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Abstract 

Aphasia recovery post-stroke is classically and most commonly hypothesised to rely on 

regions that were not involved in language premorbidly, through ‘neurocomputational 

invasion’ or engagement of ‘quiescent homologues’. Contemporary accounts have suggested, 

instead, that recovery might be supported by under-utilised areas of the premorbid language 

network, which are downregulated in health to save neural resources (‘variable 

neurodisplacement’). Despite the importance of understanding the neural bases of language 

recovery clinically and theoretically, there is no consensus as to which specific regions are 

activated more consistently in post-stroke aphasia (PSA) than healthy individuals. 

Accordingly, we performed an Activation Likelihood Estimation analysis of language 

functional neuroimaging studies in PSA and linked control data. We obtained coordinate-

based functional neuroimaging data for 481 individuals with aphasia following left 

hemisphere stroke (one third of which was previously unpublished) and for 530 healthy 

controls. Instead of the language network expanding by activating novel right hemisphere 

regions ‘de novo’ post-stroke, as would be predicted by neurocomputational 

invasion/quiescent homologue engagement mechanisms of recovery, we found that multiple 

regions throughout both hemispheres were consistently activated during language tasks in 

PSA and controls. Multiple undamaged regions were less consistently activated in PSA than 

controls, including domain-general regions of medial superior frontal cortex and right fronto-

temporal cortex. In the reverse direction, the right anterior insula and inferior frontal gyrus 

were more consistently activated in PSA than controls, particularly for executively-

demanding comprehension tasks. These regions overlap with control networks known to be 

recruited during difficult tasks in healthy individuals and were more consistently activated by 

patients during higher than lower demand tasks in this meta-analysis. Overall, these findings 

run counter to neurocomputational invasion of the language network into new territory or 

engagement of quiescent homologues. Instead, many parts of the pre-existing language 

network are less consistently activated in PSA, except for more consistent use of spare 

capacity within right hemisphere executive-control related regions (cf. variable 

neurodisplacement). This study provides novel insights into the language network changes 

that occur post-stroke. Such knowledge is essential if we are to design neurobiologically-

informed therapeutic interventions to facilitate language recovery. 
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Introduction 

Post-stroke aphasia (PSA) is prevalent and debilitating (Engelter et al., 2006) and recovery of 

function tends to be variable and often incomplete (Yagata et al., 2017). Compensatory 

changes in patterns of neural activity, reflecting increased utilisation of surviving neural 

regions, are hypothesised to contribute to aphasia recovery (Murphy and Corbett, 2009; 

Turkeltaub et al., 2011; Stefaniak et al., 2020). While previous studies have explored which 

set of regions are activated in PSA (Turkeltaub et al., 2011), multiple key questions remain 

unanswered. These include: (a) which specific regions are activated more consistently in PSA 

than healthy individuals; (b) whether the activated regions differ across different language 

tasks, and (c) at different stages of recovery.  Such knowledge will be essential to understand 

the mechanisms underlying language network plasticity and thus design neurobiologically-

informed therapeutic interventions to aid language recovery. Accordingly, this study tackled 

these targeted questions through the largest Activation Likelihood Estimation (ALE) analysis, 

to date, of functional neuroimaging studies in PSA (n=481) and healthy controls (n=530). 

There were several specific questions we sought to address. We consider these briefly, below, 

with respect to three major themes. 

First, even though recovery of language after stroke has perplexed researchers since the 

seminal studies of aphasia in the nineteenth century (Finger et al., 2003), there have been 

very few formal, implemented models (Stefaniak et al., 2020) and hypotheses have rarely 

been tested in relation to large patient datasets. Certain mechanisms underlying partial 

language recovery in PSA propose that neural networks unused in health can adapt after 

stroke to perform a similar function to the one normally supported by the now damaged 

neural network(s) (Stefaniak et al., 2020), for instance through immediate engagement of 

quiescent homologues (Finger et al., 2003) or through neurocomputational invasion of non-

language regions via experience-dependent plasticity (Keidel et al., 2010; Southwell et al., 

2016). Alternatively, variable neurodisplacement (Binney and Lambon Ralph, 2015; 

Stefaniak et al., 2020) proposes that ‘well engineered’ language and cognitive networks 

dynamically balance performance demand against energy expenditure, downregulating spare 
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capacity under standard performance demands in health but running the remaining system 

‘harder’ after partial damage (as the intact system can do when under increased performance 

demands (Sharp et al., 2010; Robson et al., 2014; Jung and Lambon Ralph, 2016; Rice et al., 

2018)). These mechanisms are not mutually exclusive and might include both language-

specific and non-language networks, including domain-general executive networks, in both 

hemispheres (Stefaniak et al., 2020). Key predictions of variable neurodisplacement are that 

positive language network changes in PSA are due to upregulation of spare capacity within 

the pre-existing language network, and that these same upregulated neural regions show 

increased activation for hard over easier tasks in both PSA and healthy individuals. 

Second, there is a tendency to treat ‘language’ and its recovery as a single, homogenous 

cognitive function. Instead, language refers to a diverse range of expressive and receptive 

activities. Different language activities are supported by interactions between various more 

general neurocognitive computations (Patterson and Lambon Ralph, 1999; Gordon et al., 

2002; Mementi et al., 2011) which can be damaged independently of each other to generate 

the graded, multidimensional nature of post-stroke aphasia (Kummerer et al., 2013; Butler et 

al., 2014; Mirman et al., 2015; Halai et al., 2017; Alyahya et al., 2020). Consequently, 

theories of recovery need to consider not only how each primary neurocognitive system 

might recover, but also how changes in their interactivity can support improved performance 

across different language activities. Changes in the division of labour across systems can 

occur not only between language networks (Ueno et al., 2011) but also between language and 

multi-demand executive systems (Geranmayeh et al., 2017; Hartwigsen, 2018). 

