Bialek et al., 2012; Bialek et al., 2014). It was also 42 

demonstrated for resting activity of the human brain that the correlation length of the blood oxygenated 43 

level dependent (BOLD) signal scales linearly with the size of the brain region measured (Fraiman & 44 

Chialvo, 2012), a finding in line with expectations that the brain at rest maintains a critical state. 45 
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It has been argued (Chialvo, 2010) and shown experimentally (Shew & Plenz, 2013) that neuronal 46 

networks confer multiple benefits for being in the critical state, such as high dynamic range and maximal 47 

information capacity. For the bird flock, the critical state has been suggested to confer fast and coherent 48 

changes in flight direction in response to external perturbations, such as a predator attack (Bialek et al., 49 

2014). For the brain, one might expect that external perturbations from sensory input or internal 50 

perturbations such as self-initiated motor commands lead to population responses that maintain the critical 51 

state. If this was correct, the correlation length for sensory and motor responses in the brain should scale 52 

with the size of the observed population of neurons and should be independent of feature selectivity. Here, 53 

we show experimentally a linear scaling in correlation length in the fluctuations of neuronal evoked 54 

responses in cortex. Using numerical simulations of a network model, we demonstrate this scaling to be 55 

found when the model is tuned to be critical. Our results identify a specific form of scaling in the trial-by-56 

trial variability for sensory and motor responses in cortex in vivo and suggest this variability is a signature 57 

of critical dynamics that maintains robust, long-range correlations between neurons. Finally, by comparing 58 

experimental and numerical correlation functions, we are able to estimate the interaction length (i.e. the 59 

distance at which neurons interact physically) in visual cortex. 60 

Results 61 

We investigated the extent in the spatial correlation of neuronal activity at the cellular and mesoscale level 62 

in cortex using two different experimental approaches. At cellular resolution, we studied pair-wise 63 

correlations between individual neurons using 2-photon imaging (2PI), whereas at the mesoscale in 64 

nonhuman primates we measured the local field potential (LFP) using high-density microelectrode arrays. 65 

We analyzed ongoing as well as activity obtained during sensory/motor processing for each scale. We will 66 

first present results obtained at the cellular level in awake mice followed by a comparison at the mesoscale 67 
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in behaving nonhuman primates. Simulations of neuronal activity position our results in the context of 68 

subcritical, critical and supercritical dynamical regimes.  69 

 70 

  71 

 Fig. 1: Trial-by-trial variability and tuning 

heterogeneity of single neurons during visually 

evoked avalanches in V1. a Variable response of a 

single V1 pyramidal neuron to semi-random 

presentation of 2 s large-field drifting gratings at 8 

directions. Black: ΔR/R; Red: denoised ΔR/R; Green 

circles: estimated spikes (see Materials and Methods). 

Color bars: stimulus direction. Gray bar: stationary 

gray screen. Broken lines: Temporal zoom in for details. 

b Trial-by-trial variability of single neuron responses 

(dots; n = 228 cells across n = 7 animals), quantified by 

dividing response variance by response average, 

exceeds prediction from a Poisson process (broken 

line). c About 20% of responding neurons show a 

direction selective index (DSI) above 0.4. Cumulative 

probability function (CPF) for n = 7 animals (mean ± 

standard deviation). d Neurons with significant DSI 

show minimal response at orthogonal directions. Mean 

direction selectivity profile normalized to 

corresponding preferred direction (n = 228 cells; n = 7 

animals; ± standard error). e Visually evoked responses 

        in V1 organize as avalanches independent of stimulus direction, similarly to gray screen. Power law in avalanche 

size distributions (combined from n = 7 animals) with cut-off close to maximal number of ROIs (arrow). Broken 

line: slope of -1.5 as visual guide. 
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Linear scaling of correlation lengths in mouse primary cortex 72 

For cellular analysis, spiking activity in pyramidal cells of mouse primary visual cortex (V1; n = 7 mice) 73 

was recorded using 2PI over an area of L x L = ~400 µm x 400 µm in superficial cortical layers at a depth 74 

of ~100 – 150 µm from the cortical surface. Mice were quietly resting during recording while 2 s-lasting 75 

drifting gratings were presented every 4 s (Fig. 1a). As can be seen in the variance over average response 76 

plot (Fig.1b), the Fano factor was above one for most cells, indicating high response variability in single 77 

neuron responses. About 20% of neurons were tuned to stimulus direction with a selectivity index (DSI; 78 

Fig. 1c; see Materials and Methods) larger than 0.4 and an average response profile (Fig. 1d) depicting 79 

minimal response to the orthogonal orientation. Importantly, all single neuron responses were embedded 80 

in spatio-temporal clusters of activity that distributed in cluster size according to power laws, the hallmark 81 

of neuronal avalanches (Beggs & Plenz, 2003; Bellay et al., 2015). This scale-invariant organization in 82 

activity clusters was found during stimulation regardless of the directional drift as well as during 83 

luminance-matched gray screen presentation (Fig. 1e; p < 0.05 for power law test; see Materials and 84 

Methods).  85 

The response variability encountered in single neurons, their tuning diversity and scale-invariant 86 

grouping in the form of avalanches points to a fluctuation-dominated dynamic regime of cortex, in which 87 

individual elements seem to be difficult to relate to stable population responses. One potential answer to 88 

this problem could lie in critical dynamics, which maintain some order in the presence of strong 89 

fluctuations (Chialvo 2010). Therefore, to gain deeper insight into the dynamical regime of the cortex 90 

during the relatively short-lasting (compared to the scale of large avalanches) evoked responses and, at 91 
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92 

the same time, avoid the statistical influence of the strong drive created by the stimulus, we needed an 93 

