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Abstract (221/250) 

Anatomical connectivity between cortical areas condition the set of observable functional 

activity in a neural network. The large-scale cortical monkey frontoparietal network (FPN) has 

been shown to facilitate complex cognitive functions. However, the organization of anatomical 

connectivity between areas in the FPN supporting such function is unknown. Here, a new 

connectivity matrix is proposed which shows the FPN utilizes a small-world architecture with an 

over-reliance on the M9 dynamical relay 3-node motif and degree distributions which can be 

characterized as single scale. The FPN uses its small-world architecture to achieve the kind of 

simultaneous integration and specialization of function which cognitive functions like attention 

and working memory require. Contrary to many real-world networks, the in and out single scale 

degree distributions illustrate the relatively homogeneous connectivity of each area in the FPN, 

suggesting an absence of hubs. Crucially, the M9 dynamical relay motif is the optimal 

arrangement for previously reported near-zero and non-zero phase synchrony to propagate 

through the network, serving as a candidate topological mechanism. These results signify the 

impact of the organization of anatomical connectivity in the FPN. They can serve as a 

benchmark to be used in the network-level treatment of neurological disorders where the types of 

cognition the FPN supports are impaired. Additionally, they can inform future neuromorphic 

circuit designs which aim to perform aspects of cognition. 
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Introduction 

The mammalian brain engages cortical neural networks during behavior1,2. The networks 

are composed of brain areas, or nodes, connected via axonal projections, or edges3,4. This 

structural organization of the network permits a set of functional interactions observed in neural 

signals recorded during behavior5. 

A prominent functional interaction observed in neural signals is that of synchronous 

activity6. Recent studies have explored the structure-function relationship as it relates to 

synchrony through theoretical computational modeling. Vicente, Gollo, Mirasso, Fischer, & Pipa 

(2008) established that an apex node reciprocally connected to two unconnected nodes could 

foster zero-lag synchrony via dynamical relaying between the two unconnected nodes despite 

axonal conduction delays. This provided a topological mechanism for previously published 

findings from multicellular electrophysiological recordings which found distributed synchronous 

discharge in different structures of the cortex, hippocampus and thalamus8,9. Gollo, Mirasso, 

Sporns, & Breakspear (2014) extended this line of work by showing that a just a single 

resonance pair, two reciprocally connected nodes, could foster zero-lag synchrony in 3-node 

motifs. Further, they showed that the dynamical relay M9 motif, which has two resonance pairs, 

was optimally structured to provide both zero and non-zero phase lag synchrony. Finally, they 

found that the synchrony initiated locally with a resonance pair could propagate through the 

entire network, thereby impacting global network dynamics. These studies provide candidate 

topological mechanisms for the neural synchrony that has been reported to support cognitive 

functioning. 

It is thought that an impaired structure-function relationship results in, or contributes to, 

various cognitive impairments. This phenomenon has been explored in aging, schizophrenia and 
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autism11–15. A better understanding of the connectivity patterns that arise in mammals without 

mental health disorders can allow for comparison with the patterns which characterize 

impairments observed in disorders within the context of connectomics16,17. 

Cognitive processing can occur through neural interactions both within and between 

regions of the cortex, forming large-scale cortical networks 2,18,19. The frontoparietal network 

(FPN) is one-such large-scale network comprised of sub-networks characterized by functional 

oscillatory dynamics that support aspects of cognition such as attention, cognitive control and 

working memory in both humans and non-human primates20–25. These dynamics exhibit unique 

spectral power and near-zero26–28 and non-zero29 phase-lag synchrony properties24,30–34. 

However, it is not understood how the unique structure of the FPN enables these properties to 

occur in the patterns required to support cognitive processing. The topological properties of this 

network remain to be elucidated.  

Here the anatomical connections of the FPN are identified based on collated tract-tracing 

studies and examine the ways in which the topology acts as a reliable, integrative substrate while 

contributing to the reported neuronal dynamics which support varied cognitive functions. A new 

association matrix is proposed that uses a more finely grained parcellation scheme than previous 

studies35 with enough nodes for future analyses which require a high level of resolution36. A 

graph theoretic topological analysis4,37 was conducted to discover connectivity patterns in the 

399 connections that make up the FPN and how they support cognitive functioning. The FPN is 

shown to be made up of relatively homogeneous connectivity between areas with an apparent 

lack of hub nodes controlling information flow. Further, the FPN utilizes a structural motif 

known for optimally promoting near-zero and non-zero neural synchrony. Finally, the FPN is 

discovered to be a small-world network, conferring both functional specialization and 
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topological integration. Therefore, the FPN leverages a distributed connectivity architecture 

useful for critical information processing. It is optimally structured to support various aspects of 

cognition through neural synchrony and integration into coherent streams which support overall 

behavior. 

