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Abstract 
 
The study of the brain’s processing of sensory inputs from within the body (‘interoception’) has been gaining rapid 
popularity in neuroscience, where interoceptive disturbances are thought to exist across a wide range of chronic 
physiological and psychological conditions. Here we present a task and analysis procedure to quantify specific 
dimensions of breathing-related interoception, including interoceptive sensitivity (accuracy), decision bias, 
metacognitive bias, and metacognitive performance. Two major developments address some of the challenges 
presented by low trial numbers in interoceptive experiments: (i) a novel adaptive algorithm to maintain task 
performance at 70-75% accuracy; (ii) an extended hierarchical metacognitive model to estimate regression 
parameters linking metacognitive performance to relevant (e.g. clinical) variables. We demonstrate the utility of the 
task and analysis developments, using both simulated data and three empirical datasets. This methodology represents 
an important step towards accurately quantifying interoceptive dimensions from a simple experimental procedure 
that is compatible with clinical settings.  
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Introduction 
 
Understanding how the brain integrates sensory information to guide perception and action is a core component of 
neuroscientific research. Whilst the mapping of sensory pathways and perceptual phenomena have seen major 
developments in our understanding of the ‘exteroceptive’ domain (such as vision, audition, touch etc.), the study of 
‘interoception’ (or the brain’s processing of sensory inputs from within the body) has begun receiving attention only 
relatively recently1. While theoretical concepts of the dynamic interplay of brain and body – including interoception, 
homeostatic and allostatic control2–5 – exist, empirical investigations have lagged behind. However, empirical studies 
of interoception have been recently boosted by a surge of interest in multiple neuroscientific fields, given that 
impairments in interoceptive processing have been proposed to play a role in emotions, decision making, 
consciousness and mental health1,6. 
 Perceptual processing is a complex phenomenon, and one that is highly integrated with other domains of 
brain function. For example, visual perception can be manipulated via changes in factors such as attention7, emotional 
state8 or expectation9. Furthermore, objective performance in perceptual detection tasks (i.e. accuracy and sensitivity 
towards stimulus detection, as often measured with classic psychophysics experiments10 and using inspiratory 
loading paradigms11–15) can be differentiated from more ‘metacognitive’ dimensions, where metacognition refers to 
the ability to accurately reflect and monitor cognitive or perceptual processes15–19. To quantify aspects of 
metacognition, measures of task performance can be paired with judgements of the confidence assigned to a 
decision15,17,19,20. From these metrics, average confidence can be thought of as a ‘metacognitive bias’, or a tendency 
towards a certain level of confidence, while ‘metacognitive performance’ (or ‘metacognitive sensitivity’) reflects 
how well confidence measures align with actual task performance16–19. Critically, to distinguish these metacognitive 
measures from underlying task performance, either objective accuracy needs to be held consistent across participants, 
or the effect of task accuracy needs to be accounted for using appropriate mathematical models (and an adequate 
volume of data acquired to fit these models)17. Here, we propose a method that incorporates both control over task 
performance, as well as accounting for any residual task performance variation between individuals. 

These dimensions – task performance, metacognitive bias and metacognitive performance – have been 
distinguished within an interoceptive model by Garfinkel and colleagues19. Here, the authors demonstrated that these 
domains appear to be both quantifiable and distinct, and potentially related to traits such as anxiety. While their study 
was focused on cardiac-related body signals, initial work has hinted at potential cross-talk across different 
interoceptive ‘channels’ in the metacognitive domain, where corresponding interoceptive metacognition (but not task 
performance) was observed across cardiac and respiratory tasks15. Interestingly, this study also reported significantly 
elevated confidence in breathing-related perceptual decisions when compared to judgements of cardiac and tactile 
performance15. Whilst breathing is more consciously accessible for both perception and control than the cardiac 
domain, this elevated confidence also highlights the importance and relevance of breathing-related symptoms in the 
maintenance of homeostasis, whereby even a single breath of restricted or occluded breathing can be perceived as 
extremely unpleasant and frightening21. 

Central for the further development of interoceptive research is the requirement to develop robust 
methodologies that can quantify interoceptive and metacognitive dimensions. Breathing is often considered to lie at 
the border of interoception and exteroception, combining cues from sensory avenues such as tactile and skeleto-
muscular sensations across the chest wall, muscular effort, blood-gas signals representing bodily respiratory status, 
and air temperature and humidity, to name a few. Importantly, the accessibility of breathing to voluntary alterations 
and conscious perceptions lends itself to an array of experimental paradigms, including those that do not require 
exteroceptive cues. In a similar manner to cardiac measures, breathing contains inherent variability in flow and 
resistance both between and within individuals. These individual and breath-by-breath differences render highly 
accurate measures of breathing-related perceptual sensitivity challenging. However, if the performance of a 
perception task is both controlled and accounted for, metacognitive measures relating to interoception can become 
both accessible and independent of these challenges. 

In this paper we provide a novel methodology for controlling task performance on a breathing perception 
task, and demonstrate the utility of applying a computational modelling approach to analyze metacognitive metrics 
of breathing perception. The main benefit of utilizing this computational model to assess metacognitive performance 
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is that the effect of underlying task performance on metacognition can be removed16,18, as differences in task 
performance will produce concurrent differences in apparent metacognition if not adequately accounted for17. 
Importantly, an experimental setup is employed that is sufficiently simple and mobile to enable practical applications 
outside a laboratory setting, providing progress towards more useful clinical assessments of interoceptive properties 
of breathing. Inspiratory resistance is used as the breathing stimulus in this task, as it is both controllable and relevant 
to many individuals; for example, changes in airway resistance and pressure can result from both bronchoconstriction 
in conditions such as asthma and/or panic disorder22. However, inspiratory resistance also changes in physiological 
conditions, for example, simply as a result of increased inspiratory flow during activities such as exercise23 or 
hyperventilation induced by states of arousal24, but also as the result of reflex-mediated bronchoconstriction in 
response to cooling of the skin or upper airways25,26. Furthermore, it is now widely acknowledged that the perceptual 
system can be influenced by top-down factors such as attention, expectation and affect3,27–36; a known issue in 
conditions where symptoms are discordant with objectively measured medical markers, such as in asthma34,37–39 or 
those with medically unexplained symptoms40–42. Therefore, using a task that is able to dissociate measures such as 
perceptual sensitivity from decision bias and metacognition has great potential to fill an important unmet need in 
clinical practice. 

To firstly demonstrate the utility of computational modelling for breathing, we combined an interoceptive 
breathing task based on resistive loads15 with an established computational model of metacognition (HMeta-d)16–18. 
We utilized both simulations and empirical data from individuals with asthma, as a cohort of individuals who 
regularly experience changes in airway resistance. The HMeta-d model utilizes a robust hierarchical statistical 
framework that allows computational models of metacognition, such as the meta-d model16, to be fit to task data 
where only low numbers of trials are available, such as those from interoceptive tasks. Furthermore, we present an 
extension to a hierarchical Bayesian model of metacognitive efficiency, HMeta-d18, that allows measures of 
metacognitive performance to be directly regressed against external variables of interest within the hierarchical 
model. This is an advantage over standard approaches as it capitalizes on the power of hierarchical estimation, 
especially when trial numbers are low, but avoids the problems encountered by post-hoc regressions on hierarchical 
model parameters such as unwanted shrinkage to the group mean. This shrinkage within standard hierarchical models 
is where individual subject estimates are drawn towards the group mean, and the variance between subjects (and thus 
the ability for post-hoc regression models to accurately explain inter-individual variance) is reduced. Lastly, we 
present an adaptive task-performance algorithm that directly targets a perceptual threshold accuracy of ~70% and 
allows online control of performance, to aid the collection of a maximal number of trials at this level of task difficulty. 
Importantly, quantification of higher-order metacognitive measures is most efficient when objective performance is 
both significantly above chance (or guessing: 50%) and lower than a ceiling value of 100%, such that the resulting 
perceptual errors can be used to quantify the correspondence between objective accuracy and subjective confidence 
reports17. The utility of the analysis models and task-performance algorithm are established using both simulations 
and empirical data. 
 
