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Abstract

We present an analysis of the coronavirus RNA genome via a study of its Fourier spectral density
based on a binary representation of the nucleotide sequence. We find that at low frequencies,
the power spectrum presents a small and distinct departure from the behavior expected from an
uncorrelated sequence. We provide a couple of simple models to characterize such deviations.
Away from a small low-frequency domain, the spectrum presents largely stochastic fluctuations
about fixed values which vary inversely with the genome size generally. It exhibits no other peaks
apart from those associated with triplet codon usage. We uncover an interesting, new scaling law for
the coronavirus genome: the complexity of the genome scales linearly with the power-law exponent
that characterizes the enveloping curve of the low-frequency domain of the spectral density.
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1 Introduction

Motivated by our search for deeper organizational principles governing genetic information 1, the
study of a DNA/RNA genome via its Fourier spectral density has given us several interesting
insights into the code of life. An example of a seminal paper in this subject is that of Voss in [2]
where the author found that the spectral density of the genome of many different species follows a
power law of the form 1/kβ in the low-frequency domain, with the exponent β potentially related to
the organism’s evolutionary category. In [2], β was found to be close to 1, a phenomenon shared by a
wide variety of physical systems especially those that carry long-range correlations or characterized
by a myriad of length scales. It was also found that the power spectra may contain defining peaks
or resonances, for example at period 9 for primates, vertebrates and invertebrates, or period 10-11
for yeast, bacteria and archaea as shown in [3] where the peaks were remarkably related to aspects
of protein structuring and folding. Over the years, these methods and results have been extended
in various ways [4], such as wavelet-type analysis [5, 6, 7] of the sequences, using features of the
spectra to classify and cluster genomes with the aid of neural networks [8], prediction of coding
regions [9] and periodic structures [10], etc.

In this paper, we study the Fourier spectral density of the genome of coronaviruses — a positive-
sense single-stranded RNA genome with size ranging from roughly 26 to 32 kilobases, based on the
dataset of [11] which covers all four genera of coronaviruses. In addition, motivated by the recent
COVID-19 pandemic, we include the genomes of SARS-CoV-2, a bat coronavirus Bat-RaTG13 of
close genome identity, and the MERS coronavirus.

Across the 30 different genome sequences, we find that their Fourier spectra take on the same
form. There is a low frequency domain (k . 10 in units of inverse genome length) where a
sinc-squared-like oscillatory form is enveloped by a roughly 1/k2 decay curve. This is followed
by stochastic white-noise type fluctuations about fixed mean values which tend to vary inversely
with the genome size. We find that a random, uncorrelated sequence — with the probability of

1See for example [1] for an inspiring read.
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occurrence for each nucleotide being its frequency ratio in the sequence — yields similar behavior
in the low-frequency domain. We develop a few models to characterize the typical spectrum, and in
the process stumble upon a linear scaling law between a measure of the complexity of each genome
and the power-law exponent that describes the enveloping curve of the low-frequency domain. The
complexity measure that we use here is intimately related to the Shannon entropy of the sequence,
and thus this relation concretely realizes a way by which information-theoretic content is carried
within the genome’s spectral density.

Now, power-law decay of the form 1/kα have previously been discussed in literature for other
types of genomes (see for example [12, 13]). We would like to emphasize that here, we do not employ
either the Fast Fourier Transform or non-overlapping averaging procedures to smoothen the data
in the low-frequency domain. These are common techniques used for easing computations in past
related works, but may compromise the sensitivity by which we characterize the spectral curves.
We also perform the spectral density analysis at the level of the coding region (a few thousand
nucleotides) for the Spike protein, an essential protein that binds to the host cell’s receptor. We
find that interestingly, the general features of the spectrum persist at the protein level, but not the
scaling law mentioned above.

Our paper is organized as follows. In Section 2, we present some background theory for our
work, followed by Section 3 where we present the results and a few graphical plots for visualization,
before concluding in Section 4. The Appendix A collects a table listing all the GenBank accession
numbers [14] of the genomes, and another gathers several graphs useful for interpreting our various
results.

2 Theoretical preliminaries

In this Section, we present some essential mathematical concepts that form the basis for our study.
Our analysis of the RNA genomes can only begin after transformation of the genome sequence
consisting of the four nucleotides (Adenine, Cytosine, Guanine and Uracil) into a numerical string.
The spectral density of interest here is the absolute square of the discrete Fourier transform of a
nucleotide indicator function φ(i) defined as follows

Sαβ(k) =
1

M2

M∑
l=1

M∑
j=1

φα(l)φβ(j)e
2πik
M

(l−j), (1)

where M denotes the length of the genome, and α, β denote particular choices of nucleotides. In
the continuum limit and after averaging over some distribution of genomes, this approaches the
Fourier transform of the correlation function

∫∞
−∞

∫∞
−∞ e2πik(x1−x2)〈φα(x1)φα(x2)〉dx1dx2.