 

Results 

The Frontoparietal Connectome 

To identify the structural connectivity of the FPN, axonal projections between and within 

the frontal and parietal regions of the monkey were collated using the results of tract-tracing 

studies on non-human primates (Methods; Supplementary Table 1) according to the parcellation 

scheme established by Petrides & Pandya (2007) (Figure 1).  
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Figure 1. Lateral, orbital, and medial views of macaque cortex. Areas delineated by architectonic characteristics identified for the 
prefrontal cortex by Petrides & Pandya (1994), the posterior parietal cortex by Pandya & Seltzer (1982), the superior temporal 
gyrus by Pandya & Sanides (1973), the inferotemporal and superior temporal sulcus cortex by Seltzer & Pandya (1978), and the 
posterior parahippocampal gyrus by Rosene & Pandya (1983). The 17 frontal areas and 13 parietal areas that make up the 
frontoparietal network under examination in this study are colored blue and pink, respectively. Adapted from Petrides & Pandya 
(2007) with permission. 
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These connections were assembled into a binary, directed adjacency matrix comprised of 

30 nodes, 17 frontal and 13 parietal (Figure 2). 

 

Figure 2. Binary, directed adjacency matrix describing the connectivity of the frontoparietal monkey network. The rows of the 
matrix represent source nodes, and the columns represent projection target nodes. All nodes represent architectonic areas from 
the Petrides & Pandya (2007) parcellation scheme. Connections are indicated with a black square. White squares represent 
connections that were not reported in the collated studies. Grey squares on the diagonal represent within-area connections and are 
not considered in the graph analysis. The 17 frontal areas are in blue, while the 13 parietal areas are in pink.  

The adjacency matrix can be used to visualize network topology as a graph to better 

understand connectivity patterns (Figure 3). Here, nodes are sized according to their total degree, 

with bigger nodes representing areas with a greater number of incoming and outgoing 

connections than smaller nodes. Apart from a few parietal areas and one frontal, most of the 

areas in the FPN are of a similar size, representing similar total connectivity. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.06.30.178244doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.178244
http://creativecommons.org/licenses/by-nc-nd/4.0/


ORG OF MONKEY FRONTOPARIETAL CONNECTIVITY 8 
 

 
Figure 3. A graph representation of the frontoparietal network generated from the adjacency matrix. Frontal nodes are colored in 
blue and parietal in pink. The 399 directed edges between nodes represent projections between sources and targets. Node size is 
determined by total degrees, which is the sum of in-degree and out-degree connectivity. Bigger nodes represent a greater total 
degree than smaller nodes. The spatial distribution of the nodes is a function of the ForceAtlas layout in Gephi, a network 
visualization and analysis open-source software tool (Methods) The layout controls clustering and dispersion of nodes via 
attraction and repulsion strength parameter values44. Most nodes are of a similar size, representing relatively homogeneous 
connectivity. 

Graph Theoretic Analysis 

Degree distributions convey information about how connectivity is allocated across the 

network45. The FPN’s in and out degree distributions can be characterized as either single-scale, 

scale-free or broad-scale. Single-scale distributions are highly unlikely to contain hubs, while 

scale-free and broad-scale distributions have a high likelihood of hub nodes46.  

The topology of some brain networks47–49 present with hub nodes which serve to 

coordinate the majority of information transfer in the network4. These scale-free degree 

distributions are fit by a power law46 with no node exhibiting connectivity typical of other nodes. 

However, other studies have reported networks of the brain which do not follow power laws50–52.  
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Both tails of the degree distributions of the FPN were tested according to the Clauset, 

Shalizi, & Newman (2009) recipe to determine whether they were fit by a power law 

(Methods)53. The following parameter values were calculated for the in-degree distribution fit: 

α = 3.375, xmin = 12 and L = -62.197 and for the out-degree distribution fit: α = 3.2521, xmin = 10 

and L = -70.3376. 

The degree distributions were visualized by plotting their complementary cumulative 

distribution functions (cCDF) on logarithmic axes45 with their estimated power-law fits53 

(Figures 5a & b). The cCDF conveys the probability of finding a node with degree larger than 

some random value, x. Scale-free networks will approximate a straight line in these plots54.  