 
Methods 
 
The Methods section firstly contains an overview of how the Filter Detection Task (FDT) is carried out, followed by 
an explanation of the four interoceptive measures that can be quantified. We then describe the computational model 
simulations employed to determine the applicability of these analysis methods to limited-trial interoceptive 
applications. Next, we describe the testing and analysis methods employed to assess illustrative hypotheses in an 
example empirical dataset that encompassed a group of individuals with asthma as well as healthy controls. Finally, 
we describe the novel task algorithm that was designed to both control performance (within sessions and between 
individuals) and increase the number of trials measured at the perceptual threshold of an individual, which is defined 
using the classical value of 70-75%43, lying half-way between guessing between the two answer options available 
(50%) and a ceiling value of 100%. We use both simulations and two further empirical datasets to demonstrate the 
utility of the algorithm to control performance and reduce the number of excess (unused) trials. 
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Filter Detection Task overview 
To systematically test breathing perception within interoception, we have developed a perceptual threshold breathing 
task (the FDT) based on a previously-reported perceptual breathing task15. This task is a perceptual discrimination 
task, and can either be completed as a ‘Yes/No’ decision task, or a two-interval forced choice (2IFC) task. This task 
requires a computer to run MATLAB, as well as low-cost and easily accessible spirometry filters and anesthetic 
tubing, presenting a low-cost and simple setup (Figure 1) that allows for assessment of multiple interoceptive and 
metacognitive measures within the breathing domain. Participants wear a nose clip throughout the task, such that 
breathing is performed only through the mouth. 

For the ‘Yes/No’ version of the task, a standard trial structure consists of participants first taking three 
‘baseline’ breaths through a mouthpiece connected to a simple breathing system (outlined in Figure 1). Following 
the baseline breaths, three breaths take place under ‘resistance’ or ‘sham’ conditions: either an inspiratory load is 
created via the addition of combinations of clinical breathing filters (signal trials, filters provided by GVS Filter 
Technology, product number 2800/22BAUF), or an empty filter (sham trials) is added to the system. The filters 
provide a resistance of < 0.48 cm H2O / L.sec-1 with the filter membrane attached (see Supplementary Material for 
further information). After each trial, participants are asked to verbalize their decision as to whether or not a load had 
been added. Alternatively, for the 2IFC task, the inspiratory load is either added in the first or second set of three 
breaths, and participants are asked to choose in which of the two intervals the inspiratory load was present. In either 
task, after each trial participants are asked to verbally report their confidence in this decision on a user-defined scale, 
e.g. from 1-10 (1 = not at all confident in decision, 10 = extremely confident in decision). The use of verbal feedback 
has the additional advantage of momentarily taking the participant’s attention away from their breathing. Participants 
can also take any length of rest period required between each trial.   

The responses from the FDT can then be used to determine a variety of interoceptive measures (outlined 
below), including inspiratory load-related perceptual sensitivity, bias in symptom reporting, perceptual confidence 
and metacognition (the ability to accurately reflect upon cognitive or perceptual processes). 
 
 

 
Figure 1. A) Diagram of circuitry for the filter detection task. A single-use, bacterial and viral mouthpiece (A: Powerbreathe 
International Ltd., Warwickshire, UK - Product SKU PBF03) is attached to a 22 mm diameter connector (B: Intersurgical Ltd., 
Berkshire, UK - Product 1960000) and a t-shaped inspiratory valve (C: Hans Rudolf, Kansas City, MO, USA - Product 
1410/112622), connected to a 2 m length of 22 mm diameter flexible tubing (D: Intersurgical Ltd. - Product 1573000) and two 
additional baseline filters (E: Intersurgical Ltd. - Product 1541000, and F: GVS, Lancashire, UK - Product 4222/03BAUA). A 
22-30 mm (G: Intersugical Ltd. - Product 197100) adapter then allows the attachment of either a series of connected spirometry 
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filters (H: GVS - Product 2800/17BAUF, Pressure at 30 L/min < 0.3 cm H2O, Resistance < 0.48 cm H2O / L.sec-1) or a sham 
‘dummy’ filter – a spirometry filter shell with the inner bacterial protection pad removed (I). B) Overview of the basic trial 
structure for a Yes/No formulation of the task. Participants take three normal size/pace breaths (with the sham filter attached), 
and during the third exhalation (indicated by the participant raising their hand and the dotted line in panel B) the experimenter 
either swaps the sham for a number of stacked filters (to provide a very small inspiratory resistance) or removes and replaces 
the sham filter. Following three more breaths, the participant removes the mouthpiece and reports whether they thought it a 
resistance was added (‘Yes’) or not (‘No’), and how confident they are in their decision on any scale (here 1-10 used, with 1 = 
guessing and 10 = maximally confident in their decision). If a two-interval forced choice (2IFC) formulation of the task is used, 
the filters (resistance) are either placed on the circuit for the first three breaths or the second three breaths according to the 
FDT algorithm, with the sham filter on the system during the alternate period. The reported decision from the participant is 
whether they thought the resistance was on in either the first set or the second set of three breaths, and also again the confidence 
in their decision. 
 
 
Breathing-related interoceptive measures 
In the original version of the filter detection task15, three domains of breathing-related interoception were quantified: 
interoceptive sensitivity (number of filters required for a discrimination threshold of approximately 75%), 
interoceptive sensibility (average confidence over threshold trials) and metacognition (correspondence between 
accuracy and confidence using a Type 2 receiver operating characteristic curve; an ROC curve). Here, we aimed to 
extend these measures to incorporate a more thorough and nuanced overview of a range of interoceptive dimensions. 
These measures include interoceptive sensitivity, decision bias, metacognitive bias, and metacognitive performance. 
 Interoceptive sensitivity. This measure is analogous to interoceptive accuracy, and in this task aims to 
quantify the ‘perceptual threshold’ as a means for determining breathing-related interoceptive sensitivity. In other 
words, interoceptive sensitivity here is the level (i.e. number of filters) at which a participant is able to consciously 
detect an inspiratory loading stimulus. However, to allow for the quantification of higher-order interoceptive 
measures (such as metacognition), the number of filters used must elicit a performance that is both significantly 
above chance (or guessing) and lower than 100%, so that perceptual errors can be used to quantify the correspondence 
between accuracy and confidence (as explained below in ‘metacognitive performance’). To achieve a task difficulty 
that elicits this required performance, the original publication of this task15 utilized a descending accuracy staircase 
protocol, whereby a large starting filter number (for example 7 filters), and 20 trials were completed at descending 
filters until a final filter level when performance first dropped below 70%. While many staircase protocol options 
could be adopted to achieve a desired task difficulty, the time to complete one trial (approximately 30-60 seconds), 
the natural variability in resting tidal breaths44, the inherent bias associated with the Yes/No task formulation45 and 
the fixed filter intervals render many traditionally-employed staircase protocols (such as the two/three-down-one-
up10) less straightforward with the current methodology. Therefore, we have developed a custom staircase algorithm 
(explained in ‘Task performance algorithm’) that employs probability metrics to objectively assess both task 
performance and trajectory towards the required perceptual threshold (see ‘Task performance algorithm’ section for 
full explanation of the algorithm). 
 Interoceptive decision bias. If using the FDT as a Yes/No task, a quantifiable measure of behavior is the 
‘bias’ towards reporting ‘Yes’ or ‘No’. This bias represents the placement of a criterion value above which the 
presence of a resistance is reported, reflecting an individual’s inherent tendency to report the presence of an 
inspiratory resistance. Importantly, this bias can be quantified using Signal Detection Theory (SDT46,47), and may 
represent an important cognitive trait regarding the experience of respiratory symptoms. Using SDT, stimulus 
sensitivity (d’) can be separated from bias (or the placement of a criterion, c)46,47. Using this theory, we are able to 
disentangle the components of measures that may be confounded by a mix of task sensitivity and bias, such as 
performance accuracy. When using the FDT as a 2IFC task, the measured ‘bias’ will instead be the tendency to report 
the resistance on the first or second interval. While this may have limited relevance to real world scenarios, 
quantification of d’ using this task design is likely to also allow for a more accurate representation of task sensitivity 
and a possibly more translatable measure of metacognitive performance48, which can both be confounded by 
variations in criterion placement. 
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 Interoceptive metacognitive bias. Average subjective confidence or metacognitive bias in interoceptive 
decisions has also previously been referred to as interoceptive “sensibility”19. In this task, we take an overall average 
of the confidence scores (measured across the perceptual threshold trials) to represent interoceptive sensibility that 
directly corresponds to the task at hand. Additional trait-like, global perceptual measures of sensibility could also be 
gathered by using separate interoceptive questionnaires such as the Porges Body Questionnaire49. Interoceptive 
sensibility is also referred to as “metacognitive bias”17,18,50, as it represents the tendency to give higher or lower 
confidence ratings. 
 Interoceptive metacognitive performance. Breathing-related metacognitive performance (also termed 
‘interoceptive awareness’19 and ‘interoceptive insight’1 in the literature) in this instance is considered to be the 
correspondence between task accuracy and confidence19, or the ability to recognize successful perceptual 
processing17. Previous reports of interoceptive metacognition have utilized the area under a type 2 ROC curve15,19,20, 
resulting in a measure of absolute metacognition where the effect of underlying task performance also influences the 
final score17. However, more recent model-based approaches have developed a metric of metacognitive performance 
that can subsequently take into account task performance, known as meta-d’16. Meta-d’ represents “the sensory 
evidence available for metacognition in signal-to-noise ratio units”17, which, because it is in the same units as d’, can 
be straightforwardly compared to task performance as a ratio (Mratio: meta-d’/d’; the log of the ratio, logMratio, is 
also often used to meet Gaussian assumptions: log(meta-d’/d’)). This ratio of absolute metacognitive performance 
(meta-d’) divided by task performance (d’) is thus a relative measure of metacognitive performance (often termed 
‘metacognitive efficiency’). In order to employ this model-based approach for the FDT, a hierarchical formulation 
of the meta-d model (HMeta-d) is employed that allows efficient pooling of data from multiple subjects18, allowing 
us to estimate model parameters on a relatively small number of threshold trials (>= 40 trials). 
 