Now, a basic premise lies in the choice of the indicator function φ(i). While various propositions
have been explored in the literature, in this paper, following [2], we use a simple binary-valued
model where for each nucleotide, φ(i) is equal to 1 if the nucleotide is found at position ‘i’ and
0 otherwise. For all our genome data, we find that (1) exhibits a clear specific oscillatory form
that resembles a sinc(-squared) function in the low-frequency domain (up to k ∼ 10). In the
following, we furnish a potential simple explanation of such low-frequency behavior. For simplicity
and definiteness, we will mainly focus on the spectral density sum

S(k) =
∑
α

Sαα(k) = SAA(k) + SCC(k) + SGG(k) + SUU (k), (2)
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for the rest of the paper, but we have checked that the general features described above pertain to
the cross-spectra Sαβ (with β 6= α) as well as the individual autocorrelations Sαα for all the four
nucleotides.

Apart from computing various quantities at the level of the entire RNA genome, we also examine
the spectral density associated with the coding region for the Spike protein. For the coronaviruses,
apart from the Spike protein, the genome encodes several proteins each carrying unique functions,
such as the envelope, membrane, nucleocapsid, etc. In particular, the Spike protein plays an
essential role in host cell receptor binding during the process of viral infection, and is thus a common
target for developments of antibodies and vaccines (see for example, [11]). Now the coding region
associated with this protein is only of the order of 103 nucleotides, so a priori it is not clear if the
spectral density can be meaningfully analyzed. We find however that the general features of the
spectral density persist for the Spike protein’s coding region too.

2.1 A reference curve: the uncorrelated background

Consider the case of an uncorrelated numerical sequence, where the probablity of a nucleotide of
type α occurring at some position is a constant, independent of others and the position itself. Given
Nα such nucleotides in the sequence, we can estimate this constant to be Nα

M , with the expectation
value of the spectral density being

S(uncorrelated)
αα (k) ∼ 1

M2

M∑
l=1

M∑
j=1

N2
α

M2
e

2πik
M

(l−j) =
N2
α

M4

sin2(πk)

sin2 πk
M

. (3)

We would find that up to k ∼ 10, (3) models the spectral density rather well. For the local maxima
of (3), they approximately occur at half-integer values of k and thus the upper envelope of the
oscillation is manifest as a 1/k2 decay function in this domain which follows from expanding (3)
about k = 0. The decaying behavior of the envelope curve typically stops at about k ∼ 30, and
thereafter the spectral density appears to be characterized by stochastic fluctuations about some
fixed mean.

Although (3) appears to model observed datasets well, the goodness of fit doesn’t extend beyond
the k ∼ 10 range, nor is it clear from the data whether deviations from (3) are unimportant random
fluctuations or otherwise within the low-frequency domain. To gain further insights, we present a
few simple models which characterize the observed deviations from (3). The models’ parameters
can potentially be used for clustering coronavirus genomes if future studies prove that these values
persist for a larger sets of data, or more interestingly, they could potentially demonstrate corre-
lation with other features of the genome that would help us recognize the presence of long-range
correlations. From now on, we refer to (3) as the ‘uncorrelated background’.

2.2 Three simple models

In the following, we present three models for the observed spectral density that characterize devia-
tions from the uncorrelated background. The first two concerns the description of the low-frequency
domain (k . 10) whereas the third involves a more global description.

(A) Power-law decay of the enveloping curve
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Motivated by previous works on this subject, we consider fitting a power-law decay via least-
square regression to the enveloping curve ( for k ∈ [1, 10] ) of the form

S(k) ∼ 1

kδ
, (4)

for some power exponent δ. The power-law description is convenient and has proven to be
a popularly studied model for spectral density of genomes in general (see for example [13]).
It is crucial to bear in mind that it is a coarse-grained description which doesn’t extend to
the origin, and valid only for the low-frequency domain. We would later find that this is the
parameter that remarkably scales linearly with a measure of the genome complexity. For all
our datasets, ε = δ − 2 ∼ 10−2. It is not a priori clear how large ε has to be in order for
the deviation to be significant, and more sequences corresponding to each type of coronavirus
should be studied in order to determine the range of ε and its statistical distribution. Although
we leave this for future work, we found evidence that the variation in the ε correlates with a
measure of the complexity of the genome (which at the limit of infinite genome size approaches
the Shannon entropy) in a way that is distinctly different from a completely random sequence.

