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Highlights 
 
● Census-seq reveals how inherited genetic variation affects cell phenotypes  
● Genetic analysis of cellular traits in cell villages of >100 donors  
● Characterizing human alleles that shape SMN protein expression and drug responses  
● Development of protocols and software to enable cellular population genetics  

 

Summary  
Tens of thousands of genetic variants shape human phenotypes, mostly by unknown cellular 
mechanisms. Here we describe Census-seq, a way to measure cellular phenotypes in cells from 
many people simultaneously.  Analogous to pooled CRISPR screens but for natural variation, 
Census-seq associates cellular phenotypes to donors’ genotypes by quantifying the presence of 
each donor’s DNA in cell “villages” before and after sorting or selection for cellular traits of 
interest.  Census-seq enables population-scale cell-biological phenotyping with low cost and high 
internal control.  We demonstrate Census-seq through investigation of genetic effects on the 
SMN protein whose deficiency underlies spinal muscular atrophy (SMA).  Census-seq quantified 
and mapped effects of many common alleles on SMN protein levels and response to SMN-
targeted therapeutics, including a common, cryptic non-responder allele. We provide tools 
enabling population-scale cell experiments and explain how Census-seq can be used to map 
genetic effects on diverse cell phenotypes.   
 

Key Words: Human genetics, genomics, cell biology, induced pluripotent stem cells, embryonic stem 
cells, pharmacogenetics, Spinal Muscular Atrophy, Survival of Motor Neuron. 

     
    
   
 
 
 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.29.174383doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.174383


 

3 
 

Introduction 
Human populations harbor vast numbers of common and rare alleles; such alleles affect the 
protein-coding sequence or regulation of almost all human genes.  Human genetic studies have 
associated tens of thousands of alleles to risk of illnesses and other quantitative traits. A core 
goal of human genetics is to help identify cellular processes that underlie disease. And yet we 
know little today about how human alleles affect cells and their biology.  We understand even 
less about how combinations of alleles – whether from one or many genes – converge upon cell-
biological processes that might mediate normal variation and vulnerabilities. 
  
Pioneering studies have shown that lymphoblastoid cell lines or pluripotent stem cells (PSCs) 
from human donors can be used to identify how common DNA variation shapes certain cellular 
phenotypes, especially RNA expression (Cheung et al., 2005, Morley et al., 2004, Stranger et al., 
2007a, Stranger et al., 2007b, Kilpinen et al., 2017, Lo Sardo et al., 2017, McFarland et al., 2019, 
Pickrell et al., 2010). However, efforts to ascertain effects of human genetic variation on cellular 
phenotypes encounter two challenges.  The first challenge involves reaching the necessary scale 
by culturing and assaying the large number of cell lines necessary to associate phenotype with 
genotype.  Challenges of scale have largely limited genome-wide genetic studies to a few labs or 
consortia and a few phenotypes.  The second challenge involves control and rigor: how to 
accurately measure and compare phenotypes across many cell lines cultured separately.  Without 
such control, it is often feared that biology can learn only from “alleles of large effect” – alleles 
that cause dramatic phenotypes in deterministic ways and thereby overwhelm noise in 
experimental measurement. 
  
Here we describe an experimental system and computational methods (“Census-seq”) that we 
developed to perform population-scale cellular experiments that enable insights from genetic 
influences of all kinds and frequencies upon diverse cellular phenotypes.  Our approach involves 
what we call “village-in-a-dish” experiments, in which cells from all donors are mixed together, 
then fed, passaged, and stimulated in a shared environment, and finally scored for phenotypes all 
together.  Census-seq analysis relates cells’ phenotypes to the individual cell donors by analyzing 
the donors’ DNA contributions to cell mixtures: after sorting or selecting the cell village for the 
phenotype of interest, we sequence the genomic DNA in the resulting, derived villages; 
computational analysis reveals the proportion of cells from each donor before and after sorting or 
selection.  This approach allows many different kinds of cellular phenotypes to be analyzed for 
association to donor genotypes or other donor characteristics. 
 
Census-seq addresses many challenges that have limited cellular genetic studies. Our first goal 
has been to make it facile and inexpensive to do population-scale phenotype readouts and genetic 
analysis with cells.  A second goal has been to measure phenotypes across scores of cell lines in 
a rigorous, well-controlled way.  A third goal has been to facilitate genetic analysis of 
phenotypes beyond RNA expression: much information flows across cellular networks through 
proteins, which may provide a natural integration point for effects from many genes and alleles.  
Cell villages dramatically reduced the cost and complexity of population-scale experiments 
while reducing measurement noise and biological variance.   
 