Metacognitive model simulations 
To demonstrate the feasibility of utilizing the meta-d model for interoceptive tasks with low trial numbers, we first 
present simulated results to establish the recoverability of group metacognitive performance (Mratio) values using 
the original maximum likelihood estimation algorithm (MLE16), a single-subject Bayesian model and a hierarchical 
(group) Bayesian model (HMeta-d), which are both provided in the HMeta-d toolbox18. Parameter inference in the 
HMeta-d toolbox rests on a Markov chain Monte Carlo (MCMC) sampling procedure, implemented using the JAGS 
software package (http://mcmc-jags.sourceforge.net). The extent of the group Mratio recoverability is demonstrated 
for 20, 40 and 60 trials per subject, with 30 simulated participants. Simulations were generated from a set of values 
𝑁(𝜇, 𝜎), which refer to Gaussians parameterized by a mean and standard deviation, using the metad_sim function 
provided in the HMeta-d toolbox18. The meta-d’ values for the first set of simulations were generated from seven 
group Mratio distributions (meta-d’ / d’) with parameters N([0.25 0.5 0.75 1.0 1.2 1.5 1.75 2], 0.1), where d’ ~ N(1, 
0.1) and c ~ N(0, 0.1). 

Second, we developed and simulated an extension of the HMeta-d model (RHMeta-d), which incorporates a 
simultaneous hierarchical estimation of a regression parameter (beta) that controls variation in logMratio values in 
relation to a subject-level predictor (such as a clinical score). The model was adjusted as follows (for full details of 
the original model please see the original publication18). 𝑁(𝜇, 𝜎) and 𝐻𝑁(𝜇, 𝜎) refer to Gaussians and Half-Gaussians 
parameterised by a mean and standard deviation, while 𝑇(𝜇, 𝜎, 𝜈) refers to a T-distribution parameterised by a mean, 
standard deviation and degrees of freedom: 

 
𝑀!~𝑁(0,1) 
𝛽~𝑁(0,1) 
𝜎"~𝐻𝑁(1) 
𝜁~𝐵𝑒𝑡𝑎(1, 1) 
𝛿#~𝑇(0, 𝜎" , 5) 
𝜀# = 𝜁 ∗ 𝛿# 

 
𝑀# = 𝑀! + 𝛽 ∗ 𝑋# + 𝜀# 
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where 𝑀# refers to the log(meta-d’/d’) value for subject s, 𝑀! is the baseline logMratio for the group (i.e. the intercept 
of the regression), and 𝑋# is a vector of predictor values (e.g. clinical scores) for each subject. This formulation 
embeds the estimation of psychopathology-cognition relationships into the parameter inference routine, such that the 
group-level posterior over 𝛽 reflects the influence of individual differences in X on metacognitive performance51. To 
ensure that the regression is robust to outliers, the noise 𝜀# is drawn from a T-distribution with a standard deviation 
of |𝜁|𝜎" and 5 degrees of freedom52. Consistent with the original HMeta-d model18, a redundant multiplicative 
parameter 𝜁 is used to introduce an additional random component in the sampling process to aid the recovery of the 
posterior on the noise scale.  

For these simulations, group baseline logMratio (𝑀!) values were generated from a distribution ~ N(log(0.8), 
0.1). Then, to simulate data from each subject, a random value of the covariate 𝑋# was drawn from a standardised 
distribution N(0,1), multiplied by a group regression coefficient that was one of a fixed set of β values (β ~ [-0.5:0.5]) 
and added to this baseline logMratio together with zero-mean noise sampled from N(0, 0.1). Values used for d’ and 
c’ were consistent with previous simulations (d’ ~ N(1, 0.1) and c ~ N(0, 0.1)), and data were generated using either 
20, 40 or 60 trials per subject and a confidence scale of 10 rating points. From these simulated data, parameter 
estimates were then obtained either using the original HMeta-d model combined with a post-fit linear regression (i.e. 
a standard linear regression conducted on the per-subject point estimates obtained from the group-level fit, which we 
denote HMeta-d+R), as well as the extended hierarchical regression model (RHMeta-d) described above. An average 
for ten sets of simulations for each group β value was calculated for the final results. 
 
Analysis methods: Example dataset of asthma and healthy controls 
To demonstrate the utility of the analysis methods, we employed an example dataset that included a group of 
individuals who experience an elevated frequency of breathing symptoms. While it has been observed that individuals 
with asthma can vary from under-reporting to over-reporting of symptoms34,37–39, group-wise analyses of asthma have 
demonstrated both an elevated prevalence of anxiety and depression symptoms53 and that symptom prevalence is 
related to these affective qualities33,54–56. Furthermore, as the metacognitive properties of individuals with asthma 
have not yet been systematically tested and could viably relate to symptom reporting, this group was selected as an 
example test-case for this method. Importantly, the FDT allows us to separate the effect of interoceptive sensitivity 
to inspiratory loads, bias towards under- or over-reporting the presence of a resistance, metacognitive bias (higher or 
lower confidence in interoceptive decisions) and metacognitive performance (‘insight’ into perceptual performance). 
These separable entities may help to shed light on the potential drivers towards the under- to over-reporting of 
symptoms34,37–39 in asthma. 

Sixty-three individuals with asthma (39 females, mean age (± sd) 43.7 ± 12.2 years, recruited through general 
practitioner clinics and public advertisements) and 30 healthy controls (19 females, mean age (± sd) 44.2 ± 12.2 
years, recruited through public advertisements) took part in a study approved by the Oxfordshire Clinical Research 
Ethics Committee. Participants underwent the FDT and completed the Dyspnea 1257 questionnaire as a subjective 
assessment of their breathlessness severity. Additionally, participants completed a further set of questionnaires and 
additional physiological and behavioural measures that will be addressed elsewhere. Seven individuals with asthma 
were excluded from the analysis due to insufficient data (10 trials or less of the FDT, n = 4), or performance of less 
than 50% correct (n = 3), as determined in the preregistered analysis plan (https://gitlab.ethz.ch/tnu/analysis-
plans/harrisonetal_fdt_methods_2020). 
 During the FDT in this study, the number of filters required for each participant to induce task performance 
at perceptual threshold was determined manually, using a staircase method adjusted from a previous publication of 
the task15 (data was collected prior to the development of the task algorithm). In this step-wise procedure, participants 
first completed 10 trials at 4 filters. If the task accuracy was below or above 70%, the number of filters was adjusted 
up or down accordingly by one filter. Performance accuracy was assessed again at 20, 30 and 40 trials, with 
adjustments made if the accuracy moved outside of the 65-75% range (with an acceptable range of 60-80% in later 
trials). The aim was to complete 40-60 trials, which was limited by time and attention constraints of each participant. 
A 0-100 confidence rating scale was employed, with 0 = not at all confident, and 100 = maximal confidence. These 
confidence scores were down-sampled into 10 rating bins prior to analysis with the HMeta-d model. 
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To demonstrate empirical questions that could be answered using the FDT and metacognitive models, we 
firstly tested any differences between individuals with asthma and healthy controls across all FDT parameters 
(https://gitlab.ethz.ch/tnu/analysis-plans/harrisonetal_fdt_methods_2020). For the measures of interoceptive 
sensitivity (number of filters), decision bias (c parameter from model) and metacognitive bias (average confidence), 
tests for data normality were first conducted using Anderson-Darling tests, with an alpha value of p < 0.05 required 
to reject the null hypothesis of normally distributed data. A significant group difference was then tested using two-
tailed parametric or non-parametric Wilcoxon rank-sum tests. A group difference in metacognitive performance (the 
Mratio parameter from the HMeta-d model output) was assessed by first calculating the distribution of differences in 
posterior parameter samples from each group (control Mratio samples > asthma Mratio samples), and then 
determining the highest density interval (HDI) for this distribution. The HDI employed was a two-tailed 99% 
(Bonferroni corrected for five tests) confidence interval, where a significant difference between groups was denoted 
if the resulting HDI did not span zero. Significance for all other tests was denoted by p < 0.01 (p < 0.05 Bonferroni 
corrected for the five experimental tests). 