It is useful to compute the expected δ for the hypothetical uncorrelated background (3) which
is parametrized by the genome size M and the sum of squares of nucleotide number

∑
αN

2
α.

For the general spectral density S(k), from least-square regression of the log-log relation, we
obtain ε ≡ 2− δ to be

ε[S] =
〈
(
log(k) log(S(k)k2)

)
〉 − 〈log(k)〉〈log(S(k)k2)〉

[〈(log(k))2〉 − 〈log(k)〉2]
, (5)

where 〈. . .〉 = 1
9

∑
k (. . .) denotes averaging over the nine local maxima points in the domain

k ∈ [1, 10]. For the uncorrelated case of (3), we find that the factor
∑

αN
2
α cancels away in

(5) and numerically, δ ≈ 1.956 for all the datasets at the level of the genome and that of the
protein coding region. This defines a background value for the detection of a deviation away
from the completely random sequence.

(B) Linearized correlation function

In contrast to an empirical power-law fitting of only the enveloping curve, one could adopt
a bottom-up approach by postulating certain forms of the correlation function, and then
performing the discrete Fourier transform. Consider the case where the correlation function
is a linear function of the nucleotide separation, we can write

S(k) =
R0

M2

M∑
j=1

M∑
l=1

(
1− κ |l − j|

M

)
e

2πik(l−j)
M (6)

for some constant κ, and R0 =
∑

α
N2
α

M2 . A straightforward calculation yields

S(k) =
R0

M2

(
sin2(πk)

sin2 πk
M

+ κ
cos(πk)

2M sin3 kπ
M

[
(M − 1) sin

kπ(M + 1)

M
+ (M + 1) sin

kπ(1−M)

M

])
.

(7)
This function is invariant under the reflection k ↔M−k, which is an exact discrete symmetry
for the spectral density S(k) (or the individual Sαα(k)) more generally. The parameter κ
admits the physical interpretation of the presence of long-range correlation/anti-correlation
depending on whether it’s positive/negative, and we would find that apart from one exception,
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all our datasets can be matched to a positive κ of the order 10−2. We find that if the curve-
fitting is performed taking into account only the first ten local maxima as in the case for
δ-parameter, the local minima points at integral k-values are not well captured by the fitted
curve, so we also include them in the curve-fitting.

Beyond the specific linear form of the correlation function postulated in (6), it is also repre-
sentative of a large class of correlation functions of the form

R0F

(
κ̃
|τ |
M

)
≈ R0

(
1 + ∂τ̃F (τ̃)|τ̃=0κ̃

|τ |
M

+O(τ̃2)

)
,

where τ ≡ l − j, κ̃ is a small constant and τ̃ = κ̃ |τ |M . This first-order truncation is identical to
(6) with F ′(0)κ̃ = κ. Thus, (6) could approximate correlation functions of the general form

F
(
κ̃ |τ |M

)
where κ̃ is a small dimensionless parameter, and

F (0) = 1, |F ′(0)|κ̃� 1, F ′(0)κ̃ < 0.

For example, if the correlation function turns out to be an exponentially decaying function of

the form e−
B|τ |
M with B � 1, then to a good approximation we can identify κ ∼ B.

(C) A Lorentzian function

The power-law decay in (A) parametrizes the decay of the envelope whereas the model in
(6) could account for non-vanishing local minima in the low-frequency domain. Beyond this
region, we seek an interpolating curve that extends throughout the spectrum including the
origin. For this purpose, we consider fitting a Lorentzian function of the following form to the
spectrum

L(k) = N
b2

k2 + b2
+m, (8)

where N =
∑
αN

2
α

M2 −m and m is the mean value near the spectrum’s midpoint, about which
stochastic fluctuations are observed.2 This is a simple coarse-grained model which averages
over the oscillations in the low-frequency domain and describes the overall decay of the spec-
trum via a smooth curve. Like the κ parameter in the model (6), the curve-fitting is performed
with the set of extremal points in the low-frequency domain, with the initial and final con-
ditions taken into account by first fixing N,m with their observed values for each genome
sequence. As a useful reference, we also fit the Lorentzian function to the uncorrelated back-
ground (3) and finding b2 ≈ 0.0765 with m ∼ 10−10 at the genome level, and m ∼ 10−8 at the
protein coding region level.

2.3 A measure of complexity and Shannon entropy

Scaling laws manifest in the Fourier spectral density have often motivated the study of features
of the genome that reflect various properties of it being a complex system, such as the fractal
dimension (of a suitably defined matrix representation of the correlation function), etc. A measure
of the complexity of the genome considered in the past literature (see for example [15, 16, 17]) is
defined as follows .