An important second aspect of this issue is that different subcomponents of language, such as 

those subserving comprehension versus production, might have differently distributed 

networks, including degrees of lateralisation, premorbidly (Lidzba et al., 2011). For instance, 

the language network is often described as unilateral (Mazoyer et al., 2014) but several lines 

of evidence suggest it is at least partially bilateral but asymmetric (Lambon Ralph et al., 

2001; Fedorenko et al., 2011). This has significant implications as many studies have 

highlighted a role for the right hemisphere in recovery (Crinion and Price, 2005; Skipper-

Kallal et al., 2017a, b). Depending on the degree of premorbid asymmetry, right hemisphere 

activation might reflect engagement of pre-existing right hemispheric regions of the language 

network via variable neurodisplacement versus novel recruitment of non-language regions 

via neurocomputational invasion (Warburton et al., 1999). It is important, therefore, to 
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compare activation patterns in post-stroke aphasia with the natural distribution of the same 

language subcomponent(s) in healthy individuals.  

Third, language recovery is dynamic and occurs most rapidly during the first few months 

post-stroke (Pedersen et al., 1995; Yagata et al., 2017), with spontaneous language changes 

being slower and smaller by the ‘chronic’ stage after approximately 6-12 months (Hope et al., 

2017). Thus, in order to identify language network changes that are associated with recovery, 

it is important to compare language networks at subacute vs. chronic stages of recovery. 

Given these many outstanding questions, this study sought to identify whether consistent 

patterns of language-related activation differ between PSA and healthy controls. The omnibus 

ALE analysis considered which specific regions are activated more consistently in PSA than 

healthy individuals across all language tasks. Subsequent analyses investigated differences 

based on: comprehension versus production tasks; for each task type, higher versus lower 

demand tasks; and time post stroke (e.g., sub-acute vs chronic PSA). If language recovery 

reflects neurocomputational invasion or engagement of quiescent homologues then the post-

stroke language network should expand to include novel regions that are not consistently 

activated in healthy individuals, even under increased task difficulty. Conversely, variable 

neurodisplacement predicts that the networks observed in PSA should also be observed in 

healthy controls, particularly when the healthy system is placed under greater performance 

demands. 
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Materials and methods 

Study search and selection 

We searched the databases Medline, Embase and PsycINFO up to April 2020. Terms relating 

to aphasia (aphasia OR dysphasia OR language OR fluency OR phonology OR semantics OR 

naming OR repetition OR comprehension OR speaking), stroke (stroke OR ischaemia OR 

ischemia OR infarct) and neuroimaging (fMRI OR PET OR neuroimaging OR imaging OR 

functional) were used. We identified eligible articles reporting observational studies that had: 

a) more than one person with language impairment at any time following left hemispheric 

stroke; b) more than one healthy control; and c) performed BOLD fMRI or 15O-PET during 

language task-based functional neuroimaging. We extracted coordinate data for inclusion in 

this ALE meta-analysis that: related to activation (not deactivation) during a language task-

based functional neuroimaging experiment; was provided in standard space; was derived 

from whole-brain mass-univariate analyses without region of interests (ROIs), small volume 

corrections (SVC), or conjunctions (Müller et al., 2018); and was calculated using the same 

significance thresholds in the PSA and control groups. If coordinates meeting these criteria 

for both the PSA and control groups were not provided in the publication, the authors were 

contacted to request unpublished coordinates. Full details are reported in the Supplementary 

Material. 

 

ALE meta-analysis 

Peak coordinates pertaining to language activation were extracted from each included article 

and double checked by the same author (JDS). Coordinates in Talairach space were converted 

to Montreal Neurological Institute (MNI) space using the Lancaster transformation 

(Lancaster et al., 2007). GingerALE 3.0.2  was used to perform ALE 

(http://brainmap.org/ale/), which is a random-effects coordinate-based meta-analytic 

technique that identifies neural regions at which activation peaks converge above-chance 

across studies (Eickhoff et al., 2009; Eickhoff et al., 2011; Eickhoff et al., 2012; Turkeltaub 

et al., 2012). Briefly, we grouped together activation peaks from all imaging tasks performed 

by the same participant group. Each peak was modelled as a 3D Gaussian distribution of 

activation probability; each voxel in the brain was assigned the activation probability from 

the peak within the shortest Euclidean distance, producing a Modelled Activation map for 
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each subject group (Turkeltaub et al., 2012). The voxel-wise union of all Modelled 

Activation maps from all subject groups included in a single dataset produced an ALE map, 

representing the voxel-wise probability that activation was found for at least one subject 

group included in that dataset (Turkeltaub et al., 2012). Each dataset’s ALE map was 

thresholded with a voxel-wise uncorrected p<0.001 cluster-forming threshold and a cluster-

wise family-wise error (FWE) corrected threshold of p<0.05 based on 1000 random 

permutations (Eickhoff et al., 2016). Coordinates from tasks at different timepoints on the 

same subject group were not pooled; only tasks performed at the longest timepoint post-

stroke for each group were included. If coordinates were available for separate groups within 

the same study (e.g., for stroke survivors with aphasia as individuals or sub-groups), each 

individual/sub-group was counted as being from a separate subject group in the meta-

analysis. Conjunction images identifying regions in which two datasets both showed 

convergent activation were created from their voxel-wise minimum thresholded ALE values. 