To assess a possible relationship between metacognitive performance and the prevalence of reported 
breathing-related symptoms, a direct test of the relationship between metacognitive performance and D12 was 
performed using a linear regression model in the individuals with asthma. To achieve this, the HMeta-d model was 
extended to include a hierarchical estimation of a linear regression parameter, whereby a group regression coefficient 
(beta) was simultaneously fit within the model to determine the relationship between logMratio and D12. The 
significance of the beta parameter was then also determined using its posterior samples, with a two-tailed 99% HDI 
(Bonferroni corrected) that did not span zero determining a significant relationship between more severe D12 and 
worsened metacognitive performance. An illustrative procedure using a split-half analysis is presented in the 
Supplementary Material. 
 
Task performance algorithm: Simulations and empirical data 
Lastly, to assist in the collection of a greater number of usable trials for further instances of the FDT, we created a 
novel staircase protocol (within a MATLAB toolbox package) to aid the selection of the appropriate number of filters 
for each participant. While adaptive psychophysics staircase algorithms are available (such as QUEST43,58), many of 
these formulations rely on adjustable and small available step-sizes and small amounts of sensory noise, and also 
often assume a pre-determined psychometric for model fitting. Therefore, for this novel application in the breathing 
domain we designed an algorithm that does not assume any psychometric function; instead, it estimates the 
underlying accuracy that gives rise to the current performance using a beta-binomial model. This simple model is 
robust and does not run the risk of non-convergence as can be observed with a more complicated algorithm such as 
QUEST, which may occur due to both the limited number of trials, step sizes available and variability in breathing 
from trial to trial. 

When interfacing with the task algorithm, the researcher is given instructions for each trial via the MATLAB 
command window. Additionally, the researcher is required to enter the participant’s decision and confidence scores 
into the MATLAB command window when prompted for every trial, and this information is then used to dynamically 
update the staircase procedure. This staircase begins with one or two practice trials and a short calibration, which are 
completed under the same within-trial format (i.e. Yes/No or 2IFC structure) as the main task trials. In the practice 
trials for the Yes/No task, an additional ‘explicit dummy’ is first applied, whereby participants are told that it is a 
dummy. Another practice trial is then performed using a large load of 7 filters, where no feedback is given (no 
feedback is maintained for the rest of the protocol). The practice is then immediately followed by the calibration 
trials, where participants complete trials that increase by one filter each trial (beginning with a dummy) until they 
have correctly reported the resistance for two consecutively increasing filter numbers. A final calibration trial is then 
given, where the number of filters is dropped by one from the last trial. If participants correctly report the final 
calibration trial, they begin on that number of filters, whereas if they are incorrect, they begin with one additional 
filter. A diagram of the basic trial structure is presented in Figure 1, and the practice, calibration and real trial 
trajectory is provided in the Supplementary Material (Supplementary Figure 1). 
 Once the calibration is complete (or alternatively, a manual starting point can be provided), the main task 
trials begin. The target number of trials is specified (recommendation of >= 60 trials), and a pseudo-randomized 
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sequence of trials are presented (trials are balanced between present/absent for a Yes/No task or between first and 
second interval for 2IFC). The target is for participants to be within a 65-80% accuracy band. Given a set of binary 
trials (and an appropriate prior), we use the fact that the posterior distribution over the underlying accuracy follows 
a beta distribution. After 5 trials at one filter level (with at least one resistance present for the Yes/No task), the 
posterior probability that the underlying performance accuracy for the current task difficulty (i.e. the current number 
of filters) falls between 65-80% is calculated using the difference in beta cumulative distribution functions for 80% 
and 65%, in a similar vein to the QUEST algorithm43. We use a weak prior on the accuracy itself (beta distribution 
with the parameters α = 2 and β = 1; prior mean = 67% accuracy, interquartile range = 37%), determined by the 
performance of simulations to produce observed accuracies closest to 75%. If the probability that the underlying 
accuracy is between 65-80% falls below a threshold of 20%, an addition or removal of a filter is automatically 
suggested to decrease or increase task difficulty respectively. If a new filter number is started, the trial count will 
begin again and 5 trials (with at least one resistance) must be completed before the algorithm will suggest any 
changes. If the filter change moves the filter number back to that of previous trials, the trial count will pick up again 
from the last trial at this level. In this instance, 3 trials (with at least one resistance) must be completed before any 
changes are suggested. 
 To demonstrate the utility of this task performance algorithm, we firstly present simulation results from a 
range of possible participant performances, characterized by a distribution of potential psychometric functions. These 
psychometric functions (n = 350) were constructed from an underlying logistic sigmoid with a lower asymptote at 
0.5 (to account for chance answers with the two answer options of ‘yes’ and ‘no’), a slope k = [0.7:1.2], the number 
of filters at which the 75% threshold is obtained t = [1:7] and added Gaussian noise ε = N(0, [0.05:0.015]). We then 
ran each of the sigmoids generated from each of 5 starting points – from two filters below to two filters above the t 
parameter, totaling 7000 simulations. Second, we provide data metrics (number of trials, performance accuracy, 
number of filters) for two collected datasets using the Yes/No version of the task. The first of these collected datasets 
stems from the first 50 participants measured as part of a wider study approved by the Cantonal Ethics Committee 
Zurich (Ethics approval BASEC-No. 2017-02330). For this study, we employed a ‘constant’ staircase formulation 
of the algorithm, with the aim of collecting 60 trials at a single level of filters that elicited a task performance between 
~60-85%. The second empirical dataset includes the first 22 participants measured as part of a wider study approved 
by the Cambridge ethics committee (Ethics approval PRE.2018.092). This study employed a ‘roving’ staircase with 
60 trials total, where the aim was to simply collect 60 trials regardless of the number of filters. In this scenario, the 
‘threshold’ filter becomes the average of the number of filters employed across the task. 
 
 
Results 
 
The Results section firstly outlines and compares the computational model simulations using three different 
implementations of the Metacognitive (Mratio) model. The hierarchical version (HMeta-d) is convincingly shown to 
be the most reliable in recovering simulated values of Mratio. Simulation results also establish the recoverability of 
regression parameters using the extended RHMeta-d model compared to the standard HMeta-d model. We then 
present the results from the example empirical analyses proposed in individuals with asthma and healthy controls, to 
demonstrate how the model outputs can be interpreted in light of example hypotheses. Lastly, we ascertain the utility 
of the novel task algorithm using both simulated and empirical results. 
 
Metacognitive model simulations 
The simulation results firstly demonstrate that utilizing the hierarchical Bayesian HMeta-d model fit allows adequate 
recovery of group Mratio values (Figure 2). This recovery is possible even using as few as 20 trials per subject, with 
slightly larger uncertainties (demonstrated by the width of the highest density intervals) than those obtained for 40 
and 60 trials. It is instructive to compare this to the alternative estimation methods: while MLE is able to recover an 
average Mratio value that is indeed representative of the simulated value, the uncertainty around these estimates 
(demonstrated by the width of the confidence intervals) is large when using even 60 trials per subject. Moreover, the 
confidence interval around these MLE estimates incorrectly encompasses zero for all group Mratio values below 1. 
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The recovery of the group Mratio using the Bayesian single subject fit also has large uncertainties and shows 
shrinkage effects towards zero, recovering Mratio values below the simulated values across all trial numbers tested 
here. 