Ω =
1

M
log

(
M !

NA!NC !NG!NU !

)
, (9)

2We only consider half of the spectrum, since the other half naturally arises from the discrete symmetry S(k) =
S(M − k).
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where Nα is the number of the α-nucleotide. The logarithmic argument counts the number of
distinguishable permutations given a fixed number of each nucleotide. At large M , this admits a
natural interpretation of the Shannon entropy of the genome sequence. To see this, we can invoke
Stirling’s formula to express the large-M limit of Ω as

lim
M→∞

Ω = −
∑

α∈{A,C,G,U}

(
Nα

M

)
log

(
Nα

M

)
, (10)

which is a function of only the fractional distribution of nucleotides. In this form (10), the measure
of complexity Ω is clearly the Shannon entropy which measures the information entropy associated
with a genome sequence where the probability of nucleotide-α occurring in any position is Nα

M . We
would find later that interestingly, the model parameter δ (but not κ) scales linearly with Ω across
the dataset of 30 types of coronavirus genomes. Also, when restricted to the Spike protein’s level,
the measure of complexity appears to scale linearly with the overall measure at the genome level.
But the model parameter δ that is computed at the level of the Spike protein does not correlate
with Ω at either the genome/protein level, and neither does κ.

3 Results and graphs

Our genome dataset3 consisting of 30 types of coronaviruses spread across four genera mainly follows
from reference [11] plus a few other additions : SARS-CoV-2, MERS-CoV and Bat-RaTG13. Bat-
RaTG13 is a bat coronavirus that was most recently found to have 96% genome identity with
SARS-CoV-2 and featured in papers discussing a possible bat origin of the latter [18]. We included
it here to see how the model parameters for this genome compare to that of SARS-CoV-2 relative
to the other coronaviruses. In the following, we outline the essential results, using the example of
the SARS-CoV-2 reference genome for various graphical illustrations.

We find that the Fourier spectral density is characterized by the following features:

(a) In a small low-frequency regime (k . 10), the uncorrelated background (3) is a good approxi-
mation (see Fig. 1 ) for all genome sequences we examined. After curve-fitting to the datasets,
we find the following range of values for the model parameters:4

δw ∈ [1.935, 2.079], κw ∈ [−0.0056, 0.0583],
δs ∈ [1.744, 1.934], κs ∈ [0.0155, 0.0818]. (11)

From visual inspection of the relevant graphical plots, we find no obvious correlation among
these model parameters, nor between them and the genome/Spike protein sizes. But we find
that δw and Ωw appear to be related. Linear regression yields the following best-fit line (see
Fig. 2 )

Ωw ∼ α+ βδw, (12)

with the line parameters being (with the 95% confidence intervals in brackets)

α ≈ 2.28(2.14, 2.41), β ≈ −0.47(−0.53,−0.40), (13)

3We list their names and GenBank accession IDs of the genomes in the Appendix for reference.
4Whenever appropriate, we use the subscripts to label the level (w = whole genome, s = Spike protein) at which

various quantities are computed.
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Since we checked that for all the 30 coronaviruses, the assumption of a completely uncorrelated
background yields δ ≈ 1.956, this leads to a convenient definition of a reference complexity
value

Ωu ≈ 1.361,

which lies at the intersection between the uncorrelated vertical line and the observed one with
finite slope. The difference between the observed complexity measure and Ωu in turn enacts a
measure of the deviation from complete randomness of the sequence.

There is also a similar relation between δw and Ωs, consistent with the following linear relation
that we found:

Ωw = CΩs, C ≈ 1.004(1.003, 1.006).

It would be interesting to study this for other coding and non-coding regions as it is suggestive
of some level of self-similarity for this complexity measure.

2 4 6 8 10
k0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Power Spectrum

Figure 1: Plot of the power spectral density (SARS-CoV-2 genome) in the range where we perform
the curve-fitting. The black dashed line is the curve ∼ 1/kδ, δ = 1.968 obtained from the set of local
maxima, while the red dashed line is equation (7) obtained by fitting to all maxima and minima,
with the best-fit value κ = 0.0362.

(b) After k ∼ 10, the genome displays much more scatter about the uncorrelated background, and
the models of deviation are no longer effective descriptions (see Fig. 3). Stochastic fluctuations
about a fixed mean appear to set in and there are no isolated peaks apart from two prominent
ones at k ∼ M

3 ,
2M
3 which have been seen and interpreted in past literature [2, 19] to correspond

to the universal triplet codon usage. We applied an (overlapping) moving average (of window
size ∼ 100 nucleotides) to smooth out the data, and checked that there is no apparent regime
where some non-trivial scaling law holds (see Fig. 4 and 5).