 Fig. 2: Correlations in activity fluctuations 

between V1 neurons grow with the size of the 

cortical area observed during visual 

presentations. a Schematic to measure pair-wise 

correlation between two V1 neurons (open circles) 

separated by distance r for different fields of view 

(colored squares), superimposed on a typical 400 

x 400 μm 2-photon image showing YC2.6 

expressing pyramidal neurons in V1 (~120 μm 

cortical depth). b Average spatial correlation in 

ΔR/R for V1 neurons decays according to a power 

law with exponential decay during visual 

presentations in line with prediction for critical 

dynamics. Squares: data (mean ± standard 

deviation). Line: power law with exponential 

decay fit. Inset: Trial-shuffling (gray) results in 

near-zero correlations independent of distance. For 

comparison, original correlation (black) added in 

log-linear coordinates. Bars indicate standard 

deviation. c Example comparison of fluctuations in 

neuronal responses relative to the population 

response as a function of window extent. Left: 

Individual, single ΔR/R Ca2+ traces for two 

neurons (see panel a). Corresponding population 

       activity fluctuates more in small windows (blue) compared to larger windows (orange; see panel a). Right: 

Subtracting the instantaneous population activity from individual neuronal responses reveals the corresponding 

fluctuations around the mean for each neuron as a function of window extent. Correlation value for each window 

extent is shown. d Correlation in the fluctuations around the mean decays with distance and crosses zero. The 

zero crossing defines the correlation length ξ, which is seen to increase with window length (arrows). Averages 

for n = 7 animals and all gratings directions (left) and gray screen (right). Colors: window length. Broken line: 

zero correlation. e Correlations are destroyed by trial-shuffling in time (short dash) or shuffling of ROI position 

(long dash), as revealed from the near-zero values obtained, independent of distance (L = 343 µm case shown). 
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alternative approach to the statistical distribution of observed activity patterns. Here we assessed the 94 

dynamics of the cortical network by analyzing how correlations in the evoked responses scale with the 95 

size of the observed system. We first directly calculated how the average pairwise correlation between 96 

neurons changes as a function of cortical distance r for the full recording window. This correlation was 97 

well described by a power law with exponent close to -1 and exponential cut-off, in line with expectations 98 

for critical dynamics (Cavagna et al., 2010) measured within a finite size window (Fig. 2b; p < 0.05 for 99 

power law test). Importantly, when activity from each of the trials for a given stimulus angle was randomly 100 

shuffled for each cell independently (trial shuffling; see Materials and Methods), the correlations dropped 101 

to zero regardless of the distance between the cells. This indicates that the total activity induced by the 102 

stimulus does not contribute to the distance related decay in correlations. We then assessed how the 103 

fluctuations of neuronal responses around the instantaneous population mean change with distance r 104 

between cells, by subtracting the population average as a function of time from each neuron’s time series 105 

(Fig. 2c). The correlation in fluctuations as a function of distance r, C(r), was assessed for varying length 106 

L of the observation window (Fig. 2d). This variation in L systematically changes the population mean as 107 

exemplified in Fig. 2c for two window lengths. Indeed, nearby neurons deviate in similar fashion from 108 

population activity and C(r) decayed similarly, both for drifting gratings as well as during gray screen. At 109 

a certain distance, defined as the correlation length, ξ (Fig. 2d, arrows) (Cavagna et al., 2010; Fraiman & 110 

Chialvo, 2012), C(r) turns negative. We found that C(r) decayed similarly with distance for different L < 111 

400 µm (Fig. 2d, different colors) and ξ was shorter for smaller windows.  112 

Deviations from the population average of cells further apart than ξ were found, on average, to be anti-113 

correlated for any window size. This anti-correlation is to be expected to a certain degree as by definition, 114 

at any given time some cells will exhibit activity above the population mean, while others will be below 115 

it. This fact and the general drop in correlations with distance will lead to a crossing through zero 116 
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correlation, allowing to estimate ξ. We used trial shuffling as a control to demonstrate that ξ indeed 117 

captures emergent correlations in trial-by-trial fluctuations among neurons and does not reflect an artificial 118 

position due to subtracting the instantaneous mean. Trial shuffling maintains the common input introduced 119 

by the stimulus and distances among neurons, while removing coordinated changes of individual neuronal 120 

response around the population response. Trial shuffling results in C(r) being close to zero regardless of 121 

distance between neuron pairs, and therefore ξ cannot be estimated. This is true for both drifting gratings 122 

stimulus and gray-screen periods (Fig. 2e). Similarly, ξ is not defined after randomly permuting cell 123 

positions while keeping instant trial-by-trial correlations intact. These controls carried out for the full 124 

window size confirm ξ as a correlation length measure for neuronal activity that emerges from interactions 125 

between the observed neurons. 126 

We note that a common way to obtain correlation length estimates from a system is precisely with the 127 

fit performed in Fig. 2b, by measuring how quickly correlations (without the population subtraction) drop 128 

with distance between system components after the power law regime. More specifically, the characteristic 129 

decay of the exponential portion of such a correlation spatial function can be used as a measure for the 130 

correlation length. However, as can be seen in Fig. 2b, the correlation function becomes very noisy for 131 

larger distances, reflecting the small number of pairs of neurons that far apart. Consequently, our estimates 132 

for the correlation length using that method become very unreliable (ξ ~ 110.97 ± 58.55; 95% confidence 133 

interval). With the alternative method (Cavagna et al., 2010), which has previously been employed in 134 

neuronal activity data (Fraiman & Chialvo, 2012), we achieved a full collapse for all L by rescaling C(r) 135 

with its corresponding value ξ (Fig. 3a; p < 0.05; see Materials and Methods) and obtained a linear 136 

relationship for ξ over L (Fig. 3b), i.e. spatial correlations in V1 grow linearly with the observed cortical 137 

area. This increase holds regardless of sensory stimulus presented (Fig. 3b, different colors; p < 0.05 chi-138 

square test for both cases; see Materials and Methods) and for subsets of cells responsive to the stimulus 139 
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as well as those that are not (Fig. 3b, inset; p < 0.05 chi-square test for both cases), indicating that all cells, 140 

independent of their tuning-selectivity, follow the same correlation principles.  Linear scaling with 141 

window size is also obtained when spike density estimates are being used (Suppl. Fig. S1). Our findings 142 

suggest that fluctuations around the mean between V1 neurons are scale-invariant, a hallmark of criticality.143 