The second set of simulations were designed to probe the recoverability of single-subject Mratio values, for 
possible use in analyses comparing individual metacognitive performance against an external variable. Using the 
original HMeta-d model, we demonstrated that a post-hoc regression on the single-subject values was unable to 
accurately recover a group regression parameter simulated from the range β = [-0.5:0.5] even when using 60 trials, 
with all confidence intervals on the regression parameters encompassing zero (Figure 3). This is unsurprising given 
that the hierarchical model naturally shrinks single-subject estimates towards the group mean, losing information 
about individual differences. In contrast, the R-HMeta-d model was able to significantly recover beta values of ± 
>0.2 with 60 trials, ± >0.25 with 40 trials, and ± >0.3 with 20 trials (Figure 3). The results for multiple regression 
models (with up to three covariates) at each of 20, 40 and 60 trials are presented in the Supplementary Material 
(Supplementary Figure 5). 
 

 
Figure 2. Group Mratio recovery for 20, 40 and 60 trials using three different meta-d models. Data were simulated from 8 
groups of 60 subjects with group mean Mratio (meta-d’ / d’) values set to [0.25 0.5 0.75 1.0 1.25 1.5 1.75 2] ± 0.1 (sd). All 
simulated values were generated from data where d’ ~ N(1, 0.1) and c ~ N(0, 0.1), and a confidence scale of 10 rating points 
was used. A) Simulated vs. recovered Mratio values using maximum likelihood estimation16, where the shaded grey areas denote 
the 95% confidence interval of the estimate. B) Simulated vs. recovered Mratio values using a Bayesian single-subject fit 
(provided in the HMeta-d toolbox18), where the grey areas denote the 95% highest density interval (equivalent to a 95% credible 
interval) of the sampled estimate. C) Simulated vs. recovered Mratio values using a hierarchical Bayesian group fit (provided 
in the HMeta-d toolbox18), where the grey areas denote the 95% highest density interval of the sampled estimate. Dashed lines 
represent ideal recovery, with dotted lines at zero demonstrating the ability of the model fit to significantly recover group 
estimates (i.e. when confidence or highest density intervals do not include zero). 
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Figure 3. Demonstration of the recovery of group regression parameters (β ~ [-0.5:0.5]) using either the original HMeta-d 
model combined with a post-fit linear regression (HMeta-d+R), or the extended regression HMeta-d (RHMeta-d) model. Ten 
sets of simulations were performed and results were averaged, where each simulation set included 60 simulated ‘subjects’ where 
logMratio = logMratiobaseline + β*covariate + noise, where logMratiobaseline ~ N(log(0.8), 0.1), covariate ~ N(0, 1), β ~ [-0.5:0.5], 
noise ~ N(0, 0.1), and with d’ ~ N(1, 0.1), c ~ N(0, 0.1). Grey areas denote the 95% highest density interval of the sampled 
estimate. Dashed lines represent ideal recovery of group beta values, and dotted lines at zero demonstrate the ability of the 
model fit to significantly recover group estimates (i.e. highest density intervals that do not including zero). 
 
 
Empirical data analyses 
When considering the comparisons between the asthma and control groups, no significant difference was found 
between the two groups for interoceptive sensitivity (number of filters = mean ± se: controls = 2.87 ± 0.29, asthma 
= 2.80 ± 0.20), decision bias (c = mean ± se: controls = 0.01 ± 0.07, asthma = -0.01 ± 0.06), metacognitive bias 
(average confidence % = mean ± se: controls = 66.57 ± 2.99, asthma = 69.74 ± 2.13), nor metacognitive performance 
(Mratio = mean ± se: controls = 0.83 ± 0.14, asthma = 0.79 ± 0.12) (Figure 4). We then considered the relationship 
between breathing symptoms and metacognition in asthma only. While the data demonstrated a tendency for reduced 
metacognitive performance with higher symptom loads using a hierarchical regression analysis (RHMeta-d; Figure 
5), which was not statistically significant (determined by an HDI that does not encompass zero). Using a hierarchical 
regression approach, the beta parameter mean was estimated as -0.22 ± 0.16 (se), with the beta HDI in the range [-
0.67, 0.27] (Figure 5). 
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Figure 4. Group difference comparisons between individuals with asthma and healthy controls. Panels A, B and C denote group 
mean and standard error for each group regarding interoceptive sensitivity, decision bias and metacognitive bias, with no 
significant differences found between the groups. Panel D demonstrates the sampled posteriors for the group estimates of 
metacognitive performance (Mratio). Panels E and F demonstrate the model fit by comparing the observed and model estimates 
of the Type 2 ROC curves for both ‘Yes’ and ‘No’ responses (regarding the presence of an added inspiratory resistance). Model 
fits for all other models are presented in the Supplementary Material (Supplementary Figure 6). 

 
 

  
Figure 5. Comparisons between metacognitive performance (logMratio) and symptom load in asthma, using a hierarchical 
regression analysis. A) A hierarchical regression predicting logMratio from the standardised D12 scores within asthma 
participants. The regression was fit using an extension of the HMeta-d model (R-HMeta-d) in which the beta regression 
coefficient was fit simultaneously together with the logMratio scores. Dashed line represents the regression line from the model 
fit. B) The distribution of samples over the regression beta parameter (from panel A) fit using the R-HMeta-d model. Dashed 
lines represent the two-tailed 99% HDI which encompasses zero (dotted line) consistent with no significant relationship between 
D12 score and metacognitive efficiency in this dataset. 
 
 
Task performance algorithm: Simulations and empirical data 
The results from both simulated and empirical data demonstrate the ability of the task algorithm to target performance 
towards a perceptual threshold that lies above chance (50%) and below ceiling (100%) performance (Figure 6). 
Simulations conducted using the task algorithm (with a ‘constant’ staircase formulation) produced task accuracy 
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scores with a mean of 74.1 ± 8.7% (sd) and an accurate recovery of the 75% filter number, irrespective of the starting 
filter value (Figure 6A). Empirical data collected using the Yes/No formulation of the task (with a constant staircase) 
produced a task accuracy with a mean of 68.9 ± 7.4% (sd), with the threshold filter number spread between 1 and 8 
filters (Figure 6B). Both the simulations and real data demonstrate a feasible number of trials (70.4 ± 10.3 (sd) trials 
for simulated results with 60 threshold trials, 69.6 ± 10.0 (sd) trials for empirical data) required to complete 60 trials 
at the threshold filter. In real terms, this indicates that it is possible to reliably measure respiratory interoception and 
metacognition in approximately one hour or less (assuming approximately 45-60 seconds to complete each trial). 
These estimates include a constraint whereby the algorithm was additionally programmed to continue until 30 trials 
are completed at the threshold filter number, followed by the option for manual intervention to instigate filter changes 
every ten trials if the accuracy moves out of acceptable bounds (experimenter decision required, depending on time 
taken and participant). 

When utilizing a ‘roving’ staircase experimental design, simulations of the task algorithm produced task 
accuracy scores with a mean of 75.4 ± 8.0% (sd) and an accurate recovery of the 75% filter number, irrespective of 
the starting filter value (Supplementary Figure 8A). When the first 60 trials from the constant staircase empirical data 
discussed above were analyzed as a roving staircase (i.e. the first 60 trials analyzed, regardless of filter intensity), the 
mean task accuracy was slightly reduced from 68.9% to 67.7%, and the variance of the scores increased from 7.4% 
to 8.5% (sd) (Supplementary Figure 8B). A final dataset, collected with explicit use of the roving staircase paradigm, 
demonstrated a mean accuracy of 69.7 ± 11.7% (sd), and threshold filter numbers that ranged from 1-8 filters 
(Supplementary Figure 8C). No additional trials are required when utilizing a roving staircase design, as all trials 
following the calibration step are included in the analysis. The simulated and empirical results from the calibration 
algorithm are presented in Supplementary Figure 9. 

Direct comparison between the empirical data collected using the three methods (i.e. manual accuracy 
calculations every 10 trials, the constant staircase design and the roving staircase design) is provided in Figure 7. 
Data collected using a manual accuracy calibration (asthma and controls) produced task accuracy scores with a mean 
of 66.4 ± 8.2% (sd), with a large number of additional trials (percentage of the number of threshold trials collected = 
71.9 ± 17.7% (sd)) and two participants whose task accuracy was ≤ 50%. No difference in overall accuracy was 
found (Wilcoxon rank-sum tests) between any of the task designs (all p > 0.05), however the roving task design 
produced the largest standard deviation in the task accuracy across the methods (observed in Figure 7). Additionally, 
while a significant number of additional trials were required when using the manual and constant staircase methods 
(Wilcoxon signed-rank tests, p < 0.001 for both tests against zero), the constant staircase significantly reduced the 
additional number of trials required from the manual method, both as an absolute number of trials and as a percentage 
of the number of threshold trials collected (Wilcoxon rank-sum tests, p < 0.001 for both tests). 