At the level of both the genome and protein coding region, the fixed mean parameter m
appears to correlate with the genome size. It appears to generally decrease with the size of
the sequence,at both levels of the genome and the Spike protein (see Figures 6a and 6b ) in
Appendix B). At the genome level, it is of the order ∼ 10−5 which is about 105 larger than the
value expected for the uncorrelated background, whereas at the spike protein level, m ∼ 10−4

which is 104 times larger than the uncorrelated background. The Lorentzian function that is
fitted to the data with initial and final conditions fixed by R0 and m is parametrized by the
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1.90 1.95 2.00 2.05 2.10 2.15
δW1.25

1.30

1.35

1.40

ΩW

Figure 2: Plot showing linear regression fit for (δw,Ωw) parameters. In the absence of any cor-
relation, we would instead observe a vertical line at δw = 1.956 — the value that corresponds to
(3).

10 20 30 40 50
k0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030
Power Spectrum

Figure 3: Plot of the spectral density (SARS-CoV-2 genome) showing how after about k = 10, the
data points appear to be noisy and such stochastic fluctuations appear to persist throughout apart
from a couple of isolated peaks. Neither the envelope curve of 1/kδ nor equation (7) continue to
be effective descriptions.

half-width parameter b. We find that this parameter generally increases with κ at both genome
and Spike protein levels (see Figures 7a and 7b in Appendix B).

(c) Finally, although for simplicity, we have kept to analyzing the spectral density corresponding
to the sum of all the nucleotides, the general qualitative features described in (a) and (b) above
apply to the spectral density for each individual nucleotide as well as the cross-spectra.
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2000 4000 6000 8000 10000 12000 14000
k

0.00002

0.00004

0.00006

0.00008

0.00010

Power Spectrum

Figure 4: The smoothened data presents a stochastic fluctuation about a fixed mean ∼ 2×10−5 and
there is only an isolated peak at M/3 due to the triplet codon-usage. Only half of the spectrum is
shown here since the other half is a reflection of it due to the discrete symmetry S(k)↔ S(M − k)
the spectrum as mentioned in Section 2.

5000 10000 15000 20000 25000 30000
k

0.002

0.004

0.006

0.008

0.010

0.012

Power Spectrum

Figure 5: Plot of the Fourier spectral density (SARS-CoV-2 genome) which is mostly featureless
with noise apart from prominent peaks at M

3 ,
2M
3 which correspond to triplet-codon usage.

4 Discussion

We have presented a study of the Fourier spectral density of the coronavirus genome at the level of
the entire genome as well as the coding region for the Spike protein. The power spectrum profile
can be well-described by considering aspects of deviation from the hypothetical case of a random,
uncorrelated sequence (eqn. (3) ). We summarize the essential general features below:
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(i) There is a low-frequency domain (k . 10) which exhibits a clear oscillatory form that is close
to (3). In this domain, we find that the enveloping curve connecting the local maxima is
well-described by a power decay law of the form 1/kδ. We noted that the power exponent δ
shows a correlation with a measure of complexity of the sequence (eqn. (9)) which in the limit
of large genome size is the sequence’s Shannon entropy. The deviation from the uncorrelated
background can be described by a linear relation between δ and Ω. This behavior does not
however persist at the level of the Spike protein’s coding region.

(ii) Beyond the low-frequency domain, the spectrum displays stochastic fluctuations about certain
fixed values m, and we find no other resonances apart from the peaks at M

3 ,
2M
3 which are

associated with the universal triplet codon usage. Relative to the uncorrelated case, m is
about 105 higher at the genome level and about 104 higher at the Spike protein level. It also
generally decreases with the size of the genome or the protein coding region.

(iii) Upon fitting the Lorentzian function to the spectrum with initial and final conditions de-
termined by R0 and m respectively, we find that its half-width parameter is correlated with
κ — the dimensionless constant that defines the linearized correlation function in the low-
frequency domain, and generally increases with it. This is observed at both the genome and
Spike protein’s levels.