Contrast analyses were then performed to identify regions where activation probability 

significantly differed between two datasets. Thresholded ALE maps from the two datasets 

being contrasted were subtracted from each other and thresholded at p<0.05 (uncorrected) 

using 10,000 P-value permutations with a minimum cluster threshold of 200mm3. The 

Harvard-Oxford atlas (Desikan et al., 2006) defined anatomical labels and the Talairach 

Daemon atlas (Lancaster et al., 2000) determined the Brodmann Area label associated with 

each peak coordinate. 

We performed a set of pre-planned ALE analyses that are set out below. We required single 

datasets to have at least 17 subject groups for inclusion in the omnibus ALE meta-analysis, as 

recommended by empirical simulations suggesting this number was needed to ensure 

adequate power (Eickhoff et al., 2016). Given the scarcity of functional neuroimaging studies 

in PSA, we required 10 subject groups for single datasets to be included in subgroup ALE 

analyses for more specific contrasts. 

 

Omnibus ALE analysis 

This analysis combined all data available. Thus, it consisted of single dataset, conjunction 

and contrast ALE meta-analyses comparing all language tasks in all PSA against all language 

tasks in all controls. 
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Subgroup ALE meta-analyses 

Following the omnibus ALE analysis, PSA groups were divided into one of two categories 

according to a characteristic of the language task performed or a characteristic of its 

participants. Single dataset, conjunction and contrast ALE meta-analyses were conducted 

to compare the resultant two categories of PSA groups. Then, each control group was 

categorised according to how its corresponding PSA group had been categorised and the 

same ALE meta-analyses were performed on the resultant two categories of controls. 

Finally, conjunction and contrast ALE meta-analyses were conducted to compare the 

corresponding categories of PSA to controls. If the same PSA group performed multiple 

imaging tasks which were divided into different categories, the coordinates for both 

imaging tasks were included in their respective categories. The following subgroup ALE 

meta-analyses were conducted:  

A) Comprehension vs. production  

PSA participants might activate different neural regions relative to controls for a subset of 

language tasks. Such differences may have been obscured by including all language tasks 

in the omnibus ALE analysis. Functional neuroimaging tasks were therefore categorised 

according to whether they involved ‘production’ (including either overt or covert 

production of sublexical, lexical or sentence level speech components) or solely 

‘comprehension’ without production. 

B) Higher versus lower processing demand  

Variable neurodisplacement proposes that neural spare capacity is downregulated to save 

energy under standard performance demands in health but is upregulated when performance 

demands increase post-stroke. If this occurs, we would expect the neural regions upregulated 

in PSA to be more consistently activated during more difficult compared to less difficult tasks 

in both PSA and controls. Therefore, comprehension and production tasks were each 

subdivided according to task difficulty. Higher demand comprehension tasks were defined as 

tasks requiring a linguistic decision to be made; e.g., whether a stimulus is a word or 

pseudoword, concrete or abstract, or related to some other semantic or syntactic property. 

Lower demand comprehension tasks either did not require a linguistic decision or required a 

very simple identity match; e.g., passive listening or simple word-picture matching. Higher 

demand production tasks required production of >1 word, such as propositional speech or 
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category fluency tasks. Lower demand production tasks required production of single words, 

such as picture naming or single item repetition. 

C) Time post-stroke  

Language recovery occurs most rapidly during the first six months post-stroke (Pedersen et 

al., 1995; Yagata et al., 2017). PSA groups were therefore categorised according to whether 

their mean time post-stroke was before or after 6 months. 

 

Statistical analysis 

We compared mean ages of the PSA and control groups using Mann-Whitney U tests 

implemented in SPSS version 25 with statistical significance defined as p<0.05 with 

Bonferroni correction. 

   

Data availability 

The data supporting the findings of this study are available within the Supplementary 

Material. 
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Results 

Descriptive statistics 

10,169 unique references were obtained from the search. 79 papers were eligible for 

inclusion; useable foci were obtained from 33/79 included papers. A flowchart of the 

search and selection process is shown in Fig.1. Details of the included/excluded papers, 

reasons for excluding eligible papers, and information on the PSA groups included in the 

ALE analysis are provided in Supplementary Tables S1-3. Across all language tasks, 1521 

foci were obtained from 481 PSA in 64 groups, and 809 foci were obtained from 530 

healthy controls in 37 groups (Supplementary Tables S3, 4). Foci relating to 172 of the 

481 PSA had not been published but were provided after personal communication with the 

corresponding authors (Schofield et al., 2012; Geranmayeh et al., 2016; Radman et al., 

2016; Hallam et al., 2018; Wilson et al., 2018; Barbieri et al., 2019; Meier et al., 2019; 

Tao and Rapp, 2019).  

The 64 PSA groups did not have significantly different mean ages compared to the 37 

control groups (median 57.4 [IQR 9.0] years in PSA vs. 57.0 [IQR 8.2] years in controls; 

Mann-Whitney U-test, U=878, two-sided p=0.18). Every pair of datasets contrasted in this 

paper had mean ages that were not statistically significantly different (Supplementary 

Table S31). Fig.2 contains histograms of the mean ages of the groups. 