We sought here to establish such systems, understand their practical execution, apply them to a 
model phenotype, and enable other scientists to adopt similar approaches.  We chose as a model 
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phenotype the expression of the SMN protein, for which deficiency underlies Spinal Muscular 
Atrophy (SMA), a common congenital disorder engaged by emerging therapeutics (Chen, 2020, 
Lefebvre et al., 1995). 

Results 

Census-seq: determining the donor composition of a cellular “village” 
Census-seq is analogous to pooled CRISPR screening, with a key difference: Census-seq 
interrogates natural genetic variation rather than synthesized libraries of guide RNAs. In pooled 
CRISPR screens, cells are administered a library of gene-perturbing guide RNAs (each tagged 
with a DNA barcode) and then sorted or selected for a phenotype of interest; the relative 
frequencies of barcodes are compared between the initial population of cells and the population 
created by selection or sorting, and the effects of each guide on the phenotype are inferred from 
the change in that guide’s representation (Adelmann et al., 2019, Canver et al., 2015, Gasperini 
et al., 2019, Hsu et al., 2018, Shalem et al., 2014, Wang et al., 2014). For Census-seq, we begin 
by constructing villages of cell lines derived from many (most frequently 10-100) donors; the 
cells in the village may be cultured or stimulated together over some period of time.  Then, as in 
pooled CRISPR screening, we fractionate the cell village by sorting (or performing selections) to 
obtain cells with a phenotype of interest. By sequencing genomic DNA derived from the cell 
village, and applying a computational approach we describe below, we then determine the 
relative contribution of each donor’s genomic DNA to the cell mixture – and therefore the 
fraction of all cells that come from each donor – comparing the initial population to the 
population that results from fractionation, or comparing fractionated populations to one another.  
 
Census-seq uses natural genetic variation (rather than synthetic barcodes (Yu et al., 2016)) to 
measure each individual’s contribution to cell mixtures.  The use of inherited variation as a 
natural barcode makes it possible to use human cells without the further perturbations (e.g. viral 
transfection and cloning) that alter cells’ biology or contribute to the acquisition of mutations.  
To infer each donor’s cellular contribution to a mixture, we isolate genomic DNA from the 
village, then perform low-coverage whole genome sequencing on that genomic DNA (generally 
about 1X average genomic coverage, at a cost of about $100 per cell village). We routinely 
analyze as few as 1x105 cells of a village, enabling many experiments to be performed in 
relatively small reaction chambers such as those on a 12-well plate.   
 
We developed a computational approach to estimate each donor’s contribution to this DNA 
mixture (Figure 1A).  Making this estimate requires a priori genetic information on the 
individual donors, which can come from SNP arrays, exome sequencing, or whole genome 
sequencing (WGS) (Figure S1E). Sequencing the village’s genomic DNA generates millions of 
sequence reads; these reads sample the donors’ genomes in proportions that reflect the 
representation of each donor’s cells in the village.  A large minority of the sequence reads are 
“allelically informative” in the sense that they contain a genomic site that we know to vary 
among the potential donors; for example, in an analysis of a village of 40 donors whose genetic 
variation has been ascertained by WGS, about 42% of all 151-bp reads contain a genomic site for 
which the donors have varying genotypes.  The allele present on any such read offers partial  
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Figure 1.  Village-in-a-dish experimental systems.  
A. Cells from many donors are cultured together as a “village” to enable scalability and minimize technical sources of variation.  

Sorting or selection enrich for cells with phenotypes of interest, creating a derived village.  Genomic DNA is extracted from each 
village and sequenced.  Census-seq analysis measures each donor’s contribution to the village’s genomic DNA, and thus 
(indirectly) the relative number of cells from each donor in each village. 

B. Census-seq analysis is based on an expectation-maximization (EM) algorithm.  The algorithm seeks the set of donor-mixing 
coefficients (summing to 100%) that maximize the likelihood of the observed sequence data.  For any set of coefficients, this 
likelihood is measured by multiplying the modeled allele frequencies (in the village mixture) of all of the alleles observed on all 
allelically informative sequence reads.  The donor-mixing coefficients are then adjusted in the direction that most strongly 
increases the likelihood of the observed data; the adjustments are derived by taking the derivative of the likelihood with respect to 
each of the donor-specific mixing coefficients (Methods) (fa = the frequency of the reference allele, A = the counts of the 
reference allele in the sequence data, fb = the frequency of the alternate allele, B = the counts of the alternate allele in the sequence 
data, gi = the genotype of the donor at the site, formatted as 1 for the reference genotype, 0.5 for the heterozygous genotype, and 0 
for the alternate allele) 

C. Iterated rounds of adjustment optimize the estimates of donor mixing coefficients to fit the sequencing data, converging 
asymptotically to a final estimate. 