 
Figure 4. Complementary cumulative distribution function (cCDF) of the in-degree distribution (A & C) and out-degree 
distribution (B & D) for the FPN plotted on a logarithmic scale. Tail fits calculated according to the recipe proposed by Clauset et 
al., (2009) are shown in A & B and fits over the entire distribution are shown in C & D. Black circles represent the empirical 
distribution, the red dotted line represents a power-law fit, blue dotted line represents an exponential fit and the purple dotted line 
represents a Gaussian fit (C & D only). A. The tail fit begins from a lower bound estimate of x=12 (xmin). However, it is not 
likely that the in-degree distribution follows a power law (D = 0.2097, p = 0.0158)53. Rather, a log-likelihood ratio shows an 
exponential distribution is a better fit to the tail of the distribution (R = -3.386, p = 0.00071)55. B. The tail fit begins from a lower 
bound estimate of x=10 (xmin). The goodness-of-fit test does not rule out the possibility that the out-degree data may have been 
drawn from a power-law distribution (D = 0.1446, p = 0.1728)53. However, a log-likelihood ratio shows that an exponential fit 
may be just as good, or bad (R = -1.676, p = 0.094)55. C. A Gaussian model (adj R2 = 0.9740), fits the in-degree empirical data 
better than an exponential (adj R2 = 0.8293) or power law (adj R2 = 0.5660). D. A Gaussian model (adj R2 = 0.9909), fits the out-
degree empirical data better than an exponential (adj R2 = 0.8981) or power law (adj R2 = 0.0.6988). 
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Next, the Kolmogorov-Smirnov statistic was used to test the goodness-of-fit between the 

empirical data and that drawn from a power-law distribution53. The in-degree data is not likely to 

have been drawn from a power-law distribution (D = 0.2097, p = 0.0158). However, a power-law 

distribution cannot be ruled out for the out-degree data (D = 0.1446, p = 0.1728). The data needs 

to be compared with other distributions to determine whether they match the data as well, or 

better. 

Finally, different distributions were tested to see whether they were better fits to the tail 

of each distribution55. The log-likelihood ratio was calculated between the two candidate 

distributions. It was positive if the data was more likely in the first distribution and negative if 

more likely in the second distribution. Using this ratio, the exponential distribution was found to 

fit the tail of the in-degree data significantly better than a power-law distribution (R = -3.386, p = 

0.00071). However, this does not mean the exponential distribution is an objectively good fit for 

the data. The ratio showed no significant difference between a power-law fit of the tail of the in-

degree data and the following distributions: log-normal (R = -1.6299, p = 0.103), log-normal 

positive (R = -4.40, p = 0.1031) and truncated power-law (R = 3.693, p = 0.082). Despite the 

support for a power-law fit of the tail of the out-degree distribution based on the goodness-of-fit 

test in the previous step, the ratio showed the following distributions were no better or worse: 

exponential (R = -1.676, p = 0.094), log-normal (R = -0.978, p = 0.328), log-normal positive (R = 

-1.798, p = 0.328) and truncated power-law (R = -1.918, p = 0.083). It may be that all these 

distributions describe the data equally poorly. 

Due to the poor fits to the candidate distributions using  the tail-fitting recipe proposed by 

Clauset, Shalizi, & Newman (2009), the entire empirical in-degree (Figure 5c) and out-degree 

(Figure 5d) distribution data was also fit to power, exponential and gaussian models (Methods). 
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These distributions qualify as potential fits based on their success in real-world connection 

distribution data52,54. The in-degree data was most consistent with a Gaussian distribution (adj R2 

= 0.9740), in contrast to the exponential (adj R2 = 0.8293) and power law (adj R2 = 0.5660) 

distributions. The out-degree data was also most consistent with a Gaussian distribution (adj R2 = 

0.9909), in contrast to the exponential (adj R2 = 0.8981) and power law (adj R2 = 0.6988) 

distributions. 

Motifs  

Most studies analyze subgraphs of the larger monkey FPN due to technological 

limitations24,30,32,56. Some subgraphs may carry more importance in establishing the topological 

organization of the larger FPN than others. These subgraphs are known as structural motifs that 

serve as essential building blocks for the larger system57,58. They enable a variety of transient 

connection dynamics known as functional motifs45. Motifs of size 3 (M=3) are typically 

studied58. They are the most computationally tractable. The studies of the monkey FPN usually 

have at least 3 recording sites spanning the network. Additionally, the modeling work detailing 

the structure-function relationship through neural synchrony was based on size 3 motifs7,10. 

Accordingly, the FPN was analyzed to determine which structural motifs of size 3 were 

overrepresented in comparison with benchmark null networks. Any overrepresented motifs serve 

as the anatomical building block(s) of the network and give rise to specific functional 

interactions which can be observed in the literature. Further, regional areas that participate in 

these essential structural motifs can be important recording targets in electrophysiological studies 

that aim to describe cognitive behavior supported by the FPN. 