Let us conclude by briefly pointing out several future directions and applications. Now, it has been
noted in literature for some time that DNA viruses and unicellular organisms tend to have mutation
rates which vary inversely with the genome size (‘Drake’s rule’ [20, 21, 22]). This correlation
has been studied for RNA viruses recently (see for example [23]) although we are unaware of
any evidence for the case of coronaviruses5 which is the only RNA virus family which has a 3’-
exonuclease proofreading mechanism that enhances replication fidelity. The parameter m that we
have introduced here appears to vary inversely with genome size, and thus it may be worthwhile
to explore its role in models that attempts to explain viral mutation rates. In [25], a negative
association between molecular evolution rate and genome size was established for RNA viruses. It
would be interesting to compute the parameterm for the viral sequences studied in [25, 26]. Another
potential application of our work which has immediate relevance is to study the distribution of m
for SARS-CoV-2 genomes specifically to explore if they could describe current evolution of the virus
(see for example [27]).

The Lorentzian function that we fit broadly to the spectrum as a whole is a coarse-grained
description that does not model the transition from the low-frequency spectrum to the other part
of the spectrum that appears to be dominated by stochastic fluctuations. It would be interesting
to develop theoretical models that could possibly account for such a transition and in the process,
construct a clearer understanding for the parameter m or why the information-theoretic measure
(9) is relevant for the low-frequency domain.

A complementary approach towards understanding correlation effects is to study directly the
correlation function itself (see for example [28] ), although this is more computationally intensive.
It would be interesting to study what forms of correlation functions could lead to the enveloping
curve being of the form 1/kδ. A few related models were proposed in [29, 30], and it may be
worthwhile to revisit them in light of the newfound relation with the measure of complexity.

Finally, it would be interesting to perform a more extensive study of the models here with a
larger set of viral genomes so that we have a fuller understanding of their statistical distribution

5Some recent results concerning mutation rates of coronaviruses were published in [24].
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and whether they can be useful in clustering and classifying purposes.6 Motivated by the COVID-
19 pandemic, notwithstanding our limited dataset, in Table 1 below, we show the viral genome
that is the closest neighbor to SARS-CoV-2 for each of the four model parameters at both levels
of the genome and Spike protein coding region. From Table 1, we see that Bat-RTG13 features
most frequently and that apart from TGEV and HKU1 which infect pigs and humans respectively,
the others are bat coronaviruses. Collectively, they appear to be broadly compatible with the
plausibility of the bat origin of SARS-CoV-2, while to our knowledge, the association of SARS-
CoV-2 with TGEV and HKU1 has never been made in literature.

Genome Spike protein

δ TGEV Bat-RTG13

κ Bat-RTG13 HKU3

m Bat-RTG13 Bat-CoV-512, HKU5

b HKU9 HKU1

Table 1: We display the coronavirus that has a genome closest to SARS-CoV-2 in terms of each of
the model parameters.
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A GenBank accession numbers

This appendix collects the GenBank accession ID and names of the 30 coronaviruses used in this
work, which largely follows [11], our additions being SARS-CoV-2, MERS-CoV and Bat-RaTG13.
These genomes can be freely downloaded from https://www.ncbi.nlm.nih.gov. For each genome,
we exclude the poly(A) tail for our analysis.

6 See [31] for a recent attempt in this direction for coronaviruses.
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Virus GenBank accession number

Alphacoronavirus

Transmissible gastroenteritis virus (TGEV) DQ811785

Porcine respiratory coronavirus (PCRV) DQ811787

Feline coronavirus (FCoV) NC 002306

Human coronavirus 229E (HCoV-229E) NC 002645

Human coronavirus NL63 (HCoV-NL63) NC 005831

Porcine epidemic diarrhea virus (PEDV) NC 003436

Scotophilus bat coronavirus 512 NC 009657

Rhinolophus bat coronavirus HKU2 NC 009988

Miniopterus bat coronavirus HKU8 NC 010438

Miniopterus bat coronavirus 1A NC 010437

Betacoronavirus

Human coronavirus OC43 NC 006213

Bovine coronavirus (BCoV) NC 003045

Porcine hemagglutinating encephalomyelitis virus (PHEV) KY419103

Equine coronavirus (ECoV) EF446615

Human coronavirus HKU1 NC 006577

Mouse hepatitis virus (MHV) AC 000192

SARS coronavirus (SARS-CoV) NC 004718

SARS coronavirus-2 (SARS-CoV-2) NC 045512

Bat SARS coronavirus HKU3 GQ153539

Bat coronavirus RaTG13 MN996532

MERS-coronavirus NC 019843

Tylonycteris bat coronavirus HKU4 NC 009019

Pipistrellus bat coronavirus HKU5 NC 009020

Rousettus bat coronavirus HKU9 NC 009021

Gammacoronavirus

Infectious bronchitis virus (IBV) NC 001451

Beluga whale coronavirus (SW1) NC 010646

Turkey coronavirus (TCoV) NC 010800

Deltacoronavirus

Munia coronavirus HKU13 NC 011550

Thrush coronavirus HKU12 NC 011549

Bulbul coronavirus HKU11 FJ376620

Table 2: The GenBank accession ID for the thirty coronavirus RNA genomes covered in this work.