 

Omnibus ALE analysis 

The omnibus analysis compared all language tasks in all PSA against control groups 

(Fig.3). PSA consistently activated bilateral regions, including: left frontal lobe (inferior 

frontal gyrus (IFG) pars opercularis/triangularis, frontal orbital cortex, middle frontal 

gyrus (MFG)); left temporal lobe (posterior middle temporal gyrus (MTG)); midline 

cortex (superior frontal gyrus (SFG), supplementary motor cortex (SMC), paracingulate 

gyrus); right frontal lobe (IFG pars opercularis/triangularis, frontal orbital cortex, 

precentral gyrus); right insula; and right temporal lobe (posterior superior temporal gyrus 

(STG), Heschl’s gyrus, planum temporale) (Supplementary Table S5). A conjunction 

demonstrated that both PSA and control groups consistently activated overlapping regions 

in: left frontal lobe (frontal operculum cortex, IFG pars opercularis/triangularis, frontal 
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orbital cortex, MFG); left temporal lobe (posterior MTG); midline cortex (SFG, SMC, 

paracingulate gyrus); right frontal lobe (frontal operculum, frontal orbital cortex); right 

temporal lobe (posterior STG); and right parietal lobe (posterior supramarginal gyrus) 

(Supplementary Table S7). This highlights that the language network is bilateral in both 

controls and PSA. Furthermore, multiple regions throughout both hemispheres were 

consistently activated in PSA but were also involved in language pre-morbidly rather than 

being recruited ‘de novo’ post-stroke. 

The PSA group activated the right frontal operculum and IFG pars opercularis more 

consistently during language than controls (Supplementary Table S8). This cluster 

overlaps with the Multiple Demand (MD) network (Fedorenko et al., 2013), suggesting it 

is domain-general (Fig.7A). 

Controls activated multiple regions more consistently than the PSA group, including 

midline SFG, SMC, and paracingulate gyrus as well as right IFG pars triangularis and 

right temporal pole (Supplementary Table S8). The midline SFG and paracingulate gyrus 

cluster overlaps with the MD network (Fedorenko et al., 2013), suggesting it is domain-

general (Fig.7A). Since all strokes were restricted to the left hemisphere, this result 

demonstrates that a set of undamaged language and domain-general regions are activated 

less consistently in PSA than controls. 

 

Comprehension versus production  

During comprehension tasks, PSA consistently activated regions in: left frontal lobe (IFG 

pars opercularis/triangularis, frontal orbital cortex); left temporal lobe (posterior MTG); 

midline cortex (SFG, SMC); right frontal lobe (IFG pars triangularis, frontal orbital 

cortex, MFG); and right insula (Fig.4A, Supplementary Table S9). Both PSA and controls 

consistently activated overlapping regions during comprehension in left frontal lobe 

(Fig.4A, IFG pars opercularis/triangularis, frontal orbital cortex) and left posterior MTG 

(Supplementary Table S11). PSA activated the right anterior insula more consistently 

during comprehension than controls (Fig.4B, Supplementary Table S12); this cluster 

overlaps with the MD network (Fedorenko et al., 2013), suggesting it is domain-general 

(Fig.7B). Controls activated multiple regions more consistently during comprehension 

than PSA, including midline cortical regions (SFG, paracingulate gyrus) that are unlikely 
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to be lesioned following a middle cerebral artery (MCA) stroke (Fig.4B, Supplementary 

Table S12). 

During production tasks, PSA consistently activated regions in: left frontal lobe (IFG pars 

triangularis); midline cortex (SFG, SMC); right frontal lobe (IFG pars triangularis, 

precentral gyrus); right insula; and right temporal lobe (posterior STG, Heschl’s gyrus) 

(Fig.5A, Supplementary Table S13). Both PSA and controls consistently activated 

overlapping regions during production in: left frontal lobe (IFG pars triangularis); midline 

cortex (SFG, SMC, paracingulate gyrus); and right temporal lobe (posterior STG) (Fig.5A, 

Supplementary Table S15). This highlights that multiple regions throughout both 

hemispheres are consistently activated during language production in PSA that were 

involved in language pre-morbidly rather than being recruited ‘de novo’ post-stroke. The 

PSA group did not activate any regions more consistently during production than controls 

(Supplementary Table S16). Controls activated multiple regions more consistently during 

production than PSA, including: midline cortex (SFG, SMC, paracingulate gyrus); right 

frontal lobe (frontal orbital cortex, precentral gyrus); right insula; and right temporal lobe 

(Heschl’s gyrus, posterior STG, temporal pole) (Fig.5B, Supplementary Table S16). Again 

these regions fall outside of the left MCA territory and thus were unlikely to have been 

lesioned by the stroke. The midline SFG and paracingulate gyrus cluster overlaps with the 

MD network (Fedorenko et al., 2013), suggesting it is domain-general (Fig.7C). 

The PSA group activated multiple regions more consistently during comprehension than 

production, including: left frontal lobe (IFG pars opercularis, frontal orbital cortex); left 

temporal lobe (posterior MTG); left parietal lobe (angular gyrus); right insula; and right 

frontal lobe (MFG) (Fig.6B, Supplementary Table S17). Conversely, regions of the right 

frontal lobe (IFG pars opercularis, precentral gyrus) and right temporal lobe (posterior 

STG, planum temporale) were more consistently activated during production than 

comprehension (Fig.6B, Supplementary Table S17). Controls activated the left frontal 

lobe (frontal orbital cortex, frontal pole), left temporal lobe (temporal pole, 

temporooccipital inferior temporal gyrus) and midline SFG/paracingulate gyrus more 

consistently during comprehension than production (Fig.6A, Supplementary Table S18). 

Conversely, controls activated the left frontal lobe (IFG pars opercularis/triangularis, 

frontal orbital cortex, precentral gyrus), left insula, left temporal lobe (planum temporale, 

temporooccipital MTG), left parietal lobe (posterior supramarginal gyrus), midline cortex 

(SFG, SMC, paracingulate gyrus) and right temporal lobe (temporal pole, posterior STG) 
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more consistently during production than comprehension (Fig.6A, Supplementary Table 

S18). 