144 

We extended these findings from V1 to the primary auditory cortex in awake mice. Mice passively listened 145 

to short (1 s) auditory tones semi-randomly presented from 8 different frequencies and 3 different volume 146 

levels every 3 – 5 s (Bowen et al., 2019). Evoked responses were recorded using 2PI in pyramidal neurons 147 

 

Fig. 3: Linear growth in correlation length between neurons in primary visual and auditory cortex during 

sensory stimulation. a Scale-invariant spatial correlation function in V1 during sensory stimulation obtained by 

collapsing correlation functions from different window extents (cf. Fig. 2d; average from n = 7 mice). Rescaled 

correlations C x ξγ as function of distance normalized by correlation length ξ. Black solid line: average. Left/right: 

Drifting gratings/gray screen. b A linear growth in correlation length ξ with window extent L is found for drifting 

gratings (red) as well as gray screen (gray) presentations (n = 7 mice). Inset: tuned (orange) as well as untuned 

(green) neurons exhibit similar linear growth in spatial correlations. Lines: linear regression. c Neurons in primary 

auditory cortex of passively listening mice exhibit scale-invariant spatial correlation functions for both tone ON 

and OFF conditions (left and right, respectively). d Corresponding linear growth in correlation length ξ as 

function of L, for tone ON (red) and OFF (blue) (n = 11 mice). Lines: linear regression. 
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from superficial layers (n = 11 mice). Evoked neural responses were analyzed as described for visual 148 

cortex. Correlation functions C(r) were collapsed based on correlation length ξ and recording window size 149 

(Fig. 3c). In line with what was found for V1, ξ grew linearly with L for both tone ON and tone OFF 150 

conditions in auditory cortex (Fig. 3d; p < 0.05 chi-square test for both cases). 151 

 152 

Linear scaling of correlation lengths in nonhuman primates at cortical mesoscale 153 

For the mesoscale level, i.e. analysis beyond several hundred µm, we employed microelectrode arrays 154 

(MEAs; 10 x 10 electrodes without corners; 400 µm interelectrode distance) and recorded the local field 155 

potential (LFP) in prefrontal (PF; monkey A) and premotor (PM; monkey B) cortex over an area of ~4 156 

mm x 4 mm (Fig. 4a; for details see (Yu et al., 2017)). Monkey A was trained in a visual-motor mapping 157 

task (Fig. 4b, bottom; see Materials and Methods), while monkey B performed a self-initiated movement 158 

task (Fig. 4b; top). We applied the methods described in the previous section to investigate whether the 159 

same results could be observed in this larger scale. Amplitude fluctuations in the LFP were obtained by 160 

subtracting the instantaneous average on the squared subarrays of width L from each electrode LFP. We 161 

then obtained C(r) between pairs of electrodes for the subarray of width L in multiples of the inter electrode 162 

distance (400 µm). C(r) decayed with distance (Fig. 4c) in remarkably similar shapes for different L, 163 

allowing for successful collapse of the curves (Fig. 4d). The collapsed functions were similar among both 164 

monkeys (Fig. 4d, left vs. right), during baseline or task-evoked activity (Fig. 4d, top vs. bottom). As found 165 

for primary visual and auditory cortex, ξ grew linearly with L for both cortical regions and was similar 166 

between baseline and motor/sensory processing epochs (Fig. 4e; p < 0.05 chi-square test for all cases). 167 

Importantly, this is not the case when trial shuffling is employed, as that procedure leads to a non-decaying 168 

near-zero correlation function (Fig. 4c, bottom), also in line with results obtained from mice. 169 

 170 
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  171 

 

Fig. 4: Scale-free correlation functions and corresponding linear growth in spatial correlations in monkey 

cortex during behavior. a Local field potential (LFP) traces during an example trial of a self-initiated motor task 

(10 example electrodes from a total of 96 electrodes at inter-electrode distance of 400 μm). b Trial-averaged LFP 

for the self-initiated motor task (top) to touch a pad (broken line; arrow) and a working memory task (bottom) 

around the presentation of a cue (broken lines; arrow). Dark colors: single electrodes. Light trace: population 

average. c Average correlation in fluctuations around the instantaneous population mean as function of distance 

for different subarrays of side length L (color code). Top/bottom: Baseline/task-evoked. Left/right: monkey A, 

PF/monkey B, PM. Black dashed line: zero correlation. Bottom inset: Near-zero correlations for trial-shuffled 

evoked datasets (L = 4 mm). d Rescaled correlations C x ξγ as function of distance normalized by correlation 

length ξ. Black solid line: average. e Correlation length growths linearly with subarray length L for monkey A PF 

(left) and monkey B PM (right) during baseline (blue) or task-evoked (red) activity. Lines: linear regression. 
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Neuronal network model demonstrates linear growth of correlation lengths unique to critical 172 

dynamics 173 

We simulated a neural network (see Materials and Methods and refs. (Kinouchi & Copelli, 2006; Ribeiro 174 

et al., 2014) for more details) to establish to which extent the results obtained in the experimental data can 175 

be used as an identifier for criticality. Specifically, we explore the impact of windowed access to a larger 176 

system, as this is currently the only way to examine finite-size effects on brain activity measures. 177 

178 

Furthermore, given the less than an order of magnitude spatial range we were able to access with 2PI and 179 

high-density microelectrode arrays, we estimated the expected deviation in correlation length estimates 180 

 Fig. 5: Neuronal model identifying 

linear growth in correlation length 

unique to critical dynamics. a 

Correlations in activity fluctuations 

as a function of distance for 

subcritical (σ = 0.64, left), critical (σ 

= 1.024, middle) and supercritical 

regime (σ = 2.4, right). Color code: 

the linear size of the observed 

window, or grid extent L. Broken line: 

zero correlation. Insets: Zoom-in to 

highlight the zero-crossings of the 

correlation functions. b Correlation  
length ξ as a function of σ (see Materials and Methods) for different grid extents (same color code as panel a). All 

curves peak for σ ~ 1, corresponding to critical dynamics. c Correlation length ξ as a function of grid extent L for 

several values of σ (color code). Dashed gray line: linear growth with slope of 0.25 as a visual guide. Note the 

linear behavior of ξ for large L at criticality (σ = 1.02). Note also the subcritical case (σ = 0.16) for which ξ 

asymptotes at ~20, which coincides with the interaction length Ic for the system (dashed black line). d 