B Some Graphs

In this Section, we collect several graphs useful for visualizing two particular trends observed: (i)
the parameter m tends to vary inversely with size of genome/Spike protein coding region, (ii) the
linearized correlation function parameter κ and the half-width parameter b appears to be correlated.
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Figure 6: Plots showing how m generally decreases with sequence size at both genome and Spike
protein levels. The dashed line is obtained from least-square regression. For the genome, we have
mw = aw + bwMw, with aw/10−5 ≈ 4.62(4.11, 5.14), bw/10−10 ≈ −7.65(−9.42,−5.89), whereas
for the Spike protein, we have ms = as + bsMs, with as/10−4 ≈ 3.86(3.52, 4.19), bs/10−8 ≈
−5.38(−6.24,−4.52).
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Figure 7: Plots showing how the half-width parameter b generally increases with κ. At the genome
level, the best-fit line is bw = gw + hwκw with gw ≈ 0.275(0.274, 0.276), hw ≈ 0.144(0.116, 0.172).
At the Spike protein level, the best-fit line is bs = gs + hsκs, with gs ≈ 0.270(0.269, 0.271), hs ≈
0.152(0.128, 0.176). The red point pertains to the uncorrelated background.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.06.30.180034doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.180034
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[1] E. Schrdinger, ”What Is Life? : The Physical Aspect of the Living Cell”. Based on lectures
delivered under the auspices of the Dublin Institute for Advanced Studies at Trinity College,
Dublin, in February 1943.

[2] R. F. Voss, “Evolution of long-range fractal correlations and 1/f noise in DNA base sequences,”
Phys. Rev. Lett. 68, 3805-3808 (1992) doi:10.1103/PhysRevLett.68.3805

[3] H. Hanspeter, O. Weiss, and E. Trifonov, “10-11 bp periodicities in complete genomes re-
flect protein structure and DNA folding,” Bioinformatics (Oxford, England). 15. 187-93.
10.1093/bioinformatics/15.3.187. (1999)

[4] Li W, Holste D., “Universal 1/f noise, crossovers of scaling exponents, and chromosome-specific
patterns of guanine-cytosine content in DNA sequences of the human genome.” Phys Rev E
Stat Nonlin Soft Matter Phys. 2005;71(4 Pt 1):041910. doi:10.1103/PhysRevE.71.041910

[5] A. Alain, C. Vaillant, B. Audit, Argoul, Francoise, d’Aubenton-Carafa, Yves and C. Thermes,
“Multi-scale coding of genomic information: From DNA sequence to genome structure and
function,” Physics Reports. 498. 10.1016/j.physrep.2010.10.001. (2001)

[6] M. Altaiski, O. Mornev and R. Polozov, “Wavelet analysis of DNA sequences,” Genetic Anal-
ysis: Biomolecular Engineering, vol. 12, 165-168 (1996)

[7] A. Arneodo, E. Bacry, P. V. Graves and J. F. Muzy, “Characterizing long-range correlations
in DNA sequences from wavelet analysis,” Phys. Rev. Lett. 74, 3293-3296 (1995)

[8] C. C. Jeng, I. Yang, K. Hsieh, and C. Lin, “Bacteria Classification on Power Spectrums of
Complete DNA Sequences by Self-Organizing Map,” Neural Information Processing, Letters
and Reviews, vol. 9, (2006)

[9] S. Buldyrev, A. Goldberger, S. Havlin, R. Mantegna, M. Matsa, C. Peng, M. Simons and
H. Stanley, “Long-Range Correlation Properties of Coding and Noncoding DNA Sequences:
Genbank Analysis.” Phys. Rev. E, Statistical physics, plasmas, fluids, and related interdisci-
plinary topics. 51, 5084-91. 10.1103/PhysRevE.51.5084.