 

Higher versus lower processing demand  

Both PSA and control groups consistently activated overlapping regions in left frontal 

lobe (IFG pars opercularis, frontal orbital cortex, MFG) and midline SFG during higher 

demand comprehension tasks (Fig.4C, Supplementary Table S22). The PSA group 

activated the left anterior STG, right frontal lobe (IFG pars opercularis/triangularis, frontal 

orbital cortex) and right anterior insula more consistently during higher demand 

comprehension tasks than controls (Fig.4D, Supplementary Table S23). The cluster of 

more consistent activation in the left anterior STG demonstrates that aphasia recovery 

might involve more consistent utilisation of undamaged left hemisphere language regions 

post-stroke. The right anterior insular cluster overlaps with the MD network (Fedorenko et 

al., 2013), suggesting it is domain-general, while the right IFG pars 

opercularis/triangularis cluster overlaps with the semantic control network known to be 

involved during executively demanding semantic cognition in healthy individuals 

(Noonan et al., 2013). Controls activated multiple regions more consistently during higher 

demand comprehension tasks than in PSA, including midline cortex (SFG, paracingulate 

gyrus) (Fig.4D, Supplementary Table S23).  

PSA activated the left frontal lobe (IFG pars opercularis/triangularis), right frontal lobe 

(frontal operculum cortex, IFG pars triangularis) and right anterior insula more 

consistently during higher demand than lower demand comprehension tasks (Fig.6C, 

Supplementary Table S24). These three clusters all overlap with the semantic control 

network known to be involved during executively demanding semantic cognition in 

healthy individuals (Noonan et al., 2013), while the right anterior insular cluster 

additionally overlaps with the MD network (Fedorenko et al., 2013), suggesting it is 

domain-general (Fig.7D). 

Only 110 foci were obtained from 78 controls in 7 participant groups performing lower 

demand comprehension tasks. Accordingly, there were too few groups to perform ALE 

meta-analyses contrasting higher versus lower demand comprehension tasks in controls, or 

contrasting lower demand comprehension tasks in PSA vs. controls (Eickhoff et al., 
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2016).  

PSA and controls did not consistently activate any overlapping regions during lower 

demand production tasks (Fig.5D, Supplementary Table S28), nor did PSA activate any 

regions more consistently during lower demand production tasks than controls 

(Supplementary Table S29). Controls activated multiple regions more consistently during 

lower demand production tasks than PSA, including midline SMC, right precentral gyrus 

and right posterior STG (Fig.5E, Supplementary Table S29). The midline SMC cluster 

overlaps with the MD network (Fedorenko et al., 2013), suggesting it is domain-general. 

PSA activated the right frontal lobe (frontal operculum cortex, IFG pars opercularis, 

precentral gyrus) and right temporal lobe (planum temporale, Heschl’s gyrus) more 

consistently during higher demand than lower demand production tasks (Fig.6D, 

Supplementary Table S30). The right precentral gyrus cluster and right IFG pars 

opercularis/frontal operculum cluster both overlapped with the MD network (Fedorenko et 

al., 2013), suggesting they are domain-general. 

Only 189 foci were obtained from 185 controls in 8 groups performing higher demand 

production tasks. Accordingly, there were too few groups to perform ALE meta-analyses 

contrasting higher versus lower demand production tasks in controls, or contrasting higher 

demand production tasks in PSA vs. controls (Eickhoff et al., 2016). 

 

Time post-stroke  

The literature is strongly biased as most PSA underwent neuroimaging in the chronic 

phase post-stroke. The 64 PSA groups had median times post-stroke of 38.0 (IQR 34.5) 

months (Fig. 2). Only five papers, representing six of the 64 PSA groups, repeated 

functional neuroimaging longitudinally at multiple timepoints (Cardebat et al., 2003; 

Radman et al., 2016; Long et al., 2017; Nenert et al., 2018; Stockert et al., 2020). When 

counting the ‘earliest’ timepoint at which each PSA group was scanned, only 9/64 groups 

had mean times post-stroke less than 6 months (Cardebat et al., 2003; Mattioli et al., 2014; 

Geranmayeh et al., 2016; Radman et al., 2016; Long et al., 2017; Qiu et al., 2017; Nenert 

et al., 2018; Stockert et al., 2020). Accordingly, there were too few groups to contrast 

PSA before versus after six months (Eickhoff et al., 2016). 
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Discussion 

In order to identify the specific regions that are activated more consistently in PSA than 

healthy individuals, and to investigate whether there are consistent differences in activation 

across different language tasks and between recovery timepoints, we performed a large-scale 

ALE analysis of functional neuroimaging studies in PSA. We obtained coordinate-based 

functional neuroimaging data for 481 PSA, which is over four times larger than the last ALE 

analysis on this topic (n=105) (Turkeltaub et al., 2011). The results provide novel insights 

into the mechanisms underlying language network changes post-stroke that might hitherto 

have been obscured by the limited sample size of any individual study in this area. 

 

Main findings 

PSA activated various regions of the right anterior insula and IFG more consistently than 

controls: across all language tasks (frontal operculum, IFG pars opercularis); during 

comprehension tasks (anterior insula); and during higher demand comprehension tasks (IFG 

pars opercularis/triangularis, frontal orbital cortex and anterior insula). These right anterior 

insular/IFG regions seem to be implicated in task difficulty as they are activated more 

consistently during higher than lower demand comprehension tasks (frontal operculum, IFG 

pars triangularis, anterior insula) and during higher than lower demand production tasks 

(operculum, IFG pars opercularis). PSA activated several left hemisphere regions (IFG pars 

opercularis, frontal orbital cortex, posterior MTG, angular gyrus) and a smaller number of 

right hemisphere regions (insula and MFG) more consistently during comprehension than 

production tasks. Finally, PSA activated only right frontal (IFG pars opercularis, precentral 

gyrus) and temporal (planum temporale, posterior STG) regions more consistently during 

production than comprehension tasks, in keeping with a role for right superior temporal 

cortex during auditory feedback monitoring of produced speech (Wolpert et al., 1995; 

Rauschecker and Scott, 2009; Houde and Nagarajan, 2011; Yamamoto et al., 2019). 

