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Abstract 
Depressive disorders are one of the leading causes of non-fatal health loss in the last decade. Adding to the burden, 
the available treatments not always properly work for some individuals. There is, therefore, a constant effort from 
clinical and preclinical studies to bring forward a better understanding of the disease and look for novel alternative 
therapies. Two target systems very well explored are the serotonin and the brain-derived neurotrophic factor 
(BDNF) systems. Selective serotonin reuptake inhibitors (SSRIs), a commonly used class of antidepressants, target 
the serotonin transporter (SERT) and increase serotonin levels, which in turn also leads to an increase in BDNF. A 
rat model lacking SERT (SERT knockout) has been a useful tool to study the interplay between serotonin and BDNF. 
SERT-/- rats present increased extracellular levels of serotonin, yet BDNF levels are decreased, especially in the 
prefrontal cortex (PFC) and hippocampus. The animals further display anxiety- and depression-like behavior. 
Therefore, BDNF might mediate the phenotype expressed by the SERT-/- rats. In this study, we sought to investigate 
whether overexpression of BDNF in the brain of SERT-/- rats would rescue its anxious and depressive-like behavior. 
Through stereotaxic surgery, SERT-/- and wild-type (WT) rats received BDNF or GFP lentivirus microinfusions into 
the prelimbic cortex subregion of the mPFC and were submitted to the sucrose consumption, open field test, and 
forced swim tests. Additionally, we measured hypothalamus-pituitary-adrenal (HPA)-axis reactivity. The results 
revealed that SERT-/- rats presented decreased sucrose intake, decreased locomotor activity, and increased 
escape-oriented behavior in the forced swim test compared to WT rats. BDNF upregulation in WT rats caused 
alterations in the HPA-axis function, resulting in elevated basal plasma corticosterone levels and decreased plasma 
corticosterone upon stress. In conclusion, BDNF overexpression in the PrL, in general, did not rescue SERT-/- rats 
from its depression- and anxiety-like behavior, and in WT animals, it caused a malfunction in the HPA-axis.   
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Introduction  
All around the world, individuals are experiencing the damaging symptoms caused by depressive disorders, such 
as depressed mood, loss of interest or pleasure in nearly all activities (anhedonia), appetite and sleep disturbances, 
fatigue, and loos of energy. These symptoms usually lead to significant impairment in the achievement of essential 
tasks at home, work, or school. Additionally, depressive patients can manifest feelings of worthlessness and 
inappropriate guilt resulting in suicidal thoughts or actually in suicidal attempts (Morris et al., 2017). The rate of 
individuals suffering from depression is very high; by 2015, it had reached 322 million worldwide (WHO 2017). 
Thereby, depression is among the leading causes of non-fatal health loss for nearly the last three decades (GBD 
2017 Disease and Injury Incidence and Prevalence Collaborators, 2018). Moreover, although many of the 
treatments for depression have been shown to work effectively, these treatments do not work for all individuals, 
and commonly after a successful treatment, many patients relapse (Cuijpers, 2017). Furthermore, despite the 
socio-economic impact led by this disorder, the causes leading to depression are still not fully understood. The 
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etiology of depression is attributed to a complex interaction between environmental factors and genetic 
vulnerability, but specific genes have not yet been found, making it challenging to comprehend the mechanistic 
causes of such complex disease (Nestler et al., 2002). 

Clinical and preclinical studies are attempting to elucidate the pathophysiological processes underlying 
depression. These efforts brought to light, for instance, the serotonin hypothesis of depression in the early 1960s, 
which is based on the observation that antidepressant drugs can increase the concentration of monoamines, 
especially serotonin, in the brain (Coppen, 1967). However, although it has been demonstrated that increasing 
serotonin levels using, for example, selective serotonin reuptake inhibitors (SSRIs), leads to relieve in depressive 
symptoms, inconclusive and inconsistent studies have shown that the serotonin hypothesis seems to be too 
simplistic to explain the mechanisms by which this mood disorder develops in some individuals (Thompson et al., 
2015). One particular observation involves the role of the serotonin reuptake transporter (SERT), which is 
responsible for regulating extracellular serotonin levels, and it is the target of SSRIs. Genetic down-regulation of 
SERT leads to increased central levels of serotonin, reproducing, thereby, the effects of SSRIs. However, it is well 
established that SERT downregulation is also associated with anxious and depressive phenotypes. Therefore, 
although antidepressants increase serotonin levels, other systems might be involved in the antidepressant 
response. The SERT knockout (SERT-/-) rats, for example, are characterized by a complete lack of SERT and 
increased extracellular serotonin levels (Homberg et al., 2007), yet show anxious and depressive-like phenotypes. 
This animal model presented anhedonia-like behavior in the sucrose preference test, increased immobility in the 
forced swim test, and decreased time spent in the central part of the open field, indicating that anxiety levels and 
depressive-like behavior are increased (Olivier et al., 2008). Additionally, SERT-/- rats displayed increased levels of 
basal plasma corticosterone (CORT) levels under control conditions, showing altered basal hypothalamic-pituitary-
adrenal axis (HPA-axis) activity (van der Doelen et al., 2014). 

Taking into consideration that simply increased serotonin levels does not necessarily lead to amelioration 
of depressive behavioral phenotypes, further understanding of the molecular basis of depressive disorders started 
to be explored in light of another hypothesis for the origin of depression, namely the neurotrophic hypothesis of 
depression (Duman and Monteggia, 2006). Neurotrophins have a crucial role in the synaptic maturation, neuronal 
growth, and synaptic plasticity both during development and adulthood (Autry and Monteggia, 2012). Impaired 
production, release, and/or action of this class of signaling molecules is believed to have a direct association with 
depression (Duman and Monteggia, 2006). Among the neurotrophin family are the neurotrophins 3 and 4/5, nerve 
growth factor (NGF), and the brain-derived neurotrophic factor (BDNF) (Huang and Reichardt, 2001), of which 
BDNF is the most abundant and one of the most investigated neurotrophins. 