[10] A. Fukushima, T. Ikemura, M. Kinouchi, et al. “Periodicity in prokaryotic and eu-
karyotic genomes identified by power spectrum analysis,” Gene. 2002;300(1-2):203-211.
doi:10.1016/s0378-1119(02)00850-8 (2002)

[11] P. C. Woo, Y. Huang, S. K. Lau, and K. Y. Yuen, “Coronavirus genomics and bioinformatics
analysis,” Viruses, 2(8), 18041820. https://doi.org/10.3390/v2081803 (2010)

[12] d. S. Vieira, “Statistics of DNA sequences: a low-frequency analysis,” Phys. Rev. E. 60(5 Pt
B):5932-5937 (1999) doi:10.1103/physreve.60.5932

[13] W. Li, T. G. Marr and K. Kaneko, “Understanding long-range correlations in DNA sequences,”
Physica D: Nonlinear Phenomena, vol. 75, 392-416 (1994)

[14] National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National
Library of Medicine (US), National Center for Biotechnology Information; [1988] [cited 2020
Jun 30]. Available from: https://www.ncbi.nlm.nih.gov/

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.06.30.180034doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/
https://doi.org/10.1101/2020.06.30.180034
http://creativecommons.org/licenses/by-nc-nd/4.0/


[15] P. Salamon and A. Konopka, “A Maximum Entropy Principle for the Distribution of Local
Complexity in Naturally Occurring Nucleotide Sequences,” Computers and Chemistry. 16.
117-124. 10.1016/0097-8485(92)80038-2.

[16] C. Cattani, “Fractals and Hidden Symmetries in DNA,” Mathematical Problems in Engineer-
ing, ”Nonlinear Time Series: Computations and Applications,” vol. 2010, 507056, 2010.

[17] M. Carli, “Visualization and analysis of DNA sequences using DNA walks,” Journal of the
Franklin Institute, Engineering and Applied Mathematics, vol. 341, 37-53 (2004)

[18] P. Zhou, X. Yang, X. Wang, et al. “A pneumonia outbreak associated with a new coronavirus of
probable bat origin,” Nature 579, 270273 (2020). https://doi.org/10.1038/s41586-020-2012-7

[19] W. Lee and L. Luo, “Periodicity of base correlation in nucleotide sequence,” Phys. Rev. E. 56,
848-851 (1997) doi:10.1103/PhysRevE.56.848

[20] J. W. Drake, “A constant rate of spontaneous mutation in DNA-based microbes,” Proc. Natl.
Acad. Sci. USA 88: 71607164 (1991)

[21] Drake, J. W., B. Charlesworth, D. Charlesworth, and J. F. Crow, 1998 Rates of spontaneous
mutation. Genetics 148: 1667 1686.

[22] Lynch, M., 2010 Evolution of the mutation rate. Trends Genet. 26: 345352.

[23] Bradwell, Katie and Combe, Marine and Domingo-Calap, Pilar and Sanjun, Rafael. (2013).
Correlation Between Mutation Rate and Genome Size in Riboviruses: Mutation Rate of Bac-
teriophage Q. Genetics. 10.1534/genetics.113.154963.

[24] Zhao Z, Li H, Wu X, et al. Moderate mutation rate in the SARS coronavirus genome and its
implications. BMC Evolutionary Biology. 2004 Jun;4:21. DOI: 10.1186/1471-2148-4-21.

[25] Sanjun, R., 2012 From molecular genetics to phylodynamics: evolutionary relevance of muta-
tion rates across viruses. PLoS Pathog. 8: e1002685.

[26] K. M. Peck and A. S. Lauring, “Complexities of Viral Mutation Rates,” J Virol.
2018;92(14):e01031-17, (2018)

[27] Xiaolu Tang, Changcheng Wu, Xiang Li, Yuhe Song, Xinmin Yao, Xinkai Wu, Yuange Duan,
Hong Zhang, Yirong Wang, Zhaohui Qian, Jie Cui, Jian Lu, On the origin and continuing
evolution of SARS-CoV-2, National Science Review, Volume 7, Issue 6, June 2020, Pages
10121023, https://doi.org/10.1093/nsr/nwaa036

[28] Bernaola-Galvn P, Carpena P, Romn-Roldn R, Oliver JL., “Study of statistical correlations in
DNA sequences,” Gene. 2002;300(1-2):105-115. doi:10.1016/s0378-1119(02)01037-5

[29] W. Li, “Spatial 1/f spectra in open dynamical systems,” Europhysics letter, 10(5), 395-400
(1989)

[30] W. Li, “Expansion-modification systems: a model for spatial 1/f spectra,” Physical Review
A, 43(10), 5240-5260 (1991)

[31] S. Hassan, R. Ranjeet and V. Sharma, “A Quantitative Genomic View of the Coronaviruses:
SARS-COV2,” 10.20944/preprints202003.0344.v1. (2020)

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.06.30.180034doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.180034
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Theoretical preliminaries
	A reference curve: the uncorrelated background
	Three simple models
	A measure of complexity and Shannon entropy

	Results and graphs
	Discussion
	GenBank accession numbers
	Some Graphs