 

Novel implications  

a) Similarities between the language network in PSA and healthy individuals 
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A previous ALE analysis in PSA concluded that the language network in controls is left-

lateralised, whereas PSA consistently activate additional right hemisphere regions that are not 

consistently activated in controls (Turkeltaub et al., 2011). The clear picture that emerges 

from the current, much larger ALE analysis is different in a fundamental way. Whilst one can 

find reliably different levels of activation likelihood between the PSA and control groups, 

these differences all fall within regions that are found to activate in both groups; in classical 

neuropsychological terminology (Shallice, 1988), there is not a classical dissociation between 

PSA and control groups. Thus in the omnibus language ALE analysis, the conjunction 

demonstrated that both PSA and controls consistently activated overlapping regions across 

the left and right frontal and temporal lobes, right parietal lobe, and midline cortex. Two 

important implications are that (a) right as well as left hemisphere areas make importance 

contributions to language and (b) that regions, consistently activated by language tasks in 

PSA, are also involved in language pre-morbidly. This runs counter to the view that these 

areas are recruited ‘de novo’ post-stroke. 

 

b) Undamaged brain regions less consistently activated in PSA than controls 

Irrespective of how the language tasks were divided (all language tasks, comprehension, 

production, higher demand vs. lower demand tasks), we found that in PSA certain regions are 

less consistently activated than in controls. These areas were not only left hemisphere regions 

that might have been lesioned directly by the stroke (i.e., within the left hemisphere MCA: cf. 

(Phan et al., 2005; Zhao et al., 2020)) but also domain-general regions of midline superior 

frontal and paracingulate cortex, right insular cortex and right fronto-temporal cortex. This 

result implies that the language and cognitive deficits observed in PSA might not be a simple 

reflection of the lesioned areas but might result from combinations of lesioned and under-

engaged areas. Accordingly, the use of task-based fMRI may be an important addition for 

future studies that aim to explore the neural bases of aphasia or build prediction models (Saur 

et al., 2010; Skipper-Kallal et al., 2017a; van Oers et al., 2018). Less consistent activation in 

regions distant to the lesions might reflect functional diaschisis, i.e., reduced task-related 

engagement throughout a connected network where one or more nodes have been 

compromised by damage (Carrera and Tononi, 2014). Alternatively from a more functional 

viewpoint, these distant regions may be less engaged because in PSA language is performed 
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sub-optimally and therefore the full extent of the distributed language network is under-

utilised. 

 

c) Implications for mechanisms of post-stroke aphasia recovery 

Neurocomputational invasion would predict that the post-stroke language network should 

expand to include novel non-language regions that were not consistently activated in healthy 

individuals (Keidel et al., 2010; Stefaniak et al., 2020). This mechanism is complementary to 

the classical notion that right hemisphere homologues of left hemisphere language regions are 

quiescent in health but become activated to perform similar language computations following 

left hemisphere stroke (Finger et al., 2003; Turkeltaub et al., 2011). A second linked idea is 

the notion of transcallosal disinhibition (Marshall, 1984; Heiss and Thiel, 2006). This 

proposes that right hemisphere, homologous regions are quiescent in health because they are 

inhibited transcallosally by the dominant left hemisphere, but can be ‘released’ when these 

dominant areas are damaged. This idea has been an important motivation for trials of non-

invasive brain stimulation to inhibit the right IFG pars triangularis to aid language recovery 

through a shift back to left hemisphere areas (Ren et al., 2014; Bucur and Papagno, 2019). 

Previous work (Stefaniak et al., 2020) has noted that these hypotheses appear to be 

biologically-expensive (areas are maintained but not used, except in people who happen to 

have the right type and location of damage), computationally underspecified (e.g., how right 

hemisphere regions can develop language functions when they are being constantly 

inhibited), and are an untested extension of findings from low-level, non-language motor 

circuitry (Ferbert et al., 1992; Di Lazzaro et al., 1999). Additional counter evidence includes: 

chronic language weaknesses can be found following right hemisphere damage (Gajardo-

Vidal et al., 2018); and, residual language abilities in PSA have been related to the level of 

right hemisphere activation (Crinion and Price, 2005; Griffis et al., 2017; Skipper-Kallal et 

al., 2017b). The current study adds to these observations in that multiple regions throughout 

both hemispheres are consistently activated during language in both PSA and controls. 

Looking across these studies, it would seem that there is a solid empirical basis to move 

beyond oversimplified discussions of ‘left versus right’ language lateralisation and, instead, 

to explore how a bilateral, albeit asymmetrically left-biased, language network supports 

healthy function and generates aphasia after damage and partial recovery. 
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Variable neurodisplacement postulates that aphasia recovery involves increased utilisation of 

spare capacity within regions that are part of the premorbid language network but 

downregulated in health to save neural resources. Dynamic responses to performance 

demands in health and after damage could involve upregulation of language-specific and/or 

domain-general executive functions (Stefaniak et al., 2020). Accordingly, variable 

neurodisplacement encompasses the hypothesis that increased utilisation of domain-general 

executive regions aids language recovery post-stroke (Sharp et al., 2010; Geranmayeh et al., 