Several studies support the neurotrophin hypothesis of depression and point to the involvement of BDNF 
in the physiopathology of this disorder. Most of the clinical studies reported a reduction in BDNF protein levels in 
the serum of depressive individuals. These studies showed that there is a direct correlation between 
antidepressant treatment and an increase in peripheral BDNF protein levels of treated patients, while untreated 
individuals present decreased levels of BDNF protein (Fernandes et al., 2015; Polyakova et al., 2015; Sen et al., 
2008). Studies also reported abnormal mRNA BDNF or TrkB expression in the hippocampus and prefrontal cortex 
post-mortem tissue of suicidal patients with a previous record of major depression (Dwivedi et al., 2003). 

Noteworthy is the observation that, while antidepressant treatment induces increases in BDNF levels, the 
genetic manipulation of the SERT in rats causes a decrease in BDNF levels. As mentioned above, although inherited 
SERT downregulation in SERT-/- rats is associated with constitutive increased levels of serotonin, these animals 
present anxiety- and depression-like behavior (Homberg et al., 2014). Moreover, in agreement with the 
neurotrophic hypothesis of depression, it was shown that SERT-/- rats present, under basal conditions, 
downregulation of BDNF mRNA and protein levels in the hippocampus and prefrontal cortex (Molteni et al. 2010; 
Calabrese et al. 2013). Further, total BDNF mRNA levels (exon IX) were significantly downregulated and the 
reduction of BDNF gene expression observed in the prefrontal cortex of SERT-/- rats was shown to be due, at least 
in part, to epigenetic changes affecting the promoter regions of exons IV and VI (Molteni et al., 2010). Therefore, 
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while pharmacological increase of serotonin through SSRIs leads to an increase in BDNF levels, genetic deletion of 
the SERT leads to likewise increased serotonin levels but decreased in BDNF levels.  

BDNF presents a complex gene structure; its regulation occurs at transcriptional, translational, and post-
translational levels. The human gene presents 11 different exons regulated by nine promoters (Pruunsild et al., 
2007), and the rodent gene consists of nine distinct exons with eight 5' untranslated exons and one protein-coding 
3' exon (Aid et al., 2007). The multiple BDNF exons generate a wide diversity of BDNF transcripts that differentially 
control BDNF protein expression in an activity-dependent and tissue-specific manner (Autry and Monteggia, 2012; 
Mercado et al., 2017; Miranda et al., 2019). The BDNF mature protein is subject to post-translational 
modifications. It is synthesized as its precursor preproBDNF in the endoplasmic reticulum (ER), where the pre-
domain is cleaved generating proBDNF; proBDNF is then transferred to the Golgi apparatus to be sorted into 
secretory vesicles (Lessmann et al., 2003). Extracellular or co-released endopeptidases are responsible for 
removing the pro-domain, which can happen in different stages following the secretion of the pro-protein 
(Leßmann and Brigadski, 2009). Interestingly, not only the mature form of BDNF has a cellular function. While 
mature BDNF has an affinity for the tropomyosin-related kinase receptor TrkB receptor promoting synaptic 
plasticity, proBDNF has a preference for the p75NTR receptor, which activates the pathway for cellular apoptosis 
(Teng et al., 2005).   

Different brain regions play a role in the physiopathology of depression, with the prefrontal cortex being 
one of them. It has been demonstrated that major depressive disorder, for example, is associated with structural 
and functional brain imaging changes, including reduced brain volume and activity in the PFC (Schulz and Arora, 
2015). These structural changes in depressed patients have been confirmed in post-mortem studies 
demonstrating a reduction in neurons and glial loss in the PFC, which is accompanied by a reduction in BDNF in 
this brain area (Duman and Monteggia, 2006; Krishnan and Nestler, 2008). In fact, the prefrontal cortex (PFC) is a 
well-known brain region responsible for processes such as cognitive, motivational, and emotional regulation 
(Heinz et al., 2005; Pitts et al., 2016). Interestingly, the prelimbic cortex (PrL), a subdivision of the medial prefrontal 
cortex (mPFC), primarily projects to limbic regions, including the nucleus accumbens and the basolateral amygdala 
showing not only a clear connection with the reward pathway, but also involvement with the regulation of 
behavioral responses to stress (Choi et al., 2012; Patel et al., 2019; Vertes, 2004).  

Given the reduced levels of BDNF in the PFC of SERT-/- rats (Calabrese et al., 2013; Molteni et al., 2010) 
and the role of BDNF in supporting neuronal plasticity that is particularly affected in depressive disorders (Miranda 
et al., 2019), we sought to investigate whether BDNF gene overexpression can rescue the anxiety- and depression-
like behavior of these rats. We selected the PrL as a target due to its connectivity with the reward pathway, which 
is affected in depression and other mood disorders (Nestler and Carlezon, 2006; Vertes, 2004). For gene 
overexpression, the BDNF exon IV was chosen because notably, this transcript is downregulated in the mPFC of 
SERT-/- rats (Calabrese et al., 2013). 

 
Material and Methods  
Animals 
SERT-/- rats (Slc6a41Hubr) were generated by N-ethyl-N-nitrosourea (ENU)-induced mutagenesis on a Wistar 
background (Smits et al., 2006). SERT−/− rats were derived from crossing heterozygous 5-HT transporter knockout 
(SERT+/−) rats that were outcrossed for at least 15 generations with wild-type WistarCrI:WI rats obtained from Charles 
River Laboratories (Horst, the Netherlands). Ear punches were taken at the age of 21 days for genotyping, which 
was done by LGC (Hoddesdon, United Kingdom). SERT+/+ rats were used to check BDNF virus overexpression in 
naïve animals. For the behavioral experiments, due to breeding difficulties, we didn’t achieve the required number 
of SERT+/+ rats from the nests. Therefore, we used SERT−/− rats and wild-type WistarCrI:WI rats (WT rats) from Charles 
River (Horst, the Netherlands) as behavioral wild-type controls (see experimental design in figure 1). All animals 
were housed in temperature-controlled rooms (21 °C) with standard 12/12-h day/night-cycle (lights on at 7:00 
am) and food and water available ad libitum. 5-7 days before surgery, animals were socially housed in individually 
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ventilated (IVC) cages for habituation. After surgery, animals were separately housed in the IVC cages until the 
end of the sucrose preference test, thereafter the animals we socially housed again and kept under the same 
temperature and day/night-cycle throughout the entire experiment. All experiments were approved by the 
Committee for Animal Experiments of the Radboud University Nijmegen Medical Centre, Nijmegen, the 
Netherlands, and all efforts were made to minimize animal suffering and to reduce the number of animals used. 
  