Finally, while using a roving staircase design removes the possibility that any additional (non-analyzed) trials 
will be required, a tighter target accuracy band could be employed to better control the variance in performance 
accuracy (observed in Figure 7), and the algorithm can be programmed to continue throughout all trials to better 
control task performance. Therefore, we re-ran the task simulations using a difference in beta cumulative distribution 
functions between 75-70% (reduced from 80-65%), with a lower bound on the acceptable probabilities increased 
from 20% to 30%. The results of these simulations compared to the original thresholds can be seen in Supplementary 
Figure 10, and these changes reduced the simulated standard deviation in task performance accuracy from 8.0 to 6.7. 
 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2021. ; https://doi.org/10.1101/2020.06.29.176941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.176941
http://creativecommons.org/licenses/by/4.0/


 15 

 
Figure 6. Results demonstrating the use of an adapted staircase algorithm for targeting a specified level of task difficulty over 
60 trials. A) Simulation results, where data were generated from a range of logistic sigmoid functions bounded between 0.5 and 
1, with 20 simulations for each sigmoid (‘participant’) from each of five starting points – from two filters below to two filters 
above the 75% threshold filter. Left: Simulated and recovered 75% filter number for each simulated ‘participant’. Middle: 
Histogram of the task accuracy scores for the 60 threshold trials for all simulations. Right: Histogram of the total number of 
trials required to complete 60 threshold trials for each simulation. B) Data collected using a Yes/No version of the task (with a 
constant staircase), where 50 participants each completed 60 threshold trials. Left: Histogram of the measured threshold filter 
number for each participant. Middle: Histogram of the task accuracy scores for the 60 threshold trials for the 50 measured 
participants. Right: Histogram of the total number of trials required to complete 60 threshold trials for each participant. All 
histograms are reported with mean ± standard deviation. 
 
 

 
Figure 7. Comparison of the three empirical datasets collected using different methods: ‘Manual’ = Manual staircase adjustment 
of filters via accuracy calculations every 10 trials; ‘Constant’ = Constant formulation of the staircase, where all analysed trials 
are collected at the same filter number; and ‘Roving’ = Roving staircase, where all trials (across different filter numbers) are 
used for data analysis. A) Comparison of task accuracy across the data collection methods, where no difference in accuracy was 
observed between any of the methods (all p > 0.05). B) Comparison of the additional trials required during data collection as 
percentage of the analysed threshold trials (N.B., no extra trials are collected for the roving staircase design). In Panel B, both 
the manual and constant staircase methods produced a significant percentage of additional trials (above zero, both p < 0.001), 
and the constant staircase significantly reduced the number / percentage of these trials compared to the manual adjustment 
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method (both p < 0.001). Black dots are individual data points, while grey areas represent the distribution of values. Large 
circles denote the group mean in each condition. 
 
 
Discussion 
 
Main findings 
In this manuscript we demonstrate the utility of pairing a breathing perception task – the ‘Filter detection task’ – with 
the HMeta-d model of metacognition, to quantify the interoceptive domains of sensitivity, decision bias, 
metacognitive bias and metacognitive performance. Using simulations, we have shown how the use of a hierarchical 
model formulation (HMeta-d18) can help overcome the challenge of low trial numbers when calculating 
metacognitive performance metrics using frameworks such as the meta-d model16. We demonstrated how this 
hierarchical model can be extended to include a simultaneous hierarchical estimation of regression parameters linking 
metacognitive performance to individual difference variables. We also demonstrate the use of the model and 
appropriate statistics to answer research questions in an empirical dataset of healthy controls and individuals with 
asthma. However, we did not demonstrate any group differences in our FDT measures (interoceptive sensitivity, 
interoceptive bias, metacognitive bias or metacognitive performance) within our empirical dataset (including usable 
data from 56 individuals with asthma and 30 healthy controls), who each completed ~40 trials (mean ± sd = 42 ± 10) 
at their perceptual threshold using a manual staircase procedure. Whilst there may be no differences that exist 
between these groups in the measures tested, the noise associated with using only 40 trials may also mask any 
underlying differences. Therefore, lastly, we introduce a task algorithm to help target performance accuracy towards 
70-75% correct. This accuracy band is optimal for metacognitive analysis as it provides sufficient errors for analysis 
of confidence-accuracy relationships, while maintaining above-chance performance. We demonstrate the 
effectiveness of this algorithm using both simulations and via empirical data comparisons when using either manual 
adjustment strategies or the staircase options provided by the toolbox (constant or roving staircase). 
 
Computational models of breathing-related interoception and metacognition 
As interest in interoception-related research grows across neuroscience, psychiatry, physiology and other scientific 
communities, the importance of developing robust methodologies for quantification of interoceptive dimensions is 
paramount. While discussions regarding the validity of tasks such as heartbeat counting in the cardiac domain 
highlight the need for robust measures of interoception59, the FDT offers one route to overcoming some of these 
issues within the domain of respiration. Here, we highlight the feasibility of applying signal detection theory-derived 
computational models of both task and metacognitive performance, first introduced by Maniscalco and Lau16 (the 
meta-d model) and derived from theories of ‘Type 2’ performance (distinguishing between one’s own correct and 
incorrect decisions60). Utilizing these signal detection theory models firstly allows us to separate interoceptive 
sensitivity from decision biases within task (or ‘Type 1’) performance, both of which may be highly informative in 
disentangling drivers of altered interoception and have been previously quantified using inspiratory loading tasks in 
controls61–63 and children with asthma64. Additionally, while there have been reports of possible blunted sensitivity 
to inspiratory resistive loads with anxiety disorders65, there is also an established prevalence of reporting medically 
unexplained symptoms with anxiety42, and even early evidence for a potential relationship between symptom over-
report and reduced interoceptive accuracy in healthy individuals31. Therefore, as a criterion shift may manifest as 
differences in interoceptive sensitivity, it is imperative to separate these measures both in healthy individuals and 
within clinical populations. 

While perceptual sensitivity and bias metrics can be directly calculated from behavioural data, the estimation 
of metacognitive parameters such as meta-d’ often require optimizing a model’s predicted responses to match those 
observed within the data16. However, here we demonstrate that the original meta-d model formulation (using 
maximum likelihood parameter estimates) is not able to significantly recover group Mratio values below 1 or reliable 
estimates of individual subject scores when using the low number of trials that are practically feasible within 
interoceptive experiments (Figure 2). Due to these constraints, here we instead explore the utility of hierarchical 
formulations of the meta-d model (HMeta-d) derived by Fleming18, which can achieve good recovery of 
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metacognitive performance parameters (e.g. Mratio) using as few as 20 trials per subject (Figure 2). Importantly, the 
meta-d model allows us to differentiate relative metacognitive performance (i.e. metacognitive efficiency controlling 
for task performance) from absolute measures of metacognition, such as that calculated from the area under a type 2 
ROC curve15,19,20. This is important because it is well-established that absolute measures of metacognition may be 
biased by differences in underlying task performance between individuals or conditions16. 
 Beyond estimating group metrics of metacognition, often it may be desirable to estimate the relationship 
between individual metacognitive performance and an external measure of interest, for example a clinical score or 
other behavioural variable. While post-hoc regressions on single-subject parameter estimates are possible, 
hierarchical models tend to shrink single-subject estimates towards the group mean, thus losing information regarding 
individual differences and reducing the power of these types of analyses. To this end, we have developed and tested 
a hierarchical regression model, whereby multiple regression parameters can be simultaneously fit alongside the 
group logMratio within the HMeta-d model (referred to throughout as RHMeta-d). We find that the sensitivity of the 
regression model in being able to accurately recover simulated beta coefficients is greatly enhanced when increasing 
from 20 to 40 and 60 trials, with the width of the posterior (represented by the HDI) notably reducing when trial 
number is increased (Figure 3). We have also demonstrated the use of this regression approach in an empirical dataset 
in which interoceptive metacognitive performance was compared against breathlessness symptom reports (measured 
via the D12 questionnaire) in individuals with asthma (Figure 4). 
 