Susceptibility χ as a function of σ for different L (same color code as panel a). Note that all curves peak at σ ~ 1, 

i.e. critical dynamics. All results in this figure were obtained from a network of size 1000 x 1000 with connectivity 

K = 16 and interaction length Ic = 20.  
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when networks move away from criticality. In the simulations we performed the correlation analysis 181 

exactly as described for the experimental data using a network of 1000 x 1000 units, with neurons 182 

interacting up to a distance Ic = 20. As can be seen in Fig. 5a, the correlations in the fluctuations were 183 

highest and extended for the longest distance in the critical regime (Fig. 5a, middle). Furthermore, the 184 

growth of ξ with the observed grid extent L was bounded for sub- and supercritical regimes (Fig. 5a, left 185 

and right), while in the critical regime, it increased with L. In fact, Fig. 5b shows that ξ peaked at criticality 186 

(σ ≃ 1; see Materials and Methods), regardless of the extent of the observed grid (Fig. 5b, different colors). 187 

We note that the absolute difference in the value of correlations from our simulations compared to 188 

experimental data simply results from the smoothing procedure employed in the latter (see Materials and 189 

Methods). In summary, the linear scaling of ξ as a function of L was unique to criticality, with sub- and 190 

supercritical systems presenting asymptotic behavior for ξ over L (Fig. 5c, different colors) and our 191 

simulations support our use of observation windows of different size as a proxy of system size in the 192 

analysis of correlations of critical systems. This approach was important so that the simulations properly 193 

mimic what is observed from the brain: only a small subset of the full network is then further subsampled 194 

in order to obtain the scaling of the correlation length. In Supplemental Figure S2, we provide further 195 

demonstration that this windowing approach (as opposed to measuring the correlation length as function 196 

of system size) is a valid method using the paradigmatic Ising model. Finally, in Fig. 5d we demonstrate 197 

that the susceptibility χ also peaks at criticality. 198 

Altogether, these results demonstrate that at the critical regime, the range at which the fluctuations 199 

from two units in the network are correlated extends much further than the range at which units are 200 

connected, the interaction length Ic (see Materials and Methods). In contrast, for a system far away from 201 

the critical point, correlations cannot extend significantly beyond Ic (Fig. 5c, dashed line at 20 coincides 202 
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with asymptote value for ξ at σ = 0.16). However, as can be seen in Fig. 5c, even near the critical regime 203 

the linear growth of the correlation length is not present at smaller scales. 204 

Finally, we studied how ξ(L) changed as a function of Ic for critical systems. Linear scaling was not 205 

obeyed for grid extents shorter than Ic, for which the curve abruptly changed from the asymptotic slope to 206 

a sharper decay (Suppl. Fig. S3a, left; see also Supplementary Materials). Indeed, scaling ξ and L by Ic, 207 

we obtained a collapse of all curves (Suppl. Fig. S3a, right). This scaling function clearly identified two 208 

regimes: scale free behavior took place for L > Ic, while ξ increased much more abruptly for increasing L 209 

< Ic, due to direct connections between units. We observed similar trends for individual mice in V1 when 210 

replotting the correlation lengths as a function of window extent with the linear regime being preceded by 211 

a steeper increase (Suppl. Fig. S3b, left). We estimated the point where the scaling abruptly changed for 212 

each mouse. They ranged from ~100 to 180 µm for V1 networks. These estimates were used to 213 

successfully collapse all data (Suppl. Fig. S3, right).  214 

Discussion  215 

Here, we used a correlation approach to assess the dynamical regime of the cortex during information 216 

processing epochs. The correlation length, a measure of how far apart neurons in cortex are positively 217 

correlated was shown to scale approximately linearly with the size of the observed window.  If the distance 218 

over which neuronal activities correlate were to be finite, e.g. 200 μm, our approach would have revealed 219 

an upper bound in window size, or cortical area, for which the correlation length saturated. Instead, both 220 

of our experimental approaches, first, for up to 400 μm at the level of individual neuronal firing in primary 221 

visual and auditory cortex using 2-photon imaging and second, for up to 4 mm in the local field potential 222 

in awake nonhuman primates using high-density arrays, demonstrated that correlation length simply grows 223 

linearly with the size of the cortical area observed. Our simulations confirmed that our approach using 224 
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windowing identifies linear growths in networks with critical dynamics, for which correlation length 225 

growths unbounded up to the final observed size.  226 

We evaluated the correlation length as function of subsamples of the recorded region, i.e. compact 227 

windows, and not as a function of system size, which is the more common approach in physics. While it 228 

is known that windowing differs to a certain degree from finite size effects (Chen et al., 2011), we 229 

demonstrated for two different models that our method leads to the similar results. Given that the finite-230 

size changes cannot be executed for real brains, windowing is therefore a realistic, alternative approach. 231 

Further support of our windowing method has been provided in BOLD fMRI recordings for the whole 232 

brain. In that study (Fraiman & Chialvo, 2012) it was shown that the linear growth in correlation length 233 

with the size of separate functional areas of the brain also describes the behavior of the correlation length 234 

when different subsets of multiple areas are added together in the analysis. 235 

We used the fluctuations of local neuronal activity around the instantaneous mean of the observed 236 

network size to evaluate individual trials. The subtraction of the (observed) population average before 237 

calculating correlations has been successfully applied in the context of bird flocks (Cavagna et al., 2010), 238 

where one needs to evaluate how birds move in relation to one-another, disregarding the overall movement 239 

of the flock. This approach is much more common in physics (Wilson, 1976; Wilson, 1979) and, to our 240 

knowledge, has been applied here for the first time to single neurons and local neuronal populations in the 241 

wake animal. One might reconcile this common method by realizing that during sensory input or motor 242 

output, many neurons integrate similar inputs that consequently drive the activity of the network as a 243 

whole. Accordingly, subtracting the instantaneous population average reduces this ‘drive’ component, 244 

allowing the correlation analysis to focus on how activity in neurons changes in relation to one-another, 245 