 
Figure 1. Schematic representation of the experimental design. A) Evaluation of BDNF overexpression in naïve SERT +/+ rats one and two weeks 
following viral infusion. B) Behavioral tests: Viral infusion followed by behavioral tests including sucrose consumption test, HPA-axis reactivity, 
open field, and forced swim test (FST). C) Representation of the local o the infusion of either BDNF or control virus. 
 
Stereotaxic Surgery 
Rats were anesthetized using isoflurane (5% induction, 2-3% maintenance). Lidocaine (10% m/v) was used for local 
anesthesia. Animals were fixed in a robot stereotaxic frame (StereoDrive, Neurostar, Germany). The coordinates 
for the site of the injection were theoretically determined based on the Paxinos & Watson (2007) rat brain atlas 
and checked through histological evaluation of 30 µm brain slices from dye-infused SERT+/+ rats. The total volume 
of 1μL of either BDNF lentivirus particles (transcript variant IV under CMV promoter, NM_001270633.1) or pLenti-
C-mGFP control lentivirus particles, was bilaterally infused into the prelimbic cortex according to the following 
coordinates: AP +3.0 mm, ML ±0.6 mm, DV -3.0 mm. After surgery, animals were placed in IVC cages (Sealsafe Plus 
GR900 green line, Tecniplast, Italy) until sacrifice.  

 
RNA Preparation And Gene Expression Analysis By Quantitative Real-Time PC 
Total RNA was isolated from the prelimbic and infralimbic region of the mPFC by single-step guanidinium 
isothiocyanate/phenol extraction using PureZol RNA isolation reagent (Bio-Rad Laboratories; Segrate, Italy), 
according to the manufacturer’s instructions, and then quantified by spectrophotometric analysis 
(NanoDrop™1000, Thermo Scientific). Following total RNA extraction, an aliquot of each sample was treated with 
DNase to avoid DNA contamination. Then, the samples were processed for real-time PCR to assess total BDNF, 
BDNF isoform IV, and VI. The analyses were performed by TaqMan qRT–PCR instrument (CFX384 real-time system, 
Bio-Rad Laboratories S.r.l.) using the iScript one-step RT–PCR kit for probes (Bio-Rad Laboratories). Samples were 
run in 384-well formats in triplicates as multiplexed reactions with a normalizing internal control (36B4). Thermal 
cycling was initiated with incubation at 50°C for 10 min (RNA retrotranscription), and then at 95°C for 5 min 
(TaqMan polymerase activation). After this initial step, 39 cycles of PCR were performed. Each PCR cycle consisted 
of heating the samples at 95°C for 10 s to enable the melting process and then for 30 s at 60°C for the annealing 
and extension reactions. Data were analyzed with the comparative threshold cycle (ΔΔCt) method using 36B4 as 
a reference gene. Primers and probe for BDNF exon IV and VI were purchased from Life technologies (BDNF exon 
IV: ID EF125679 and BDNF exon VI: ID EF125680). Primers and probe for total BDNF and 36B4 were purchased 
from Eurofins MWG-Operon. Their sequences are shown below: 
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- total BDNF: forward primer 5′-AAGTCTGCATTACATTCCTCGA-3′, reverse primer 5′-
GTTTTCTGAAAGAGGGACAGTTTAT-3′, probe 5′-TGTGGTTTGTTGCCGTTGCCAAG-3′; 

-   36B4: forward primer 5′-TTCCCACTGGCTGAAAAGGT-3′, reverse primer 5′-CGCAGCCGCAAATGC-3′, 
probe 5′-AAGGCCTTCCTGGCC GATCCATC-3′. 

 
Behavioral tests: 
Sucrose Consumption Test  
After stereotaxic surgery, animals were housed individually and provided with two bottles of water for a 5 days 
habituation period in which side preference was checked. The sucrose consumption test was adapted from Olivier 
et al. (2008) and consisted of two days of free-choice access to 24 hours sucrose versus water bottles with a water-
only bottle choice in between the two days. In detail, on test-day 1, one of the water bottles was replaced by 
sucrose 8% solution, and animals had free drinking access for 24 hours. Next, animals received water in both 
bottles for 24 hours, ending with another 24 hours of free choice between water and sucrose 8% solution on test 
day 2. The position of the bottles was switched from sucrose consumption test day 1 to the test day 2 to prevent 
spatial bias. Daily, liquid intake and bodyweight were measured. The data are presented as the preference of 
sucrose above water (sucrose intake in ml divided by total intake X 100%) and the intake in grams of a 100% 
sucrose solution per kg bodyweight (intake in ml corrected for the voluminal weight of sucrose and recalculated 
toward a 100% solution divided by bodyweight in kg).  

 
HPA-axis reactivity Test 
HPA-axis reactivity was assessed through the measurement of corticosterone levels in the plasma. Usually, when 
rodents are submitted to stress, plasma concentrations of corticosterone (CORT) peak after 15 to 30 minutes and 
gradually decrease 60 to 90 minutes later to the pre-stress levels (de Kloet et al., 2005). Therefore, blood samples 
from tail cuts were collected in capillary blood collection tubes (Microvette® CB 300 Di-Kalium-EDTA, Sarstedt, 
Germany) 5 minutes before, and 15 and 60 minutes after 30 minutes of restraint stress. Rodent restrainers 
Broome-style were used for the restraint stress (554‐BSRR, Bio-services, The Netherlands). Blood samples were 
centrifuged (3400 rpm for 15 min at 4 ◦C), and the plasma was stored at -80 ◦C until analysis. CORT levels were 
measured using a radioimmunoassay (RIA) kit according to the manufacturer protocol (ImmuChemTM Double 
Antibody Corticosterone 125I RIA, MP Biomedicals, USA).  