FDT toolbox 
To aid the use of computational models within interoceptive experiments, we have developed a toolbox to run the 
FDT according to an accuracy-targeted performance algorithm (freely available for download: 
https://github.com/ofaull/FDT). While practicalities regarding the step-size of each of the inspiratory resistance filters 
prevents us from utilizing established psychophysics staircases, we have instead developed an adapted staircase 
protocol which prompts adjustment of the filter load once the probability falls too far beyond our desired range of 
70-75%. As task performance control is carried out online at every trial, any variations in breathing physiology that 
may alter performance are dynamically accounted for across the task. Both simulations and empirical data show that 
this algorithm produces performances within the desired range required for employing the computational models 
described above, where participants need to be performing above chance but below 100% accuracy. 
 The demonstration of the FDT in the current manuscript utilized a Yes/No task formulation, where a 
participant is required to answer whether or not a resistance was added to the system (‘Yes’) or stayed the same 
(‘No’). However, the toolbox also provides the option to employ a two-interval forced choice (2IFC) alternative if 
desired. While criticisms exist of the application of equal-variance signal detection theory metrics in Yes/No tasks 
(discussed previously45), we also see potential practical utility in using these task variants, for example to quantify 
measures akin to symptom over- or under-report by estimating the criterion parameter. However, if the metrics 
calculated from the FDT are to be compared with other perceptual tasks that are run as a 2-interval/alternative forced 
choice, then the 2IFC option may be desirable, allowing for comparable model assumptions across tasks. 
 Lastly, the toolbox also offers two alternative staircase options to control task performance in either a Yes/No 
or 2IFC formulation. In the original protocol presented by Garfinkel and colleagues15, the aim was to collect 20 
usable trials at a specific number of filters where performance first fell below 75%, thus corresponding to the 
participant’s perceptual threshold and providing a measure of interoceptive sensitivity. Whilst the number of 
additional (unused) trials required can be greatly reduced by employing the adapted staircase algorithm in the toolbox 
(Figure 7), an alternative approach is to employ a ‘roving’ staircase, whereby all trials are used in the calculation of 
interoceptive measures, and interoceptive sensitivity is taken as an average of the filter numbers used across trials. 
As the risk of needing additional trials is removed, this approach allows experimenters to tighten accuracy thresholds 
to improve task performance control, as the aim of this staircase is no longer to find a single filter that elicits the 
desired accuracy. This roving staircase option would likely prove a more viable alternative if using the FDT in a 
clinical setting, removing the possibility of any additional trials while maintaining adequate representations of 
interoceptive sensitivity. We note however that roving staircases also have potential downsides in artificially inflating 
estimates of metacognitive sensitivity when compared to constant-stimulus designs (see Rahnev and Fleming66 for 
further discussion of this issue). 
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Limitations 
While this experimental setup provides a progression towards measuring quantities related to interoception of 
breathing, a number of limitations exist that could be addressed in future work. The first of these is that while the 
resistance applied is static, the resulting pressure differential across the resistance is flow-dependent, such that larger 
inspiratory flow will generate larger inspiratory pressure differences (see Supplementary Material for further details). 
Furthermore, inherent resting resistance and inspiratory pressures are also variable between individuals, depending 
on factors such as anatomical structure of the airways and physiological differences in inspiratory musculature. 
Therefore, if measures of inspiratory pressure and flow were added to the system, more detailed quantification of 
perceptual sensitivity may be determined by considering the changes in both the inspiratory pressure and flow 
(relative to the baseline breaths) that were required to detect the resistance. The use of mouth pressure, in particular, 
could be used as a replacement for the number of filters as a more nuanced measure of interoceptive sensitivity. As 
pressure will change in response to both changes in resistance as well as inspiratory flow (see Supplementary Figure 
4 for details), this measure would thus incorporate any inter-filter and inter-participant inspiratory flow variability. 
However, it is worth noting that the addition of these physiological measures would not alter the metacognitive 
performance scores, as both controlling task performance and accounting for any remaining performance variability 
(by using the meta-d model) renders these independent of interoceptive sensitivity17. The downside of these additional 
measures would be the loss of some of the task simplicity, and thus its feasibility for use in a wide range of settings. 
 A further notable limitation of the current version of the FDT is the time required for completion of the task. 
The original manual staircase proposed by Garfinkel and colleagues15 (used in the collection of the asthma data 
presented here) could require more than 60 minutes to acquire the final 20 trials used in the analysis, and other 
inspiratory load paradigms measuring only objective performance also require up to 60 minutes to collect only 7 
trials at each level of resistance12. Using this manual staircase and ~40 trials in each participant, we were unable to 
identify any differences in interoceptive sensitivity, interoceptive bias, metacognitive bias or metacognitive 
performance between individuals with asthma and healthy controls. Additionally, while worsened D12 scores 
appeared to relate to reduced metacognitive performance in asthma (Figure 5), this relationship did not reach 
statistical significance. To aid the collection of more trials in order to reduce the noise associated with each of our 
measures, the implementation of the FDT staircase allows for up to 60 usable trials in approximately the same amount 
of time (45-70 minutes). To further improve the ecological validity of the task, a roving staircase design with only 
40 trials could be employed; this would dramatically reduce the time required for task completion to approximately 
20-30 minutes per participant. 
 An additional limitation of the current design is the currently fixed staircase step-sizes induced by adding or 
removing a filter, and their lack of highly-accurate factory calibrations. While the resistance increments of 0.22 cm 
H2O / L.sec-1 provided here (see Supplementary Material for details) are smaller than those used in previous 
paradigms such as that by Davenport et al. (0.20 – 11.46 cm H2O / L.sec-1)12, sophisticated electronic devices that 
can deliver very variable small resistances (<0.5 cm H2O / L.sec-1) are not yet widely available. The development of 
such a device would allow for variable step-sizes, reduce the time required to manually change filters, and allow 
greater control over inspiratory flow rate and volume to reduce breath-by-breath variability. Such devices may either 
incrementally change resistance using techniques such as an adjustable aperture, or with even further sophistication 
establish a constant inspiratory resistance via biofeedback devices. The possible improvements in control over the 
staircase step-size may also allow for more established staircase procedures (such as QUEST) to be implemented 
here, where the fine-grain coverage of perceptual evidence strength required to accurately identify perceptual 
threshold may then become available. Furthermore, automated developments would also greatly reduce the current 
experimenter burden of having to manually change filters and interact with the task algorithm at every trial. 
 While the limitations in the current measures of perceptual sensitivity are worth observing and improving, 
these limitations do not discount the utility of the current measures. While the noise of the perceptual sensitivity 
metrics will be notable (but not necessarily insurmountable), the control of task performance allows the 
metacognitive measures to be somewhat independent of this noise. Furthermore, the measure of metacognitive 
performance directly accounts for any remaining differences in task performance by creating a ratio of meta-d’ / d’. 
Finally, keeping participants comfortable and reinforcing the notion that the task should be performed with normal 
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pace and depth of breathing should limit large differences in inspiratory flow and pressure, and filters could be 
additionally numbered to ensure consistency in incremental steps. 
 
Conclusions 
Here we present a breathing-related interoceptive application of a computational model designed to tease apart 
important aspects of perception: sensitivity, decision bias, metacognitive bias and metacognitive performance. Whilst 
interoceptive experiments often suffer from low trial numbers, by combining a breathing perception task with a 
hierarchical statistical model we were able to develop a robust algorithm to control task performance while 
maximizing the number of useful trials for analysis.  
 
The FDT toolbox is freely available for download (https://github.com/ofaull/FDT), as are the statistical methods 
employed (MLE model: http://www.columbia.edu/~bsm2105/type2sdt/; HMeta-d and RHMeta-d: 
https://github.com/metacoglab/HMeta-d/). 
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Supplementary Figure 1. Visualization of the task performance algorithm. TOP: Practice trials, consisting of an explicit dummy 
(where the participants are told a sham resistance is added), followed by a large load (7 filters) where no feedback is given (this 
is then maintained for the rest of the experiment). If no resistance is perceived in the Yes/No format or the answer is incorrect 
in the 2IFC format, filters are added until a correct resistance is reported. MIDDLE: Calibration trials, where (starting from 
the dummy), filters are added until two consecutive resistances are reported (i.e. two ‘Yes’ answers for the Yes/No format of the 
task). If performing a 2IFC task, the required ‘Yes’ answers for the calibration trials are replaced by correct 2IFC answers. 
Following this, one final calibration trial is performed with one less filter, to determine the starting value for the task trials. 
BOTTOM: Task trials, where cumulative task accuracy at each trial is transformed (using a beta distribution) into the 
distribution of underlying accuracies that could have produced the task performance. An upper bound (here 80%) and a lower 
bound (here 60%) is used to calculate the probability that the participant is performing at the targeted accuracy. If this 
probability falls below the error risk threshold (here 20%), a filter change is prompted – either the addition of a filter if the 
accuracy is too low, or the removal of a filter if the accuracy is too high. This continues until either a specified number of trials 
(here 60 trials) are completed at either one filter number (using the ‘constant staircase’ task design) or at a range of filter 
numbers (using the ‘roving staircase’ task design), the latter requiring no additional trials to be measured that will not be used 
in the analysis. If a constant staircase is used, the algorithm is stopped at 30 trials, and experimenter intervention can occur 
every 10 trials subsequently if task performance is drastically altered and no longer deemed acceptable. 
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Filter resistance notes 
 
Detailed information describing the spirometry filters used for this task is provided by GVS 
(http://www.gvs.com/images/uploads/user/Catalogues%20Pdf/Cat%202019%20Healthcare%20Air.pdf; product 
number 2800/22BAUF). A copy of the relevant information is additionally outlined in Supplementary Figure 2 
(below) for reference. 