2014). As noted above, a key finding from these ALE analyses was that many, bilateral 

regions were commonly engaged by PSA and control groups. Even where there were graded 

differences in favour of PSA over controls (e.g., more consistent activation in the right 

anterior insula and IFG), these are consistent with enhanced utilisation of demand-control 

regions due to increased task difficulty rather than ‘expansion’ into new territory via 

neurocomputational invasion. Thus, in the PSA group, there was more consistent activation 

of the right anterior insula/operculum and IFG during higher than lower demand 

comprehension and production tasks. Although there was insufficient control data for 

performance demand to be examined in this ALE analysis, these same right anterior 

insula/IFG regions are known to be recruited during difficult tasks in healthy individuals: the 

right IFG has been implicated in domain-general top-down control in health (Koechlin and 

Jubault, 2006; Meinzer et al., 2012; Baumgaertner et al., 2013); a previous ALE meta-

analysis found that effortful listening under difficult conditions in healthy individuals is 

associated with consistent activation in the bilateral insulae (Alain et al., 2018); and all ALE-

identified right hemisphere regions overlap with either domain-general regions of the MD 

network (Fedorenko et al., 2013) or regions of the semantic control network known to be 

involved during executively-demanding semantic cognition in healthy individuals (Noonan et 

al., 2013). 

The results do not suggest that there is a global, undifferentiated upregulation of all domain-

general neural resources in PSA. Indeed, we repeatedly found less consistent activation in 

midline regions of the SFG/paracingulate gyrus in PSA compared to controls, including 

during higher demand comprehension tasks. These midline clusters overlap with at least 

some definitions of the domain-general executive network (Fedorenko et al., 2013). In 

contrast to our findings, increased activation in the same midline region has been associated 

with language recovery between two weeks and four months post-stroke (Geranmayeh et al., 

2017). It is not clear what the basis of these opposing results is, but one possibility is that this 
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ALE analysis was predominantly based on data collected from patients in the very chronic 

(see below) rather than sub-acute stage. If correct, it may be the case that the executive 

functions supported by medial prefrontal regions (e.g., response conflict, task planning 

(Dosenbach et al., 2008; Mansouri et al., 2017)) are critical during early phases of recovery 

when performance is at its most impaired, but in relatively well-recovered, chronic PSA these 

mechanisms are not required (indeed continued involvement might signal poor recovery).  

 

d) Age of PSA included in functional neuroimaging studies 

As is commonly the case in stroke research (Fareed et al., 2012; Thomalla et al., 2017), the 

median ages of the 64 included PSA subject groups was lower (57.4 years) than the average 

stroke patient (e.g., the median age of the UK stroke population was 77 in 2017 (SSNAP, 

2017). This may limit the generalisability of results obtained from functional neuroimaging 

studies to the ‘real-world’, and future studies should investigate patterns of activation in older 

PSA that are more representative of the average stroke survivor. 

 

Unanswered questions: time-dependent changes and longitudinal imaging studies 

We identified areas of enquiry that have had little attention in the literature to date. It was not 

possible to ascertain whether there are consistent activation differences between subacute and 

chronic PSA. The 64 PSA groups had median times post-stroke of 38.0 months and even 

when counting the ‘earliest’ timepoint at which each PSA group was scanned, only 9/64 PSA 

groups were less than 6 months post-stroke. This dearth of data meant it was not possible to 

use ALE to explore differences between sub-acute and chronic PSA. Importantly, this 

indicates a pressing need for future studies of this early period, when there is the fastest rate 

of language recovery (Pedersen et al., 1995; Yagata et al., 2017). Additionally, it was not 

possible to explore longitudinal fMRI changes given the extremely limited number of 

longitudinal PSA fMRI studies. Even among papers that reported longitudinal information, 

several were small (n<10 participants) and there was considerable variation with respect to 

which language or non-language cognition was explored and the timing of the first imaging 

timepoint (from the first few days to a few months post-stroke). The relative lack of studies 

and small sample sizes are unsurprising given the considerable logistic challenges involved in 

imaging subacute stroke patients. However, longitudinal studies are a powerful approach for 
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exploring the neural bases of recovery (because the different starting points and inter-

participant variations are controlled), and particularly for exploring whether language 

network changes observed in the chronic phase occur immediately or over time. Such 

information will be critical for understanding the mechanisms underpinning both 

instantaneous resilience to the effects of damage, degeneracy, and longer-term experience-

dependent plasticity (Price and Friston, 2002; Ueno et al., 2011; Chang and Lambon Ralph, 

2020; Sajid et al., 2020; Stefaniak et al., 2020). 

 

Conclusion and limitations 

The results of this large-scale analysis argue against classical neurocomputational invasion 

accounts of PSA language, i.e., expansion of the language network post-damage into new 

territories. Instead, (a) there is considerable overlap between the bilateral language-related 

functional networks observed in PSA and controls; (b) the PSA participants are less likely 

than controls to activate certain regions including areas beyond their core lesions in the left 

MCA territory; and (c) are more likely to engage executive-control related regions of the 

right anterior insula and IFG. These results fit with a view that language is supported by a 

dynamic, bilateral albeit left-asymmetric network, and consistent with the variable 

neurodisplacement hypothesis. The size of this (random-effects) analysis (including data 

pertaining to 481 PSA with a heterogenous variety of lesion locations and aphasia profiles), 

should mean that the results will generalise to the wider patient population. 