 
Open field test 
Novelty-induced locomotor activity was recorded by video recording in Phenotyper® cages (Noldus Information 
Technology, Wageningen, The Netherlands). The cages (45 cm × 45 cm × 45 cm) were made of transparent Perspex 
walls and a black floor. Each cage had a top unit containing a built-in digital infrared-sensitive video camera, 
infrared lighting sources, and hardware needed for video recording. To explore the novelty factor, animals were 
not exposed to this cage previously and the cages were cleaned with 70% alcohol solution between trials to 
prevent transmission of olfactory cues. Spontaneous locomotor activity was monitored for 1 hour, and the 
following parameters were scored using Ethovision XT 11.5 (Noldus Information Technology, Wageningen, 
Netherlands): distance moved, velocity, frequency and time spent in the center of the cage (Manfré et al., 2017; 
Schipper et al., 2011a).  

 
Forced Swim test 
The forced swimming test was performed as previously described (Porsolt et al., 1978). Briefly, rats were 
individually placed in cylindrical glass tanks (50 cm height, 20 cm diameter) filled to a height of 30 cm with 23±1°C 
water. The test consisted of two sessions. In the first session, animals were submitted to a habituation period of 
15 minutes, then 24 hours later, to a second session of 5 min. The video recordings of the second session were 
used to automatically score the movements of the rats through a computerized system (Ethovision XT 10, Noldus, 
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The Netherlands). Scored behaviors were ‘immobility’, which reflects no movement at all and/or minor 
movements necessary to keep the nose above the water; ‘mobility’, indicating movement that corresponds to 
swimming activity; and ‘strong mobility’, reflecting ‘escape behavior’ (e.g., climbing against the walls and diving). 
Settings within Ethovision were adjusted based on manually recorded sessions (immobility/mobility threshold: 12; 
mobility/strong mobility threshold: 16.5 (Boulle et al., 2016; Van den Hove et al., 2013).  

  
Statistical Analysis 
The data were checked for outliers and normality (using the Shapiro–Wilk statistic), and extreme outliers were 
windsorized. Two-way analysis of variance (ANOVA) was computed for gene expression analysis, with time, 
genotype, and treatment as independent factors. The outcomes of SPT, Novelty-induced locomotor activity, FST, 
and post-behavioral gene expression were also analyzed through Two-way ANOVA considering genotype and 
treatment as fixed factors. Post-hoc Fisher Protected Least Significant Difference (PLSD) or independent sample t-
tests were performed where applicable to compare individual group differences. All these statistical analyses were 
carried out using IBM® SPSS® statistics, version 23 (IBM software, USA). Regarding the HPA-axis reactivity test, a 
linear mixed model was implemented to account for repeated measurements, and multiple factor analysis using 
the LME4 package in R (3.5.1). Time, genotype, and treatment effects were modeled as a fixed effect, together 
with their pairwise double interactions, and their triple interactions. Subject intercepts were modeled as random 
effects. A likelihood-test ratio was used to assess fixed effect significance. Post-hoc tests were performed with the 
multicomp package, which accounts for multiple hypothesis testing. Significance was accepted at a p<0.05 
threshold. Descriptive statistics are provided as mean +/- 1 standard error of the mean (SEM).  
 
 

Results 
Upregulation of Total BDNF mRNA in naïve SERT+/+ rats following prelimbic BDNF lentivirus infusion  
Feasibility of BDNF expression and its temporal dynamics was separately examined in a group of naïve SERT+/+ rats. 
mRNA levels were evaluated one and two weeks following BDNF or GFP lentivirus infusion in the prelimbic (PrL) 
cortex of naïve SERT+/+ rats. RT-qPCR was performed to measure total BDNF mRNA overexpression in the prelimbic 
(PrL) and in in the neighboring mPFC area infralimbic (IL). Two-way ANOVA revealed a significant main effect for 
treatment in the PrL (F(1, 18) = 13.790, p = 0.002). PLSD post-hoc analysis revealed BDNF overexpression in the site 
of the injection (PrL) with significant total BDNF mRNA increased in the BDNF treated animals compared to the 
control GFP treated rats both one week (p = 0.038) and two weeks (p = 0.002) after surgery. Interestingly, while 
in the PrL, no time point differences were identified among control GFP treated rats, the IL samples presented a 
sharp rise (72.47 %, SD = 26.41) in BDNF levels in control-treated animals (p = 0.01). As shown in figure 2, this 
increase led to significantly higher BDNF levels in the IL than in the PL (p < 0.001). We concluded that BDNF 
overexpression was stable for at least 14 days, specifically in the PrL. 
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Figure 1.  Modulation of total BDNF expression in SERT +/+ animals infused with either GFP control or BDNF viral particles at 1 week and 2 weeks 
after stereotaxic surgery. Total BDNF mRNA levels were measured in the prelimbic cortex and infralimbic cortex. Data are expressed as fold 
change compared to the GFP-treated animals (set at 100%), and reflect mean ±SEM from 4-6 independent determinations. * = p < 0.05 vs GFP-
7 days; ## = p < 0.01 vs GFP-14 days; +++ = p < 0.001 IL vs PrL (GFP-14 days). 

 

Sucrose Consumption Test (SCT) 
Anhedonia is marked by a reduced interest in pleasurable events, and it is present in depression. This depression-
like symptom can be identified in rodents through a decrease in sucrose consumption. Animals were exposed to 
two days of free access to sucrose 8% solution. The results of the sucrose intake in grams and the preference for 
sucrose above the water are described below.  