To discover the anatomical building blocks used to create the FPN, structural motifs 

comprised of 3 areas or nodes were analyzed to determine which occurred with a significantly 
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greater frequency than would be expected by chance. There are 13 possible motif classes of size 

three58.  

As reported in other studies of cortical connectivity58–60, motif class ID 9 (M9) was found 

to be significantly overrepresented (p = 0, z = 12.0322 random networks, p = 0.0489, z = 1.6121 

lattice networks) (Supplementary Table 2) in the empirical FPN (Figure 6). It forms an open 

triangle where two nodes are bidirectionally connected to a third apical node but are not 

connected to each other. The M9 motif is known as the dynamical relaying motif due to the 

unique functional capabilities it provides7,61. The M13 motif also appeared to be overrepresented, 

but not to a statistically significant extent (p = 0, z = 19.1224 random networks, p = 0.0538, z = 

1.6108 lattice networks) (Supplementary Table 2). 

 
Figure 5. Comparison of the structural motif frequency spectrum for the empirical FPN with random and lattice benchmark 
networks. Motif class ID 9 was overrepresented in comparison to 100,000 random benchmark networks (p = 0, z = 12.032) and 
lattice networks (p = 0.049, z = 1.612). This dynamical relaying motif serves as a fundamental anatomical building block of the 
network, conferring a repertoire of functional dynamics such as neural synchrony that can be used to support various aspects of 
cognition. Empirical structural motifs counts are in green. Motif counts for random networks are in dark grey and the counts for 
lattice networks are in light grey. 
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Small world 

Networks demonstrating topology simultaneously consistent with a small characteristic 

path length and a high degree of clustering are called “small-world” networks 62. These networks 

cluster nodes into modules thereby minimizing wiring costs and efficiently integrating the 

topology. The result is an optimal information processing paradigm marked by fast transmission 

speeds and successful integration. There have been reports of many networks in neuroscience 

qualifying as small-world, such as the neural network of C. elegans, the brain-stem reticular 

formation and the mouse connectome 52,63.  

Two indicators of “small-worldness” were calculated for the FPN using 100,000 null 

networks. First, Humphries’ index, σ (Methods), was estimated as 1.1429. A value greater than 1 

is considered an indication that the network is small-world. Second, Telesford’s alternative 

index, w, was estimated as 0.0297. A value close to 0, specifically one that falls within the range 

of -0.5 ≤ ω ≤ 0.5, is considered an indication that the network is small-world. Negative values 

indicate a graph with more lattice-like characteristics and positive values indicate more random 

characteristics. Both metrics provide strong support for classifying the FPN as a small-world 

network with Telesford’s index showing a very slight skew towards random characteristics. 

 

Discussion 

The tail of the in-degree distribution of the FPN does not appear to follow a power-law53, 

which can only occur in the presence of hub nodes. Additionally, because it is more likely to 

have been drawn from an exponential distribution, it is not considered heavy-tailed55,64. Heavy 

tailed distributions have many outliers. Exponential distributions are not likely to have outliers. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.06.30.178244doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.178244
http://creativecommons.org/licenses/by-nc-nd/4.0/


ORG OF MONKEY FRONTOPARIETAL CONNECTIVITY 14 
 

Exponential decay in the tail of the degree distribution of neural networks has also been reported 

elsewhere51,54. It is important to keep in mind that this result only states the tail of the data is 

better fit by an exponential distribution than a power law. It does not imply that the exponential 

distribution is an objectively good fit. 

The tail of the out-degree distribution of the FPN had moderate support for a power law 

fit. However, it was not significantly different from an exponential, log-normal, log-normal 

positive or truncated power-law fit either. These distributions may all be bad fits. At minimum, 

the results support the view that neither degree distribution follows a power law.  

The entire in and out degree distributions yielded strong results for both a Gaussian and 

exponential fit65. The Gaussian fit may be stronger because it uses an extra parameter. 

Notably, with both procedures yielding either Gaussian or exponential fits for the data, it 

is highly likely both distributions have a single, characteristic scale54. Single-scale systems have 

a very low probability of large deviations from a characteristic modal value, resulting in a 

relatively homogenous distribution of connectivity across nodes45. 

Thus, the FPN is organized in such a way that the total number of incoming and outgoing 

connections to and from each of its nodes is relatively consistent across areas. There are only a 

small number of areas that greatly differ in the number of their total incoming and outgoing 

connections. Strategically, this could mean that information is diffused throughout the network, 

enabling concurrent or redundant processing. This creates a reliable substrate over which neural 

representations can be formed, maintained, and communicated66.  