independent from the general sensory/motor responses observed. This interpretation is thoroughly 246 

supported by our trial-shuffling results, in which the specific inter-neuron relationships that differ from 247 
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trial-by-trial are removed and our correlation analysis correctly predicted zero correlations. We note that 248 

this method is not advisable for small number of neurons in which subtracting the average introduces 249 

dominant anti-correlations artificially decreasing correlation lengths for small windows. We mitigated this 250 

effect by imposing a minimum number of units in a given window before considering it for analysis. Small 251 

windows also suffer from the influence of the interaction length. Specifically, when the interaction length 252 

is on the order of the observed system size, the growth of the correlation length naturally is much faster 253 

with system size. We used this to our advantage, which allowed us to estimate the typical interaction range 254 

for superficial layers in the primary visual cortex. 255 

That the cortical state is known to affect trial-by-trial variability (Kisley & Gerstein, 1999) and 256 

correlation among neurons (Cohen & Kohn, 2011; Rosenbaum et al., 2016) has been a long-standing 257 

observation. It is also well established that part of this variability originates from the cortical network 258 

itself (Kara et al., 2000; Sadagopan & Ferster, 2012; Goris et al., 2014; Schölvinck et al., 2015). Our 259 

demonstration of linear scaling in correlation length suggests critical dynamics as the framework that 260 

captures the intracortical correlation structure underlying this variability. Critical dynamics has been a 261 

fundamental driver in understanding optimization of information processing in complex systems in light 262 

of the evidence that fluctuations or variability are high at criticality (e.g. refs. (Shew et al., 2011; Fraiman 263 

& Chialvo, 2012; Tkačik et al., 2013; Karimipanah et al., 2017)). Decades ago, it was suggested that 264 

critical dynamics optimize information transfer in gene-regulation networks (Kauffman, 1969; Sole et al., 265 

1999; Rämö et al., 2007; Nykter et al., 2008). Since then, the criticality hypothesis (Beggs & Plenz, 2003; 266 

Chialvo, 2010; Mora & Bialek, 2011; Plenz, 2012; Hesse & Gross, 2014; Marković & Gros, 2014; Plenz 267 

& Niebur, 2014; Bettinger, 2017; Cocchi et al., 2017; Muñoz, 2018) has gained much ground in the field 268 

of neuroscience. Highly desirable aspects of information processing have been shown to improve at 269 

criticality such as the maximization of mutual information between stimulus input and output (Kinouchi 270 
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& Copelli, 2006; Shew et al., 2009; Shew & Plenz, 2013; Gautam et al., 2015; Bortolotto et al., 2016), 271 

increased information capacity (i.e. the number of possible internal states a network can establish) 272 

(Haldeman & Beggs, 2005; Shew et al., 2011; Tkačik et al., 2015), improved stimulus discrimination 273 

(Shriki & Yellin, 2016; Clawson et al., 2017), and the ability of neurons to flexibly change synchronization 274 

while maintaining an overall robust degree of phase-locking (Jantzen et al., 2009; Yang et al., 2012; Kelso 275 

et al., 2013; Kirst et al., 2017). Accordingly, our findings support the notion that trial-by-trial variability 276 

rather than reflecting pure noise, represents an intrinsic property of cortical dynamics during information 277 

processing. 278 

Previous reports relied solely on the calculation of avalanche statistics in examining how close cortical 279 

networks are to critical dynamics. Such statistics is sensitive to non-stationarities in neuronal activity as 280 

found in evoked responses (Yu et al., 2017), which might explain the lack of avalanche statistics during 281 

sensory processing in ex vivo turtle (Shew et al., 2015) and the human MEG (Arviv et al., 2015). Power 282 

laws statistics as found for avalanches can in principle arise in critically balanced systems in the absence 283 

of correlations (see e.g. neutral avalanches (Martinello et al., 2017) and alternative models (Williams-284 

García et al., 2014; Aitchison et al., 2016; Ioffe & Berry, 2017; Touboul & Destexhe, 2017). Our present 285 

results, therefore, which are based on the scaling of spatial correlations, provide a new experimental 286 

underpinning that cortical processing is in line with critical dynamics (Chialvo, 2010; Shew & Plenz, 287 

2013). 288 

Materials and Methods 289 

All procedures followed the Institute of Laboratory Animal Research (part of the National Research 290 

Council of the National Academy of Sciences) guidelines and were approved by the NIMH Animal Care 291 

and Use Committee or by the University of Maryland Institutional Animal Care and Use Committee. 292 

 293 
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Mouse surgery and preparation 294 

Wild type (C57/Bl6, Jackson Laboratory) mice were housed under a reversed 12 h-light/12 h-dark cycle 295 

with ad libitum access to food and water. Imaging experiments were generally performed near the end of 296 

the light and beginning of the dark cycle. A custom-made titanium head bar was surgically implanted onto 297 

the skull of the mice under isoflurane anesthesia (4% induction, 1-1.5% maintenance). A circular 298 

craniotomy (~3 mm) was made above the area of interest (visual or auditory cortex), followed by injection 299 

of a virus containing the genetically encoded calcium indicator (YC2.6 for V1; GCaMP6s for A1) at a 300 

depth of ~250-300 µm. After that, a cranial window composed of two 3 mm diameter coverslips glued to 301 

a 5 mm coverslip was implanted and the entire area (except for the window) was sealed with dental cement 302 

(Goldey et al., 2014; Bowen et al., 2019). 303 

 304 

Visual stimulation and response measures 305 

Visual stimuli were prepared in Matlab using the Psychophysics Toolbox (Kleiner et al., 2007) and 306 

delivered via a monitor (Dell, 60 Hz refresh rate) placed ~25 cm in front of the contra-lateral eye of the 307 

mouse. The stimulus was composed of moving gratings at 8 different directions presented for 2 s at 308 

maximum contrast, 0.04 cycles per degree and 2 cycles per sec. Stimuli were interspaced by gray screen 309 

(matched for average luminance) for 2 s. Each direction was presented 20 times in randomized order, for 310 

a total of 160 iterations. We calculated the direction selectivity index using the common definition: 𝐷𝐷𝐷𝐷𝐷𝐷 =311 