 
Sucrose Preference in SERT-/- rats is altered by BDNF overexpression  
On the first day of testing, no significant main effects were observed for sucrose preference. Pairwise comparisons, 
however, revealed that sucrose preference was significantly reduced in the SERT-/- rats treated with BDNF 
lentivirus compared to untreated SERT-/- (p = 0.05) and control WT rats (p = 0.018). At the second day of testing, 
two-way ANOVA analysis showed a genotype as well as a genotype versus treatment interaction (F(1, 40) = 4.738, 
p = 0.035 and F(1, 40) = 5.058, p = 0.030, respectively). As seen in figure 3, the post-hoc analysis further 
demonstrated that SERT-/- rats treated with BDNF presented a higher preference for sucrose than control-treated 
SERT-/- animals (p = 0.017). Additionally, control-treated SERT-/- animals displayed lower sucrose preference than 
the control WT rats (p = 0.002). Therefore, in summary, BDNF treatment in SERT-/- rats improved the preference 
for sucrose in the second day of the test.  

 
SERT-/- genotype rather than BDNF overexpression modulates the rat’s response to sucrose intake  
As for sucrose preference, two-way ANOVA did not reveal a significant main effect for sucrose intake in SERT-/- 
versus WT rats on the first day of the test. There were also no statistically significant differences in the amount of 
sucrose consumed among the groups (Figure 3). On the second day of testing, however, a main genotype effect 
was found for sucrose consumption (F(1, 42) = 16.789, p < 0.001). Moreover, post-hoc analysis showed that SERT-/- 
rats consumed significantly less sucrose than controls (p < 0.05) with no treatment differences. We concluded that 
as previously described (Olivier et al., 2008), the SERT-/- phenotype led to reduced sucrose consumption that was 
not rescued by the PrL BDNF transfection. 
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Figure 2. Sucrose consumption of 8% sucrose solution by SERT-/- and WT rats. Data are expressed as mean S.E.M. sucrose preference (sucrose 
intake/total fluid intake x 100%), and as mean S.E.M. total sucrose intake (g) per body weight (n = 10-12; * = p < 0.05 and ** = p < 0.01 vs WT-
GFP; & = p < 0.05 and && = p < 0.01 vs WT-BDNF; # = p < 0.05 vs SERT-/-GFP). 

 
BDNF overexpression did not modify SERT-/- rats anxiety-like pattern in the Forced Swim Test  
When rodents are exposed to an inescapable stressor such as in the forced swim test, their motivation to cope 
with stress can be quantified by the percentage of time spent on immobility (behavioral passivity) or performing 
a highly mobile (escape-like) behavior (Porsolt et al. 1977). We found a main genotype effect for immobility (F(1,42) 
= 7.827, p = 0.008). Unexpectedly, as figure 4 shows, immobility was decreased in both control- and BDNF-treated 
SERT -/- rats compared to WT rats (p = 0.017 and p = 0.027, respectively). Additionally, two-way ANOVA revealed 
a genotype main effect for high mobility (F(1, 42) = 8.278, p = 0.006). Particularly, post-hoc examination 
demonstrated that the time spent on high mobility swimming or escape behavior was significantly higher in SERT-

/- rats than in WT controls (vs. SERT-/- GFP p = 0.006, vs. SERT-/- BDNF p = 0.021). In summary, surprisingly, SERT-/- 
rats presented decreased immobility and increased escape behavior compared to WT animals.   
 

 
Figure 3. Mean (±SEM) measure of (A) immobility, (B) mobility, and (C) high mobility in the forced swim test. n = 10–12 rats per group. * p < 
0.05 and ** p < 0.01 vs WT GFP, & p <0.001 vs WT BDNF). Two-way ANOVA, Fisher LSD post-hoc test. 
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Novelty-induced locomotor activity is impaired in SERT-/- rats 
Rodents may present higher activity when they are introduced to a novel environment (Menzaghi et al., 1994). A 
decrease in central locomotion (frequency and time spent in the central part of the arena), together with a general 
decrease in the locomotion (distance moved and velocity) can be interpreted as an anxiogenic-like behavior (Prut 
and Belzung, 2003). In our experimental conditions, genotype played a role in the locomotor activity affecting 
distance moved (F(1, 42) = 40.708, p < 0.001), velocity (F(1, 42) = 41.559, p < 0.001), time spent in the center of the 
arena, as well as the frequency to which the animals accessed the center (F(1, 42) = 11.621, p = 0.001) and F(1, 42) = 
6.743, p < 0.013, respectively). No treatment effect was found for SERT-/- or WT rats exposed to the new 
environment. Further post-hoc investigation revealed that SERT-/- rats, independently of treatment, displayed a 
significant decrease in distance moved and velocity (p < 0.0001 for all SERT -/- vs WT rats comparisons); additionally, 
as it can be seen in figure 5, frequency and duration spent in the center of the arena were reduced in SERT-/- BNDF-
treated rats (frequency: vs WT GFP p = 0.04; duration: vs WT GFP p = 0.01) and in SERT-/- GFP treated rats 
(frequency: vs WT GFP p = 0.005; duration: vs WT GFP p < 0.001, vs WT BDNF p = 0.039). In brief, exposition to a 
novel environment caused an anxiety-like response in SERT-/- rats as expressed by decreased mobility and 
decreased access to the center.     

 
Figure 4. Novelty-induced locomotor activity expressed as mean (±SEM) measure of (A) distance moved, (B) velocity and (C) frequency and 
time spent in center. n = 10-12; * = p < 0.05, ** = p < 0.01, *** = p < 0.001 vs WT GFP; & = p < 0.05 and &&& = p < 0.001 vs WT BDNF. 

 

BDNF overexpression exclusively alters HPA-axis reactivity in WT animals.  