Conversely, scale-free networks with hub nodes contribute to a heterogenous 

connectivity profile. Simulations have shown that scale-free networks are more resilient against 
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random node failures than single-scale networks37,67. This is because there are a much greater 

number of low-degree nodes in the scale-free networks leading to a greater likelihood that the 

random failures occur in these nodes. Therefore, there is little to no impact on overall network 

functionality. A disease that successfully impairs cognitive function supported by the single-

scale FPN may owe its effectiveness to a random attack strategy. 

The simulations also show that scale-free networks are much more vulnerable to targeted 

attacks on their highly connected hub nodes than the single-scale networks. The hub nodes 

represent single points of failure in the network. It is possible that serious diseases have evolved 

to target hub nodes, resulting in important cell death. This behavior may be what enables rapid 

disease progression in some patients. In a single-scale topology, if disease or other form of 

neural insult negatively impacts a single area, other similarly connected areas can pick up the 

slack, salvaging the integrity of the network and thereby supporting appropriate function.  

The M9 dynamical relaying motif was statistically overrepresented in the FPN, 

establishing its importance as an anatomical building block of the network. Previous studies have 

established that its structure is ideal for providing both zero-lag synchrony between its driven 

nodes and non-zero phase synchrony between its relay and either driven node7,10. 

The synchrony initiated by M9’s resonance pair can extend to nodes upwards of four 

steps removed with very little synchrony decay10. Therefore, it may serve as the mechanism for 

zero and non-zero lag synchrony throughout the entire FPN. Crucially, this establishes the M9 

motif as a proposed generative topology which likely gives rise to the synchrony previously 

reported in subgraphs of the FPN supporting attention23, categorization32, working memory24,31 

and cognitive control68. 
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Finally, of the 3-node motifs with resonance pairs, the M9 class was observed to be the 

most robust to large conduction delays and delay mismatches10, which are a defining feature of 

the long-range cortical FPN. 

Overall, the M9 motif is a maximally versatile building block for the FPN, conferring 

global near-zero and non-zero synchrony, enabling robust streams of communication and binding 

which support multiple aspects of cognition. 

The FPN’s small-world architecture provides an economic69 substrate for the brain to 

process information while minimizing wiring cost. Information can flow efficiently due to a low 

global path length and integrate in functionally specialized modules due to high clustering. This 

serves as an elegant solution to the problem of integrating function while allowing for concurrent 

specialization. The simultaneous specialization and integration of function has been observed 

empirically in studies of cognition in both humans and non-human primates23,70.  

Notably, despite a relatively homogeneous degree distribution with no clear evidence of 

hub nodes, there was enough dispersed integration to qualify the network as small world. The 

Telesford index did identify slightly random characteristics for the network, which supports the 

degree distribution findings. Ultimately, this suggests that small-world networks do not need to 

have nodes with much larger degrees relative to the rest of the network. If the nodes all have a 

sufficiently large relative number of connections, this provides the necessary integration to 

qualify as small-world. 

Finally, small-world characteristics have been shown to better support oscillatory 

synchronization in contrast to random or lattice networks71,72. Thus, in addition to the synchrony 
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advantage afforded by the over-represented M9 motif, the small-world qualification permits the 

FPN to optimally conduct neural synchrony in support of cognition. 

In conclusion, the monkey FPN is uniquely anatomically constructed to support various 

important cognitive functions. Its fundamental building block is a dynamical relaying motif 

which confers the optimal 3-node connectivity profile for the synchrony necessary to support 

types of cognition like working memory and attention. Its small-world architecture provides the 

integration and specialization of function that complex cognitive tasks require. Finally, the 

degree of connectivity in the network is dispersed, establishing a reliable substrate for engaging 

in complex cognitive tasks. 

Understanding the structural mechanism which gives rise to the functions a network is 

known to support provides a pathway to examine various neurological disorders. In diseases such 

as schizophrenia, Parkinson’s disease or Alzheimer’s disease, aspects of cognition that the FPN 

is known to support such as working memory and attention are impaired. Using the results of this 

study, scientists can examine the ways in which the organization of anatomical connectivity 

between areas in the FPN are different in pathological animal models or patients suffering from 

these disorders. Treatments could be devised that impact the pathological network in order to 

bring it closer to exhibiting the properties that networks in healthy individuals show73.  

Additionally, engineers interested in exploring the mechanisms of cognition at a network 

level can use these results to explore their physical instantiation in machines. It would be 

interesting to see how the FPN may be realized in a neuromorphic circuit which emphasizes 

homogeneous connectivity in a small-world architecture using a dynamical relaying motif as its 

core building block74. 
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Finally, future empirical studies may want to use the FPN connectivity matrix presented 

here to identify subgraph regions of interest for recording during cognitive tasks. For instance, a 

research team interested in studying working memory neural dynamics may want to target areas 

that form the M9 motif so that the origination of any near-zero or non-zero phase lag synchrony 

contributing to working memory function is more likely to be identified. 