As resistance is the force that opposes the movement of a fluid (or particles) and is a mechanical property of 
the circuit, this remains constant over the course of each trial. However, the inspiratory force exerted in each breath 
can change inspiratory pressure, which leads to changes in inspiratory flow (as determined by the circuit’s resistance). 
The relationship between flow (𝑄), differential pressure (𝑃) and resistance (𝑅) is determined by Ohm’s law: 

𝑄 =	
𝑃
𝑅

 

Utilizing this relationship, we can use the reference values provided in Supplementary Figure 2 to calculate the 
resistance for each filter as < 0.48 cm H2O / L.sec-1 at 30 L.min-1 (0.5 L.sec-1), calculated as 𝑅 = 𝑃 ÷ 𝑄. 
 
 
 

 
 
 Supplementary Figure 2. Details of the spirometer filter product used to add resistance for detection in the FDT. Taken from 
GVS Filter Technology product guide, and details can additionally be found listed on the webpage (http://www.gvs.com/product-
family/187/679/2800). The “Flow Resistance” measures provided in this table are pressure values, and thus resistance can be 
calculated by dividing the given pressure values by the given flow rate. 
 
 
Additionally, we measured the inspiratory pressure and flow across a range of filters over all levels, such that we 
were able to measure and calculate inspiratory resistance values. Resistance values are presented in Supplementary 
Figure 3A, and we demonstrate that each additional filter provides an added resistance of 0.22 cm H2O / L.sec-1, with 
the baseline resistance of the circuit (including the dummy filter) 0.31 cm H2O / L.sec-1. Furthermore, Supplementary 
Figure 3B shows clear separation between the resistance values calculated for each filter level, although measurement 
error from pressure and flow devices contributes to a small amount of variability in the resistance magnitude. 
 
Finally, we demonstrate the strong relationship between increases in inspiratory flow and pressure (Supplementary 
Figure 4) using an example filter level of 5. If inspiratory flow is increased, inspiratory pressure will also increase 
proportionately against this static resistance. Therefore, the magnitude of inspiratory pressure at perceptual threshold 
(~70% performance accuracy) would be a more accurate measure of interoceptive sensitivity, as this would take into 
account the effect of inspiratory flow as well as the number of filters used for an external resistance. 
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Supplementary Figure 3. Magnitude of inspiratory resistance induced by increasing filter levels. A) Grey circles indicate the 
resistance values calculated for each trial at each filter level, with black circles denoting the mean value at each level. The 
dotted line represents a regression of the filter level against the mean resistance values, such that the slope and intercept 
(resistance of the circuit with the dummy attached) can be quantified. B) Grey circles indicate the resistance values calculated 
for each trial using five different filter combinations at each filter level, with black circles denoting the mean value for each filter 
combination. Clear separation can be seen between the resistance produced at each level of filters. 
 
 
 
 
 
 

 
 

Supplementary Figure 4. Relationship between inspiratory flow and inspiratory pressure using an example of 5 filters. The 
inspiratory pressure generated is proportional to the magnitude of inspiratory flow, and thus measures of  inspiratory pressure 
at perceptual threshold would provide a more accurate measure of interoceptive sensitivity than the number of filters used, as 
this will account for variations in inspiratory flow. 
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Supplementary Figure 5. Demonstration of the recovery of three group regression parameters (betas) against the logMratio 
using either the original HMeta-d model combined with a post-fit linear regression (HMeta-d+R), or an extended multiple 
regression HMeta-d (RHMeta-d) model, the latter where group linear regression parameters are simultaneously hierarchically 
fit alongside logMratio. Results are shown for simulations using 20 trials (A), 40 trials (B) and 60 trials (C). Grey areas denote 
the 95% highest density interval of the sampled estimate. Dashed lines represent ideal recovery of group beta values, and dotted 
lines at zero demonstrating the ability of the model fit to significantly recover group estimates (with highest density intervals not 
including zero). 
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Supplementary Figure 6. Demonstrations of the model fits by comparing the observed and model estimates of the Type 2 ROC 
curves for both ‘Yes’ and ‘No’ responses (regarding the presence of an added inspiratory resistance). Model fits are shown for 
the control data fit (A and B), the asthma data fit (C and D), and for the asthma data extended regression model (E and F). 
 
 
 
 

 
Supplementary Figure 7. Comparisons between metacognitive performance (logMratio) and symptom load in asthma, using a 
median-split analysis for high and low symptoms. A) The sampled posteriors of the hierarchically-estimated metacognitive 
performance parameter (Mratio) for individuals with > median D12 scores (high symptom load group) or < median D12 score 
(low symptom load group). B) The distribution resulting from the difference between the group Mratio distributions, where the 
dashed lines represent the two-tailed non-significant 99% highest density interval (HDI), and the dotted line denotes zero. 
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Supplementary Figure 8. Results demonstrating the use of an adapted roving staircase algorithm for targeted task difficulty over 
60 trials. A) Simulation results, where data were generated from a range of logistic sigmoid functions bounded between 0.5 and 
1, with 20 simulations for each sigmoid (‘participant’) from each of five starting points – from two filters below to two filters 
above the 75% threshold filter. Left: Simulated and recovered 75% filter number for each simulated ‘participant’. Right: 
Histogram of the task accuracy scores for the 60 threshold trials for all simulations. B) Data collected using a Yes/No version 
of the task (with a constant staircase, but where the first 60 trials – regardless of filter number – were analyzed to represent a 
roving staircase design), where 50 participants were measured. Left: Histogram of the measured threshold filter number for 
each participant. Right: Histogram of the task accuracy scores for the 60 threshold trials for the 50 measured participants. C) 
Data collected using a Yes/No version of the task (with a roving staircase), where 20 participants each completed 60 trials 
(total). Left: Histogram of the measured threshold filter number for each participant. Right: Histogram of the task accuracy 
scores for the 60 threshold trials for the 50 measured participants. All histograms are reported with mean ± standard deviation. 
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Supplementary Figure 9. Results for the calibration algorithm from both simulated and empirical data. Left: Simulated 
calibration filter plotted against the threshold (75%) filter, demonstrating a bias towards lower calibration values. Right: 
Empirical calibration results plotted against the task threshold filter number for data from both constant and roving staircase 
designs (roving staircase threshold filter numbers are calculated as the average filter number across the task trials). 

 
 
 

 
Supplementary Figure 10. Simulated results demonstrating the use of an adapted roving staircase algorithm for targeted task 
difficulty over 60 trials, using two different sets of thresholds for prompting a change in filter number. In both panels, data were 
generated from a range of logistic sigmoid functions bounded between 0.5 and 1, with 20 simulations for each sigmoid 
(‘participant’) from each of five starting points – from two filters below to two filters above the 75% threshold filter. A) Data 
were generated using an upper bound of 80% and a lower bound of 65% on the beta distributions calculated from task 
performance scores, using 20% as a false positive threshold where probabilities below this threshold prompted a filter change. 
B) Data were generated using an upper bound of 75% and a lower bound of 70% on the beta distributions calculated from task 
performance scores, using 30% as a false positive threshold where probabilities below this threshold prompted a filter change. 
Both panels – Left: Simulated and recovered 75% filter number for each simulated ‘participant’. Right: Histogram of the task 
accuracy scores for the 60 threshold trials for all simulations. Data from B show a very similar mean and reduced standard 
deviation for the resulting task performance accuracies generated. 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2021. ; https://doi.org/10.1101/2020.06.29.176941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.176941
http://creativecommons.org/licenses/by/4.0/