Acute restraint stress can activate the hypothalamic-pituitary-adrenal axis (HPA-axis), resulting in the release of 
CORT in rodents, which can be a measure of the (mal)functionality of the HPA-axis. The stress-induced increase in 
CORT levels relative to baseline was evaluated 15, 30, and 60 minutes after stress. A linear mixed-effect analysis 
indicated a triple interaction effect between treatment, genotype, and time (F(15,18) = 15.84, p = 0.001). A post-hoc 
analysis comparing groups pairwise per time point indicated a strong difference between BDNF vs. GFP transfected 
WT rats at the 15 min time point (p < 0.001) and between WT and SERT-/- rats in the GFP condition (p < 0.03). This 
difference indicates that BDNF overexpression in the PrL has the potential to reduce the HPA reactivity during the 
first phase of the response, although only in the WT group. Interestingly, CORT baseline levels were increased in 
BDNF-treated WT animals (t-test vs. WT GFP p = 0.003). At the 30 min time point, a difference between BDNF-
transfected WT and SERT-/- rats was also found (p < 0.001), indicative of an elevated CORT level in SERT rats relative 
to WT control. All but the WT BDNF group after 60 min still displayed CORT levels significantly elevated from 
baseline, indicative of a strong activation of the HPA-axis, with a trend toward return near baseline after 60 min. 
In summary, BDNF overexpression appeared to increase basal CORT levels and decrease the HPA reactivity in the 
WT group, whereas the SERT-/- rats were unaffected.    
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Figure 5. HPA-axis reactivity assessment. Corticosterone (CORT) levels are expressed mean ±1 standard error of the mean (SEM) of 
measurements from plasma samples obtained 5 minutes before restraint stress (baseline), and 15, 30, and 60 minutes post-restraint stress. n 
= 10-12; * = p < 0.05, *** = p < 0.001 vs WT GFP; && = p < 0.01 and &&& = p < 0.001 vs WT BDNF. Linear mixed model. 

 

BDNF overexpression was stable in WT animals after behavioral challenge  

To assess the BDNF expression induced by transfection in the behaviorally tested animals, rats were sacrificed 90 
minutes after the forced swim test. Overexpression of total, exon IV, and exon VI BDNF transcripts in the PrL and 
IL were evaluated through RT-qPCR. No main effects were found for total BDNF or BDNF exons IV and VI in the 
PrL. Pairwise comparisons were computed and, as it is demonstrated in figure 7, they revealed that WT rats treated 
with BDNF presented higher BDNF levels than GFP-treated SERT-/- rats (total BDNF: p = 0.04, BDNF IV: p = 0.039, 
and BDNF VI: p = 0.05), as well as higher BDNF levels than BDNF-treated SERT-/- rats (BDNF IV: p = 0.016, and BDNF 
VI: p = 0.015). 
In the IL, on the other hand, BDNF expression was decreased in both SERT-/- groups compared with both WT 
groups. As a result, a significant genotype main effect was observed for total BDNF (F(1, 17) = 22.365, p < 0.001), 
BDNF IV (F(1, 18) = 9.707, p = 0.006), and BDNF VI (F(1, 17) = 13.397, p = 0.002). Post-hoc testing demonstrated no 
treatment differences, but did reveal a significant BDNF downregulation of total, exon IV, and exon VI BNDF 
transcript levels in SERT-/- rats compared to WT rat controls (p < 0.05). In conclusion, we observed that BDNF 
overexpression in the PrL of WT animals remained even after the behavioral tests; moreover, in SERT-/- rats no 
changes were found in BDNF expression levels in the PrL area compared to WT rats, but we did find a decrease in 
BDNF expression in the IL.    
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Figure 6. BDNF expression of total, exon IV, and exon VI transcripts in SERT +/+ and SERT KO animals submitted to local infusion of either GFP 
control or BDNF viral particles followed by sequential behavioral challenges. Total BDNF, BDNF IV, and BDNF VI mRNA levels were measured 
in the prelimbic cortex and infralimbic cortex. Data are expressed as percentage change compared to the WT GFP-treated animals (set at 
100%), and reflect mean ±SEM from 4-6 independent determinations. * = p < 0.05 and ** = p < 0.01 vs WT GFP; & = p < 0.05 and && = p < 
0.01 vs WT BDNF.  

 

Discussion 
In this study, we have demonstrated that BDNF IV lentiviral infusion into the PrL induced overexpression of total 
BDNF in naïve SERT+/+ animals in a time- and brain region-dependent manner. Notably, we confirmed increased 
mRNA BDNF levels in the PrL of BDNF lentivirus treated SERT+/+ rats two weeks after the surgery, as well as an 
unexpected BDNF upregulation in the IL of control-treated animals. Moreover, BDNF overexpression caused 
different phenotypical outcomes depending on the behavioral task and the animal genotype. In WT animals, BDNF 
upregulation caused an alteration in the HPA-axis function following acute restraint stress, and in SERT-/- rats, it 
resulted in improvement of the anhedonia-like symptoms in the sucrose preference test. Whereas the stress 
coping behavior as measured in the forced swim test and locomotor activity were not affected by BDNF 
overexpression, rather, the SERT-/- genotype played a role in inducing anxiety-like phenotypes in these tests.  

During the sucrose consumption test, SERT-/- and WT rats were submitted to two sessions of 24 hours 
exposition to an 8% sucrose solution. In consequence, we observed that SERT-/- treated with control virus did not 
differ in sucrose preference from WT rats on the first day of testing, but presented decreased preference in the 
second day. This result is in line with our previous demonstration that preference for sucrose is negatively affected 
in SERT-/- animals (Olivier et al., 2008). The differences between the first and second day of sucrose preference 
seen in SERT-/- rats have been demonstrated before in studies using a mouse animal model presenting selective 
disruption of BDNF IV (BDNF-KIV mice) in which BDNF-KIV mice only exhibited significantly decreased sucrose 
preference in the second day of sucrose test (Sakata et al., 2010). Accordingly, SERT-/- rats treated with BDNF IV 
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lentivirus presented reduced sucrose preference in the first day, but increased preference in the second day when 
compared to control-treated SERT-/- and WT rats. Therefore, it is likely that BDNF IV overexpression in SERT-/- rats 
led to neophobia to a novel taste or an anxiety-like behavior upon the first exposure; while during the second 
exposure, when the animals were familiar with the new taste, the anhedonia-like behavior in SERT-/- animals was 
suppressed by the BDNF overexpression. Conclusively, possibly, overexpression of BDNF transcript IV in the PrL 
was responsible for rescuing the anhedonia-like behavior displayed by SERT-/- rats.  