The author hopes that in the future this level of graph theoretic analysis will be applied to 

other large-scale cortical networks supporting complex functions. 

Methods  

Parcellation Scheme 

Non-human primate parcellation schemes are numerous and varied. Some of the ways 

they are derived include establishing boundaries based on cytoarchitecture, myeloarchitecture, or 

function35,75–81. This study uses the parcellation scheme identified in Petrides & Pandya (2007) 

(Figure 1). In this scheme, there are sixteen prefrontal areas: 10, 9, 32, 14, 25, 8B, 8Ad, 9/46d, 

46d, 46v, 9/46v, 8Av, 45, 47/12, 13, 11, one frontal area 6DR and thirteen parietal areas: PE, 

PEci, PEc, PEa, PF, PFop, PFG, IPd, POa, PG, PGm, PGop, Opt. The prefrontal areas were 

delineated based on architectonic characteristics identified by Petrides & Pandya (1994) and the 

posterior parietal areas based on Pandya & Seltzer (1982). Area 6DR was included for its 

hypothesized involvement in the FPN24. 

This scheme was chosen because it allows for a level of granularity sufficient for 

exploring possible functional implications82,83 and it provides enough areas (30) for a graph 

theoretic analysis84. For instance, analyses such as the Clauset, Shalizi, & Newman (2009) recipe 

for analyzing power-law distributed data require enough nodes to ensure the accuracy of the 
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technique55. Each delineated area is considered a node. The connections between them are called 

edges. 

Connections 

Published tract-tracing studies were collated, and results were interpreted according to the 

Petrides & Pandya (2007) parcellation scheme. The studies utilized both retrograde and 

anterograde tracing techniques. Retrograde tracers injected into an area migrate back along axons 

to the neuronal somas they originate from85. Anterograde tracers injected into an area are 

transported away from the soma to their site of termination86. The resulting labeled neurons or 

boutons can then be seen under a microscope allowing for statements to be made about direct 

axonal projections between areas. 

If a tracer clearly had uptake into adjacent areas, its results were not considered in the 

analysis. Tracer injection sites were defined according to the author’s interpretation of a mapping 

to the selected parcellation scheme. Many connections were present in multiple studies. 

However, others were only reported in a single study due to the small number of tract-tracing 

investigations on particular areas of cortex represented in the parcellation scheme 

(Supplementary Table 1).  

It is important to keep in mind that most studies involved Old World macaque monkeys 

(Macaca fascicularis, Macaca mulatta, or Macaca nemestrina)87–89, but a small number also 

involved New World monkeys such as squirrel monkeys (Saimiri sciureus)90 or owl monkeys 

(Aotus trivirgatus)91. Both kinds are of the infraorder Simiiformes. Furthermore, the connections 

were collated from both hemispheres, across sexes and age groups. It was our intention to 
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provide a broad overview of the connections comprising the non-human primate frontoparietal 

network irrespective of variables such as non-human primate species, sex, age, or hemisphere.  

Existing resources for obtaining connectivity information on the FPN were analyzed for 

efficacy. First, the work presented in Markov et al. (2014) served as an excellent example of a 

comprehensive whole-brain network analysis and provided valuable connectivity information. 

However, there were not enough unique areas injected to be useful to examine the frontoparietal 

network, specifically. 

Next,  the Collation of Connectivity data for the Macaque (CoCoMac) database was 

considered for obtaining connectivity information92,93. This database serves as a repository for 

macaque neural connections reported in the tract-tracing literature. To deal with the problem of 

inconsistently named areas, boundary conflicts and differing resolutions from parcellation 

schemes chosen by researchers, CoCoMac uses a routine that attempts to automatically map 

connections between schemes. This gives CoCoMac the ability to make connection statements 

which apply to specific parcellation schemes. Unfortunately, the accuracy of these statements is 

questionable, making them unreliable for use in analysis. For instance, if a study using a 

parcellation scheme different from that proposed by Petrides & Pandya (2007) reports that area 

46 projects to area LIP (lateral intraparietal sulcus), CoCoMac won’t be able to make a reliable 

statement about whether the connection should be from 46d, 46v, 9/46d or 9/46v to area POa, the 

area which corresponds to LIP94. Clearly, the original study in this example lacks the specificity 

necessary to report a connection which applies to the selected parcellation scheme. The only 

solution is to re-interpret the finding from the original study using the selected parcellation 

scheme. Accordingly, all tract-tracing studies were re-interpreted, as necessary.  
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Unfortunately, there is no universally accepted method for defining connection strength 

between areas, despite recent interesting approaches35. The studies used in this analysis reported 

binary or qualitative descriptions of axonal connectivity. This results in the unfortunate situation 

where a dense connection between two areas is treated the same as a sparse connection. The 

binary directed matrix that results from this scenario, however, is still more informative than its 

undirected version, which is primarily used in fMRI studies with diffusion tensor imaging. The 

binary directed matrix reports a connection as either existing (with a 1) or not discovered (with a 

0). It is important to note that the absence of a connection does not mean there is no projection 

between the two areas. Rather, it means that a connection between the areas was not reported. 