(𝑅𝑅𝑃𝑃 − 𝑅𝑅𝑂𝑂) (𝑅𝑅𝑃𝑃 + 𝑅𝑅𝑂𝑂)⁄ , where Rp and Ro are the responses to the preferred and opposite direction, 312 

respectively. Significance of DSI for each cell was assessed by comparing the values obtained from the 313 

original data with those obtained from shuffling the inter-spike intervals. 314 
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Acoustic stimulation 315 

Sound stimuli were synthesized in Matlab using custom software, passed through a multifunction 316 

processor (RX6, TDT), attenuated (PA5, Programmable Attenuator), and delivered via ES1 speaker placed 317 

~5 cm directly in front of the mouse. The sound system was calibrated between 2.5 and 80 kHz and showed 318 

a flat (± 3 dB) spectrum over this range. Overall SPL at 0 dB attenuation was ∼90 dB SPL on average (for 319 

tones). Sounds were played at a range of sound levels (40-80 dB SPL). Auditory stimuli consisted of 320 

sinusoidal amplitude-modulated (SAM) tones (20 Hz modulation, cosine phase), ranging from 3 to 48 321 

kHz. The frequency resolution was 2 tones/octave (0.5 octave spacing). Each of these tonal stimuli was 322 

repeated 5 times with a 6 second inter-stimulus interval, for a total of 135 iterations (Bowen et al., 2019). 323 

 324 

Two-photon imaging and analysis 325 

Images were acquired by a scanning microscope (Bergamo II series, B248, Thorlabs) coupled to a pulsed 326 

femtosecond Ti:Sapphire 2-photon laser with dispersion compensation (Vision S, Coherent). The 327 

microscope was controlled by ThorImageLS software. The wavelength was tuned to either 830 nm or 940 328 

nm in order to excite YC2.6 or GCaMP6s, respectively. Signals were collected through a 16× 0.8 NA 329 

microscope objective (Nikon). Emitted photons were directed through 525/50 nm (green) and 607/70 nm 330 

(red) band filters (for GCaMP6s) or 535/22 nm (yellow) and 479/40 nm (cyan) band filters (for YC2.6) 331 

onto GaAsP photomultiplier tubes. The field of view was ~400 x 400 μm. Imaging frames of 512×512 332 

pixels were acquired at 30 Hz by bidirectional scanning of an 8 kHz resonant scanner. Beam turnarounds 333 

at the edges of the image were blanked with a Pockels cell. The average power for imaging was <70 mW, 334 

measured at the sample. The obtained images were corrected for motion using dft registration software 335 

with Matlab (Guizar-Sicairos et al., 2008). Regions of interest (ROI) were identified from the average 336 

image of the motion corrected sequence using custom code. For each labeled neuron, raw fluorescence 337 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.07.01.182014doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.182014
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Ribeiro et al.  Scale-free correlations in neuronal activity 21 

signals (cyan and yellow for YC2.6; green for GCaMP6s) over time were extracted from the ROI overlying 338 

the soma. The mean ratiometric signal (R; YC2.6) or single fluorescence (F; GCaMP6s) in each ROI was 339 

calculated across frames and converted to a relative fluorescence measure (ΔR/R0 or ΔF/F0). The baseline 340 

signal R0 (or F0) was estimated by using a sliding window that calculated the average fluorescence of 341 

points less than the 10th-percentile during the previous 1.3-second window (40 frames).  342 

 343 

Monkey behavioral training and electrophysiological setup 344 

Experiments were described previously (Yu et al., 2017). In short, two adult rhesus monkeys (Macaca 345 

mulatta) were surgically implanted with a titanium head post. After recovery, they were trained to sit head-346 

fixed in a primate chair for behavioral performance. In the cue-initiated task, monkey A (male, 9 years 347 

old, 8 kg) had to press a bar in front of the chair upon presentation of the ‘trial-initiation’ cue on a computer 348 

screen. After ~2 s, the initiation cue was followed by an ‘instruction’ cue, for the duration of 1 s. Upon 349 

cue disappearance, monkey A had to release the bar and reach with his right arm to one of two specialized 350 

feeders, depending on which of two possible cues were presented (Mitz et al., 2001). Approaching the 351 

incorrect feeder rapidly triggered a proximity sensor to sequester the food rewards in both feeders, which 352 

prevented the monkey from obtaining a reward on that trial. The inter trial interval was 3 – 5 s. In the self-353 

initiated motor task, monkey B (female, 8 years old, 7 kg) had to move her right arm to touch a pad placed 354 

~30 cm in front of the monkey chair after which a food reward was given. After the monkeys learned their 355 

respective tasks, a multi-electrode array (MEA; 96 channels - 10×10 without corners, inter-electrode 356 

distance: 400 μm; electrode length: 1 mm for monkey A and 0.55 mm for monkey B; BlackRock 357 

Microsystems) was chronically implanted in the arm representative region of the left prefrontal area (area 358 

46, monkey A) or the left premotor cortex (monkey B). The LFP (1 – 100 Hz band pass filtered; 2 kHz 359 

sampling frequency) was obtained from the implanted MEA. Electrophysiological signals as well as the 360 
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timing of behaviorally relevant events, e.g. touching the pad, presentation of visual cues, etc., were stored 361 

for off-line analysis. 362 

 363 

Numerical simulations 364 

We simulated a neural network, as described previously (Kinouchi & Copelli, 2006; Ribeiro et al., 2014). 365 

In short, each neuron can be in one of three states at each time step: 0 for resting, 1 for active, and 2 for 366 

refractory. The model considers S2 neurons on a square lattice. Each neuron outputs to K other neurons, 367 

selected with an exponentially decaying probability function of the Euclidian distance r between them 368 

(𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ~ 𝑒𝑒−𝑟𝑟/𝑅𝑅0, with R0 = 5). A spatial cutoff is set in the interaction distance: neurons cannot directly 369 

connect at distances greater than 𝐼𝐼𝑐𝑐 =  4𝑅𝑅0 spatial units (thus, defining an interaction length Ic). 370 