Concerning the forced swim test, no BDNF treatment differences were found, but we did notice apparent 
genotype behavioral differences. In contrast to previous studies employing SERT-/- rats and mice, SERT-/- rats spent 
less, rather than more, time on immobility than WT animals (Lira et al., 2003; Olivier et al., 2008). In agreement 
with our current results, studies in other animal models presenting alterations in the BDNF system have also shown 
that subjects with decreased BDNF levels did not display higher immobility in the forced swim test compared to 
controls (Duman and Monteggia, 2006; Sakata et al., 2010). In our experimental conditions, decreased immobility 
can be justified by the fact that SERT-/- rats spent proportionally more time on vigorously strong swimming (high 
mobility) than immobility compared to the WT animals. Several lines of research have hypothesized that this 
escape behavior essentially reveals an increased level of anxiety (Anyan and Amir, 2018). As mentioned before, 
SERT-/- animals have impaired BDNF expression as well as reduced expression of its transcription factors such as 
Npas4. Both BDNF and Npas 4, are implicated in the establishment of the GABAergic system. The GABAergic 
system communicates with other neurotransmitter networks, and its downregulation can lead to an anxiety-like 
behavioral outcome (Lydiard, 2003; Millan, 2003). Correspondingly, SERT-/- rats present changes in the functioning 
of the GABAergic system (Calabrese et al., 2013; Luoni et al., 2013; Miceli et al., 2017; Schipper et al., 2019). 
Therefore, likely, reduced levels of GABA in these animals could contribute to an anxiety-like response upon 
behavioral challenges such as the forced swim test. 

In the novelty-induced locomotor activity test, the SERT-/- rats presented decreased locomotor activity in 
a novel environment compared to the WT animals. This decrease indicates that the reduced immobility and 
increased high mobility observed in SERT-/- rats in the forced swim test was not due to increased locomotor activity. 
Moreover, similarly to the forced swim test, the decreased locomotor activity seen in the SERT-/- rats contradicts 
previous studies using SERT-/- rats, which report no genotype differences between naïve SERT-/- and SERT+/+ rats in 
the novelty-induced locomotor activity test (Homberg et al. 2008; Schipper et al. 2011). However, in contrast to 
the findings in rats, studies in SERT-/- mice have shown that in an unfamiliar environment, SERT-/- mice displayed 
reduced locomotor activity and anxiety-like behavior similar to our results (Alexandre, 2006; Kalueff et al., 2007). 
Hence, the reduced distance moved, lower velocity, and especially the decreased time and frequency in the center 
of the arena might be a reflection of the overall increased anxiety-like behavior displayed by SERT-/- rats which 
have also been described in SERT-/- mice (Olivier et al., 2008).   

We further evaluated the HPA-axis activity to assess the effects of BDNF overexpression in SERT-/- and 
WT rats. Our results revealed that basal levels of CORT were not altered in SERT-/- rats compared to control-treated 
WT rats. Conversely, we found that BDNF upregulation in WT rats generated increased basal levels of CORT in this 
group when compared to control WT animals. Moreover, after acute restraint stress, WT rats treated with BDNF 
presented similar HPA-axis response to the SERT-/- animals, namely a decreased elevation in CORT levels compared 
to control-treated WT rats. Therefore, these results show that BDNF upregulation altered the HPA-axis function in 
WT rats with no effects in SERT-/- animals. Concerning the HPA-axis disturbances seen in WT rats overexpressing 
BDNF, likely basal HPA-axis hyperactivity and decreased response to stress might have been facilitated by a 
discrepancy between the rate of mature BDNF (mBDNF) protein to its precursor proBDNF, favoring the later one. 
This imbalance in the proBDNF/mBDNF was confirmed before in a study showing that BDNF overexpression can 
lead to an increase in the release of uncleaved proBDNF (Leßmann and Brigadski, 2009). While mBDNF supports 
plasticity through its high affinity for the TrkB receptor, proBDNF has an affinity for the p75NTR receptor, which 
mediates apoptotic signaling leading to neuronal death (Woo et al. 2005; Leßmann and Brigadski 2009). Although 
both HPA hyperactivity and increased proBDNF are present in depressive disorders (Bai et al. 2016; Zhou et al. 
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2013; Arborelius et al. 1999; Nestler et al. 2002; Pariante and Lightman 2008; van Bodegom, Homberg, and 
Henckens 2017), the direct proof that the deleterious effects of proBDNF are the underlying cause to HPA-axis 
malfunction is still lacking. Yet another possibility we tend to support to explain the disruption in the HPA-axis 
reactivity in WT rats overexpressing BDNF is that the gene upregulation led to exceeding levels of the mature form 
of the BDNF protein. Accordingly, the exceeding mBDNF in the PrL would preferentially inhibit CORT production 
at the amygdala level, shortening the HPA-axis response loop, resulting in decreased CORT release upon stress in 
comparison to control animals. The PFC, which is one of the key regions in the control of the HPA-axis, presents 
inhibitory connections with the amygdala and PVN (van Bodegom et al., 2017), and it has been demonstrated that 
when BDNF is overexpressed in the PFC, it can undergo anterograde transport and cause BDNF overexpression in 
the amygdala (McGinty et al., 2010). BDNF, especially exon IV, is known for its critical role in GABAergic 
transmission (Sakata et al., 2009). Brivio et al. (2020) showed that acute restraint stress increased PFC levels of 
total and BDNF exon IV in Sprague Dawley rats specially 1 hour following the acute stress. Total BDNF levels were 
also increased in the PFC following acute swim stress (Brivio et al., 2019). Therefore, acute restraint stress may 
have caused activity-dependent upregulation of BDNF (Leßmann and Brigadski, 2009), leading to enhancement in 
the GABAergic inhibitory control in the amygdala, and consequently, increased negative feedback to the HPA-axis 
system (Barry et al., 2017; Liu et al., 2014; Zhang et al., 2018).   