Graph Visualizations 

The spacing of the nodes in Figure 3 is controlled by the ForceAtlas layout in Gephi, an 

open-source network visualization and analysis software tool95. Force-directed layouts, like that 

used in the ForceAtlas layout, quantify levels of spatial attraction and repulsion for the nodes 

based on some measure of pair-wise node distance like topological path length, the minimum 

number of edges between any two nodes45. These layouts minimize edge crossings, enhance 

symmetry, keep edge lengths uniform, spatially distribute nodes in a uniform manner and 

correlate node position with their topological adjacency. 

Graph Measures 

All graph theoretic analyses were conducted using the publicly available Brain 

Connectivity Toolbox96. 

Degree Distribution 
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To determine whether the FPN’s degree distributions were scale-free or broad-scale, an 

analysis was conducted to test whether its in or out-degree distributions follow a power law. The 

recipe for evaluating the existence of power-law scaling proposed by Clauset, Shalizi, & 

Newman (2009) was followed using the publicly available MATLAB and Python55 scripts. The 

recipe is to first fit a power-law to the data above some lower bound, xmin, using maximum 

likelihood estimation, then test its goodness of fit and finally to compare the power law with 

alternative distributions using a likelihood ratio test. A lower bound is used because it is typical 

for empirical data to only follow a power law for values above some level of x53. This results in a 

fit for the tail of the distribution. 

First, the data is fit to a power-law using maximum likelihood estimation using the 

publicly available MATLAB function ‘plfit’.  

The fitting procedure estimates parameter values for the following equation: 

P(degree = x) ~ x-α for x ≥ xmin (1) 

Where α  is the maximum likelihood estimate of the scaling exponent, xmin is the estimated 

degree of the lower bound of power-law behavior and L is the log-likelihood (equation 3.5 in 

Clauset et al., 2009) of the data x ≥ xmin under the fitted power law. 

Next, the goodness of fit between the empirical data and that drawn from a power-law 

distribution is tested using the Kolmogorov-Smirnov statistic in the publicly available MATLAB 

function ‘plpva’. There were 5,000 semiparametric repetitions of the fitting procedure. The 

statistic provides a p-value that allows a determination to be made about whether the power-law 

hypothesis can be ruled out. If p ≤ 0.1, the power law can be ruled out 
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Finally, the power law fit is compared with alternative distributions using a log-

likelihood ratio test enabled via the Powerlaw Python package55. The distributions’ tails are 

compared to see which is a better fit to the data. If the log-likelihood ratio is positive, the data 

was more likely in the first distribution. If it is negative, the data was more likely in the second 

distribution. The p-value indicating directional significance is also provided. 

Additionally, the entire in and out-degree distribution data were fit to power, exponential 

and gaussian models using MATLAB’s method of nonlinear least squares error minimization65, 

which minimizes the following: 

S = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  (2) 

Where n is the number of empirical data points, yi is the probability of a node’s degree being 

greater than or equal to a random degree (the cCDF), ŷi is the predicted probability value and S is 

the summed square of residuals. 

Null Models 

The FPN was rewired using two different algorithms to generate null distributions used in 

the motif and small world analyses. Each algorithm creates networks at either end of the 

topological spectrum: random and lattice based62. The first algorithm functions by rewiring two 

random connections involving four nodes to a new connection scheme involving the same four 

nodes ensuring the connections in the new scheme do not already exist. If they do exist, the 

process is abandoned and begun anew with two different random connections. The algorithm 

proceeds in this fashion, maintaining the same network size, connection density and in and out-

degree distributions as the original network, resulting in a random network97. It has been shown 

that completing the rewiring process at least 10 times the number of edges in the network is a 
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long enough time to wait to ensure sufficient mixing98. The FPN has 399 edges. So, there were 

3,990 iterations used to generate each null network. 

The second algorithm functions in much the same way as the first. After rewiring the two 

random connections and ensuring they are novel, it must also be confirmed that they are now 

closer to the diagonal of the adjacency matrix than they were previously. This ensure 

connections only link nearby nodes. If this is not the case, the process is abandoned and begun 

anew with two different random connections. Just like the first algorithm, the network size, 

connection density and degree distributions are maintained. The result is a latticed network50. 