Despite its size and clear results, inevitably this study has limitations. First, we did not have 

information regarding lesion location and thus were unable to investigate how this might 

influence activation patterns post-stroke (Stockert et al., 2020). Second, it is important to be 

cautious about decreased neurovascular coupling post-stroke, which itself could generate 

false differences between patients and controls. However, altered neurovascular coupling is 

less likely in chronic patients and in undamaged regions of the midline and right hemisphere 

(Geranmayeh et al., 2015). Third, as is typical, the current analysis is based on mass-

univariate BOLD activation differences. It is possible that ‘neural reprogramming’ post-

stroke might entail differences in utilisation that are only observable using connectivity 

analyses (Schofield et al., 2012; Meier et al., 2018) or multivariate techniques (Fischer-Baum 

et al., 2017; Lee et al., 2017). Currently, there are very few studies that have used such 

techniques in PSA. Finally, domain-general upregulation might occur at earlier stages post 
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stroke, as has been suggested by the largest longitudinal study in PSA to date (Geranmayeh et 

al., 2017). However, this analysis demonstrates that there are currently insufficient acute and 

sub-acute data in the published literature to investigate time-dependent changes at earlier 

stages post-stroke. 
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Figure Legends 

Figure 1: Flowchart of the selection process for included papers 

Flowchart showing the selection process at each stage of the systematic search up to April 

2020. Ultimately, activation foci from 33 papers were included in the ALE analysis. 
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Figure 2: Histogram showing the distribution of participant groups with age 

and time post-stroke 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A: Histogram showing the number of control groups for each ‘mean age’. B: Histogram 

showing the number of PSA groups for each ‘mean age’. C: Histogram showing the 

number of PSA groups for each post-stroke time period. 
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Figure 3: Omnibus ALE analysis for all language tasks in PSA and healthy 

controls 

 

A: ALE maps of all tasks in PSA (green clusters), in controls (red clusters) and 

conjunction map of all tasks in both PSA and controls (yellow clusters). ALE single 

dataset analyses thresholded at p<0.001 uncorrected voxel-wise, FWE p<0.05 cluster 

wise, 1000 permutations. B: ALE maps of ‘Omnibus: controls > PSA’ (violet clusters) and 

‘Omnibus: PSA > controls’ (blue clusters). ALE contrast analyses thresholded at p<0.05, 

10000 permutations, minimum cluster extent 200ml. 
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Figure 4: ALE analysis for comprehension tasks in PSA and healthy controls  

 

 

A: ALE maps of all comprehension tasks in PSA (green clusters) and in controls (red 

clusters), and the conjunction map (yellow clusters). B: ALE maps of ‘Comprehension: 

controls > PSA’ (violet clusters) and ‘Comprehension: PSA > controls’ (blue clusters). C: 

ALE maps of higher processing demands comprehension tasks in PSA (green clusters), in 

controls (red clusters) and the conjunction map (yellow clusters). D: ALE maps of ‘High 

demand comprehension tasks: controls > PSA’ (violet clusters) and ‘High demand 

comprehension tasks: PSA > controls’ (blue clusters). E: ALE map of lower processing 

demand comprehension tasks in PSA only (green clusters). Panels A, C, E: ALE single 

dataset analyses thresholded at p<0.001 uncorrected voxel-wise, FWE p<0.05 cluster 

wise, 1000 permutations. Panels B, D: ALE contrast analyses thresholded at p<0.05, 

10000 permutations, minimum cluster extent 200ml. 
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Figure 5: ALE analysis for production tasks in PSA and healthy controls  

 

 

A: ALE maps of all production tasks in PSA (green clusters), in controls (red clusters) and 

conjunction map of all production tasks in both PSA and controls (yellow clusters). B: 

ALE maps of ‘Production tasks: controls > PSA’ (violet clusters). C: ALE map of higher 

processing demand production tasks in PSA (green clusters). D: ALE map of lower 

processing demand production tasks in PSA (green clusters) and in controls (red clusters). 

E: ALE map of ‘Lower processing demand production tasks: controls > PSA’ (violet 

clusters). Panels A, C, E: ALE single dataset analyses thresholded at p<0.001 uncorrected 

voxel-wise, FWE p<0.05 cluster wise, 1000 permutations. Panels B, D: ALE contrast 

analyses thresholded at p<0.05, 10000 permutations, minimum cluster extent 200ml. 
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Figure 6: ALE analysis of within group task differences  

 

 

A: ALE maps of ‘controls: production > comprehension tasks’ (red clusters), and 

‘controls: comprehension > production tasks’ (violet clusters). B: ALE maps of ‘PSA: 

production > comprehension tasks’ (green clusters), and ‘PSA: comprehension > 

production tasks’ (blue clusters). C: ALE maps of ‘PSA comprehension tasks: higher > 

lower processing demands’ (yellow clusters) and ‘PSA comprehension tasks: lower > 

higher processing demands’ (cyan clusters). D: ALE maps of ‘PSA production tasks: 

higher > lower processing demands’ (yellow clusters). ALE contrast analyses thresholded 

at p<0.05, 10000 permutations, minimum cluster extent 200ml. 
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Figure 7: Overlaps between clusters identified in the ALE analysis and the 

Multiple Demand Network  

 

 

A: ALE maps of ‘Omnibus analysis: controls > PSA’ (violet clusters) and ‘Omnibus 

analysis: PSA > controls’ (blue clusters). B: ALE maps of ‘Comprehension: controls > 

PSA’ (violet clusters) and ‘Comprehension: PSA > controls’ (blue clusters). C: ALE maps 

of ‘Production: controls > PSA’ (violet clusters). D: ALE maps of ‘Comprehension in 

PSA: higher> lower processing demands’ (yellow cluster) and ‘Production in PSA: higher 

> lower processing demands’ (cyan cluster). All panels include the outline of the Multiple 

Demand network (maroon) (Fedorenko et al., 2013). ALE contrast analyses thresholded at 

p<0.05, 10000 permutations, minimum cluster extent 200ml.  
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