In conformity, because BDNF IV, the transcript chosen to be upregulated in the present study, is activity-
dependently released (Leßmann and Brigadski, 2009), we also evaluated the BDNF mRNA levels in the PrL and IL 
of the animals submitted to behavioral testing. Considering the intricate control over the BDNF gene, in which 
different isoforms are generated by distinct promoters (Aid et al., 2007), and giving that different stimuli can 
influence the isoforms response and cellular location, we focused not only on total mRNA but also BDNF exon IV 
and VI transcripts. These transcripts are involved in depressive- or anxiety-like behavior and are known to be 
downregulated in SERT-/- rats (Molteni et al., 2010; Sakata et al., 2010). As a result, in the PrL, we did observe that 
WT rats receiving BDNF lentivirus presented a higher BDNF expression than the WT control group and SERT-/- rats. 
However, when compared to the control WT group, this overexpression was not statistically significant. 
Furthermore, we did not observe any differences in the level of all analyzed BDNF transcripts when comparing 
both SERT-/- groups to control WT rats. This finding indicates that BDNF overexpression did not change levels of 
BDNF in SERT-/- rats compared to both control-treated SERT-/- and WT rats. However, taking into consideration that 
the gene expression analysis was conducted after the behavioral testing, possibly the viral transfection in the PrL 
was not stable after exposing the animals to behavior challenges. Additionally, we noticed that when comparing 
control-treated SERT-/- and WT no differences in BDNF levels were found in the PrL. Conversely, in the IL, a 
remarkable downregulation in total BDNF, BDNF IV and BDNF VI was seen in the SERT-/- animals in comparison to 
WT controls. The observation that mRNA BDNF levels were unchanged in SERT-/- even after viral upregulation may 
help to understand the mechanisms behind the outcomes seen in the behavioral tests. For instance, we have 
demonstrated that SERT-/- rats displayed anxiety-like behavior, presenting higher activity in the forced swim test, 
less activity in the novelty-induced locomotor activity, and altered HPA-axis response upon restraint acute stress. 
A possible explanation for the overall anxiety-like behavior in SERT-/- rats may be based on the complex control 
the BDNF gene can undergo. For example, previous research showed that transcription factors that regulate the 
BNDF transcription, such as CREB, Arnt2, CaRF, NFkB, and Npas4, are significantly downregulated in SERT KO rats. 
Changes in Npas4 are directly correlated with decreased BDNF exons I and IV, bringing about the hypothesis that 
behavioral outcomes related to SERT knockout and BDNF downregulation in the SERT-/- rats might be, at least in 
part, also attributed to Npas4 downregulation (Guidotti et al., 2012). Therefore, it is appropriate to infer that 
overexpression of exogenous BDNF IV transcript in the PrL was affected by the downregulation of endogenous 
transcription factors in the SERT-/- rats. Thus, despite gene overexpression, BDNF protein levels may not have 
changed in the SERT-/- rats, explaining the lack of behavioral changes upon BDNF overexpression in these animals 
and its general anxiety-like behavior. On the other hand, this hypothesis does not justify the results observed in 
the sucrose preference test, where we revealed melioration in the anhedonia-like symptoms of SERT-/- rats treated 
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with BDNF lentivirus. Therefore, because in the present study we did not investigate the levels of BDNF protein in 
the PrL, possibly other molecular mechanisms might be involved in the BDNF gene regulation concerning the 
anhedonia-like behavior.  

In conclusion, we have shown that BDNF overexpression in the PrL, in general, did not rescue SERT-/- from 
its depression- and anxiety-like behavior, as demonstrated by the decreased sucrose intake, reduced locomotor 
activity, and increased high mobility in the forced swim test compared to controls. However, in the sucrose 
preference test, SERT-/- rats treated with BDNF IV lentivirus presented a higher preference for sucrose (that is a 
reduction in anhedonia-like behavior) than control SERT-/- animals. Furthermore, BDNF upregulation in WT rats 
specifically promoted alteration in the HPA-axis activity of WT rats, resulting in increased basal levels of CORT and 
making these rats respond similarly to the SERT-/- rats upon restraint stress. 

This study, however, presented several limitations. For example, the overexpression of an individual 
transcript variant, namely BDNF IV, in the PrL may have resulted in activation and reinforcement of particular 
neural networks. These networks could mainly cause HPA-axis alterations in WT animals and reduction of 
anhedonia-like behavior in SERT-/- rats, without affecting other relevant neuronal circuits involved in the behavioral 
challenges the animals were submitted. Moreover, although our SERT+/+ and SERT-/- have a Wistar background, 
the outcrossing may not eliminate all additional induced mutations. Therefore, the use of commercial wild type 
Wistar rats as controls may pose a disadvantage when relating to our previous findings. Nevertheless, the stability 
of the SERT-/- phenotype across studies, generations, and laboratories have shown that this animal model is a 
useful tool for studying the effects of life-time increased extracellular serotonin and downregulated BDNF levels 
(Homberg et al., 2014; Olivier et al., 2010).  

Despite the progress in the understanding of the biological effects of BDNF, important aspects of the 
BDNF gene regulation, as well as the spatiotemporal release and the precise sites of the BDNF action are still poorly 
understood, especially in the prefrontal cortex (Sakata et al., 2009). Different stimuli seem to differently regulate 
the transcription of BDNF in specific brain areas adding complexity to the study of the mechanisms behind the 
effects of BDNF (Adachi, 2014; Baj et al., 2011; Govindarajan et al., 2006; Maynard et al., 2016). The neurotrophic 
hypothesis of depression was developed based on the observation that stress, anxiety, and depression are 
accompanied by decreased levels of BDNF, and that several treatments used for such disorders also increase BDNF 
levels (Duman and Monteggia, 2006). Since vulnerability to depression can be attributed to poor neuronal 
plasticity (McClung and Nestler, 2008) and underlying neurobiological processes might be associated with BDNF 
levels, it is likely that changes in BDNF may contribute to an improvement of behavioral symptoms in depressive 
individuals. Furthermore, taking into account that some of the current first-line treatments for depression 
targeting the serotoninergic system have failed to work consistently in all patients (Cuijpers, 2017), BDNF is placed 
as an important candidate for therapeutic modulation in mood disorders in humans. From this perspective, since 
our study has shown that therapeutic approaches aiming BDNF overexpression may need to be specific to promote 
symptoms attenuation, it is essential to elucidate further the relevance of the BDNF downregulation found in the 
PFC or other brain areas of SERT-/- rats as regarding to the neuropathology of depression.   
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