Furthermore, to reduce small S effects, we employed periodic boundary conditions. Results were 371 

computed on a square grid of length L. Simulations parameters were always such that S was much larger 372 

than L to reduce finite-size artifacts and to better mimic experimental data. A small Poisson drive (h = 10-373 

7 per time step) to each neuron determined the overall rate of firing activity. The present results were robust 374 

over a wide range of h values (e.g., h = 10-9 to 10-4 per time step). The control parameter of the model 375 

determines the branching of the neural activity and was defined as 𝜎𝜎 = 𝐾𝐾 ×  𝑇𝑇, where T is the probability 376 

that an active neuron (i.e., in state 1) can excite each one of the K neighbors that it connects to. Therefore, 377 

as shown previously, the model can be made critical by selecting a transmission probability T such that σ 378 

~ 1, for any given K. Susceptibility was defined as the area under the correlation vs. distance curve, for a 379 

given window size observed, up to the correlation length. 380 

Considering the focus of the present study, we note that there are four length scales in the model. The 381 

interaction length (here called Ic) is the scale at which neurons can interact via direct connections. System 382 

length (called S) determines system size (the network is composed of S2 neurons). The third one is the 383 
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window length L (L ≤ S), called grid length, which determines how many neurons we will measure from 384 

(i.e., L2 neurons). The last scale is the correlation length ξ, the longest distance at which on average the 385 

activity of any two given neurons may remain positively correlated. It is calculated from fluctuations on 386 

activity, following Cavagna’s work (Cavagna et al., 2010) (see section below). To avoid confusions, we 387 

remark that the term interaction is reserved here to denote direct connections and correlations to the 388 

mathematical result from computing correlations of neural activity. Simulations for varying interaction 389 

length (Ic) were carried out using the same model described above. When changing Ic, the decaying 390 

parameter used for making connections R0 was changed accordingly (such that the relation 𝐼𝐼𝑐𝑐 =  4𝑅𝑅0 still 391 

holds).  392 

 393 

Avalanche analysis 394 

Avalanche analysis for the 2PI data was performed as described previously (Beggs & Plenz, 2003; Bellay 395 

et al., 2015). In short, estimated spikes (Deneux et al., 2016) from all neurons were pooled together to 396 

create a population activity series. Avalanches are defined by contiguous non-zero population activity 397 

preceded and followed by blank frames (frames with zero population activity). Avalanche sizes were 398 

defined by the total number of spikes throughout their lifetime. Power-law goodness of fit was evaluated 399 

through a p-value calculated from the log-likelihood ratio when comparing power law, exponential and 400 

lognormal fits, as described previously (Clauset et al., 2009; Klaus et al., 2011; Bellay et al., 2015). 401 

 402 

Correlation analysis 403 

The correlation of the fluctuations as function of distance (Cavagna et al., 2010) was calculated as 404 

C(r) = 1
C0

∑ uiujδ�r−rij�i,j

∑ δ�r−rij�i,j
,             (1) 405 
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where δ(r − rij) is a smoothed Dirac δ function defining all pairs of neurons located at mutual distance r, 406 

rij is the Euclidean distance from the i-th neuron's spatial location to the spatial location of neuron j, and 407 

ui is the value of the signal ν of neuron i at time t, after subtracting the overall mean of signals ν from 408 

neurons inside the observation window of size L at that time t: ui(t) = νi(t) − ν(t). To ensure that C(r = 409 

0) = 1, the normalization factor 1/C0 was used. We note that since the instantaneous average is subtracted, 410 

C(r) is not equivalent to the most commonly used pairwise Pearson correlation function. 411 

The objective of computing the C(r) is to determine the correlation length ξ, which is defined as the 412 

point where the correlations of the fluctuations reaches zero, i.e. 𝐶𝐶(𝜉𝜉) = 0. Since system size, i.e. cortex 413 

size in our experimental data, was fixed, we investigated how ξ changes with system size subsampled by 414 

our recordings and considered neurons/electrodes within a window of length L (this proxy is validated by 415 

computing correlation lengths both as function of increasing system and window sizes in a model (Suppl. 416 

Fig. S2). More specifically, for the 2PI data in mice, fields of view ranging from ∼ 40 × 40 μm (windows 417 

with fewer than 5 units were ignored to avoid bias introduced by the average subtraction procedure when 418 

the number of units is too small) to the maximum possible size were considered, while for the monkey 419 

LFP data the smallest subarray considered was 3 × 3. To reduce noise effects, results were averaged across 420 

all possible subregions for any given size. The time series were smoothed in the time domain (using Matlab 421 

routine medfilt1.m with 20 samples for the mice 2PI data, 8 samples for the monkey LFP data). This 422 

smoothing procedure improved statistics without changing the results qualitatively. In order to more 423 

precisely estimate the zero-crossing point for the experimental data, we fit 3rd order polynomial functions 424 

to the C(r) curves around the zero-crossing. 425 

To quantify linear growth in correlation length ξ as function of window length L, we first obtained a 426 

linear regression of the ξ(L) data followed by chi-square statistics 𝜒𝜒𝑐𝑐2 = ∑ [𝜉𝜉(𝐿𝐿𝑖𝑖) − 𝑅𝑅(𝐿𝐿𝑖𝑖)]2 𝑅𝑅(𝐿𝐿𝑖𝑖)⁄𝑖𝑖 , where 427 

Li is the ith measured value of L and R(Li) is the linear regression value at Li. 𝜒𝜒𝑐𝑐2 can be used to obtain a p-428 
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value that estimates how likely the data fit the linear regression that well by chance from the chi-square 429 

distribution. We rescaled the correlation vs. distance curves by normalizing the distances by the correlation 430 

length and by rescaling the correlations by the correlation length to the power of γ, defined as the slope of 431 

the curves at zero-crossing (Cavagna et al., 2010). 432 

 433 

Trial shuffling and spatial shuffling 434 

Trial shuffling for the V1 data was obtained by randomly permuting the responses from each of the 8 435 

presented directions separately. This was done for each neuron independently. Therefore, in each trial of 436 

the trial shuffled dataset activity from each cell corresponds to a response to the same stimulus presented 437 

in the original data but taken from different presentations of that stimulus. For example, suppose we 438 

presented stimulus 5 in trial 1. In the shuffled data, the response of neuron 1 in that trial may be taken 439 

from the 10th presentation of stimulus 5, while response of neuron 2 may be taken from the 3rd presentation. 440 