Motifs 

All 13 classes of structural motifs of size three58 were tested for overrepresentation in the 

empirical FPN. The number of instances of each motif class were counted in the FPN, yielding a 

motif spectrum. These empirical frequencies were compared to 100,000 random and lattice 

benchmark networks’ motif spectra. P-values for each motif class were calculated as the fraction 

of times the frequency count of a benchmark network was higher than the count in the empirical 

FPN. If the p-value was less than 0.05 for both the random and lattice benchmark networks, the 

motif class was considered to be significantly overrepresented in the empirical FPN.  

The amount of times each area participated across the 13 classes was quantified in the 

empirical FPN and compared to the frequency observed in the 100,000 random and lattice 

benchmark networks as well. P-values were calculated as the fraction of times the frequency 

count of each area’s participation in motif classes exceeded that observed in the empirical FPN. 

If the p-value was less than 0.05 for both the random and lattice benchmark networks, the area 

was considered to be significantly overrepresented in the empirical FPN. 
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Small world 

The small-world topology of a network can be quantified by comparing its observed 

characteristic path length, L, and clustering coefficient, C, with their distributions in null 

networks. 

Average path length measures how efficiently information can be routed in a network. 

For any nodes i and j, the shortest path length, li,j, between them is defined as the total number of 

edges one must traverse in navigating from node i to node j along the quickest route in the binary 

directed graph of the network. This can be computed for each node in a network 

algorithmically99. Next, each node’s shortest path length is averaged to quantify the average path 

length of the entire network, the characteristic or global path length: 

𝐿𝐿 =
1
𝑛𝑛
�𝑙𝑙𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑖𝑖=1

 
(3) 

The clustering coefficient measures a network’s level of integration in terms of 3-node 

subgraphs. For any node i, its clustering coefficient is calculated using the following ratio: 

𝐶𝐶(𝑖𝑖) =
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑖𝑖

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑖𝑖
 (4) 

Next, each node’s clustering coefficient is averaged to quantify the clustering of the 

entire network: 

𝐶𝐶 =
1
𝑛𝑛
�𝐶𝐶(𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 
(5) 

There are two metrics used to quantify the small-worldness of a network: Humphries’ 

index of small-worldness, σ52 and Telesford’s alternative index, ω100. The calculation of 
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Humphries’ index requires the characteristic path length and clustering coefficient be normalized 

to their average values in appropriately randomized null networks. The following normalized 

values are obtained: 

𝛾𝛾 =
𝐶𝐶

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 (6) 

𝜆𝜆 =
𝐿𝐿

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 (7) 

Where Crand and Lrand are the average clustering coefficient and characteristic path length 

calculated for an ensemble of appropriately randomized null networks. Next, the normalized 

values are divided, providing the following index: 

𝜎𝜎 =
𝛾𝛾
𝜆𝜆
 (8) 

From this equation, if λ ~ 1 (low path length) and γ > 1 (high clustering), then σ > 1. 

Values of σ > 1 are typically considered an indicator of a network’s small-world organization. 

The calculation of Telesford’s alternative index stems from the idea that appropriately matched 

lattice networks are better suited to normalize the clustering coefficient metric than randomized 

networks. This is because a lattice network presents with maximal clustering, while a random 

network presents with minimum global path length. Hence, Telesford et al. (2011) propose the 

following index: 

𝜔𝜔 =
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐿𝐿

−
𝐶𝐶

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 (9) 

Where Clatt and Lrand are the average clustering coefficient and characteristic path length 

calculated for an ensemble of appropriately matched lattice and randomized null networks, 
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respectively. The index ranges between -1 and 1. A value close to 0 is typically considered an 

indicator of a network’s small-world organization. 

 

Code Availability: No software was used to collect data for this study. However, software was 

used for the data analysis. The commercial product MATLAB R2019b was used for all analyses. 

The publicly available Brain Connectivity Toolbox v2019-03-03 was used for all graph theoretic 

analyses. The open-source Gephi v0.9.2 platform was used for graph visualizations. Aaron 

Clauset & Cosma Shalizi’s publicly available MATLAB functions v2012-01-17 and Jeff 

Alstott’s open-source powerlaw Python package v2020-02-02 were used for the degree 

distribution tail-fitting. All associated MATLAB code for this study can be found on the publicly 

available Github repo: https://github.com/thor4/Monkey-Data/tree/master/structural 

Data Availability: The data used in the analysis for this study can be found on the publicly 

available Github repo linked above. It can also be seen in Figure 1. Steps to collect the data were 

documented in the Methods section with corresponding supplementary tables. 
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