Spatial shuffling was performed by randomly permuting cell positions, leaving everything else unchanged. 441 
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Trial-by-trial variability in cortical responses exhibits scaling in spatial correlations  1 

predicted from critical dynamics  2 

 3 

Tiago L. Ribeiro et al. 4 

Supplementary Material 5 

Scaling of correlation lengths in mouse V1 based on spike density estimates 6 

 7 

 8 

 9 

 10 

 11 

Correlation length scaling for increasing window size in the Ising model 12 

In critical systems, the correlation length is known to scale with system size. Because in biological systems 13 

changing system size is often impractical, in this work we introduce a proxy which uses windows of 14 

different sizes. In order to validate that approach, we test the concept in the paradigmatic 2D 15 

Ferromagnetic Ising model, which undergoes a critical transition at temperature T ≃ 2.3. The simulations 16 

Supplemental Figure S1: Correlation length scales linearly with 

window extent for spiking data. Correlation as a function of window 

extent obtained from estimated spike times from V1 in mice. Line 

represents a linear regression. 
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(lasting at least 105 Montecarlo steps) used two setups: in the first, the correlation function was computed 17 

in the standard way, from a model running on square lattices of increasing S = 16, 32, 64 and 128. In the 18 

second setup, a relatively large S = 300 square lattice (i.e. 300 × 300 spins) was simulated, and the 19 

correlation function was computed from square windows of smaller sizes L = 4, 8, 16, 32, 64 and 128. 20 

Representative results for three different temperatures are shown: subcritical (T = 1.6, Fig. S2a), critical 21 

(T = 2.3, Fig. S2b) and supercritical (T = 3.0, Fig. S2c). Fig. S2d shows the correlation lengths computed 22 

from both setups are very similar. Therefore, the curves obtained changing system size S or changing 23 

window size L produce similar correlation lengths. These results validate the use of window size as a 24 

proxy of system size in the analysis of correlations of critical systems.  25 

 26 

 27 

Supplemental Figure S2: The 

ferromagnetic 2D Ising model. a 

Correlation as a function of distance for the 

subcritical regime (T = 1.6). Color code: 

different window sizes (L from 4 to 128) in 

a system of size S = 300. Dotted lines: fixed 

S = L = 64 and 128, as indicated. b Results 

for the critical regime (T = 2.3). c Results 

for supercritical regime (T = 3.0). d 

Correlation length as a function of distance 

for T = 1.6, T = 2.3 and T = 3 and different 

conditions. Empty circles and dashed lines 

are used for systems with S = 300. Filled 

symbols with continuous lines are used for 

systems and windows of sizes S = L. 
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Estimating the interaction length from experimental data 28 

We studied how the scaling law changed as a function of the interaction length for critical systems. We fit 29 

a power law of exponent 1 with an extended exponential part to the data as follows 𝜉𝜉(𝐿𝐿) = 𝐶𝐶𝐶𝐶{1 −30 

exp[−(𝐿𝐿 𝐿𝐿0⁄ )𝜀𝜀]}, where C = 0.27 is a constant that controls the slope of the curves (in linear coordinates), 31 

𝜀𝜀 = 3 is a constant that controls how sharp the decay for small L is and L0 is the cross-over point where 32 

the behavior changes from the exponential to the linear growth, our estimate for the interaction length. 33 

The values for C and 𝜀𝜀 were found empirically and represent a good match for the curves obtained in the 34 

simulations. 35 

As shown in Fig. S3a (left), the linear scaling was not obeyed for grid extents shorter than Ic, for which 36 

the curve abruptly changed from the asymptotic slope to a sharper decay. If this change in behavior was 37 

solely due to the influence of direct connections between units (as opposed to influence of critical 38 

dynamics) then we should be able to obtain a universal curve that is invariant to the range at which units 39 

can be connected. Indeed, scaling ξ and L by Ic we obtained a collapse of all curves (see Fig. S3a, right). 40 

This scaling function clearly identified two regimes: scale free behavior took place for L > Ic, while ξ 41 

increased much more abruptly for increasing L < Ic, due to direct connections between units. We observed 42 

similar trends for individual mice in V1 when replotting the correlation lengths as a function of window 43 

extent with the linear regime being preceeded by a steeper increase (Fig. S3b, left). The point where the 44 

scaling abruptly changed differed between mice (Fig. S3b , different colors) and we used a funtion that 45 

mimics the behavior observed for the collapsed curve in Fig. S3a (right) to estimate the interaction length 46 

for each mouse (see Materials and Methods). These estimates were used to collapse all functions (Fig. 47 

S3b, right). They ranged from ~100 to 180 µm among mice and are a good estimate for the local distance 48 

at which pyramidal cells typically connect in superficial layers in V1 (Levy & Reyes, 2012; Seeman et 49 

al., 2018).  50 
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  51 

 52 

Supplemental Figure S3: Interaction length in experimental data can be estimated from correlation length 

growth with observed window size. a Left: Correlation length ξ as a function of L for simulations at criticality 

for 3 different values of interaction length Ic (color code) in log-log coordinates. Dashed line: linear growth as 

a visual guide. Right: After rescaling grid extents and correlation lengths by the interaction length, all curves 

collapse into a single scaling function that highlights the change in the linear behavior at L = Ic. In all cases, 

system size is 1000 x 1000 with connectivity K = 16. b Same as panel a, but for correlation lengths obtained 

from individual mice in V1. We estimated the point where the linear growth of the correlation length breaks for 

each mouse (see Materials and Methods) and used those values to rescale the curves as in panel a (right). The 

collapse obtained suggests that the estimated points (~119 µm for mouse 1 – orange; ~143 µm for mouse 2 – 

purple; ~108 µm for mouse 3 – pink; ~179 µm for mouse 4 – dark green; ~180 µm for mouse 5 – light green) 

represent well the interaction length for these mice. 
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