D. Convergence is typically reached after just a few iterations of the EM algorithm. 
E. Simulated “village DNA” data sets were made by mixing whole genome sequence data from 40 unrelated donors in such a way 

that each donor contributed a different proportion of the overall data.  Census-seq was used to estimate the quantitative 
contribution of each donor to this data mixture.  The plot compares the known, in silico mixing coefficients to the estimates from 
Census-seq. 

F. Genomic DNA from ten donors was mixed in such a way that each donor contributed a different proportion of the total DNA.  
The DNA mixture was sequenced and analyzed by Census-seq.  The plot compares the aliquoted donor-contribution proportions 
to the Census-seq estimates from sequencing the DNA mixture. 
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information about the composition of the mixture, as only a subset of the potential donors’ 
genomes can be sources of that sequence read.   
 
In the mathematical analysis underlying Census-seq, we find the set of mixing coefficients (one 
coefficient for each donor, summing to 1.0) that make the observed sequence data – the millions 
of allelically informative reads, considered together – maximally likely to have been generated 
by random sampling from the donors’ genomes (Figure 1B).  The mixing coefficients are 
inferred via an expectation-maximization algorithm which works in the following way.  At every 
variable site in the human genome, any hypothetical mixture of the donors involves an implicit 
“village allele frequency” for every allele in the DNA mixture (Figure 1B).  (A default initial 
condition for analysis can be that each donor has contributed equal numbers of cells; in this case 
the village allele frequency for each allele is simply that allele’s frequency among the donors, 
without weighting.) We measure the likelihood of the village’s sequence data by multiplying the 
village allele frequencies of all of the alleles from allelically informative sequence reads, making 
small adjustments to account for the possibility of sequencing error. To refine the mixing 
coefficients, we calculate the partial derivative of the likelihood of the data with respect to each 
donor’s mixing coefficient; this calculation yields a set of adjustment factors by which we 
increase or decrease each individual donor’s mixing coefficient to improve the data likelihood 
(Figure 1B, C, D, Methods).  This “gradient ascent” process is repeated; as the mixing 
coefficients are adjusted, the likelihood of the observed sequence data increases toward an 
asymptote (Figure 1D).  The computational analysis converges quickly – typically requiring just 
10-30 iterations – to a set of mixing coefficients under which the observed sequence data are as 
likely as possible.   
  
To evaluate whether the donor composition of villages inferred by Census-seq corresponded to 
their known, actual composition, we performed many control analyses and experiments, 
including (i) analyzing in silico simulations in which we mixed DNA sequencing data from 
many individuals in known proportions; (ii) mixing genomic DNA from different individuals in 
known concentrations; and (iii) mixing cells from individuals in known proportions.  In each 
case, the Census-seq estimates of donor representation in the mixture corresponded closely to the 
ratios in which sequence data, DNA or cells from different donors had been mixed (Figure 1E, 
F, S1). Overall, we found that a donor’s DNA representation in a village could be measured 
accurately down to a limit at which a donor contributes about 0.2% of the cells in a mixture 
(Figure S1F), a limit that is related to the sequencing error rate and thus is not addressed by 
simply sequencing Census-seq libraries more deeply.  This limit places an upper bound (of a few 
hundred) on the number of unique donors that can be accurately quantified in one village.  This 
bound is still far above the scale of experiments that can be accomplished comfortably in 
traditional formats; still-larger experiments are possible by meta-analyzing many villages with 
overlapping membership for calibration.   
 
We found that donor composition of 40-donor villages could be inferred accurately with modest 
amounts of sequencing that corresponded to less than 1X coverage of a single human genome 
(Figure S1E).  The required depth of sequencing depended on the complexity of the village 
(number of donors) and the amount of available genome information on these donors (Figure 
S1E) (Methods), with deeper a priori genetic characterization (e.g. WGS) causing more sites to 
be allelically informative and thus allowing lighter sequencing of the village’s DNA at the time 
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of phenotype analysis.  For example, if a donor has contributed 2.0% of the DNA in a mixture, 
sequencing the village genomic DNA to a sequencing depth of about 1X (16 million 150-bp 
reads) yields estimates of 2.0 +/- 0.1%. We routinely analyze 16 villages in each run of a desktop 
sequencer (Illumina NextSeq) (Methods) at a cost of about $100 per village.  
 
These results encouraged us to use this approach to analyze a great many cell villages of 
experimental composition and to study the population dynamics of villages of PSCs as they grew 
in culture together.  While PSCs present important opportunities in their capacity to differentiate 
in vitro into a great many cell types, PSCs present particular challenges for cell villages, as they 
are proliferative and acquire mutations in culture.  The results were sobering. 

Population dynamics of cellular villages 
  
To study the population dynamics of PSC villages, we established 29 villages, each consisting of 
~10-100 donors, and measured their population dynamics across 3-13 passages; in total, we 
measured 3,705 Census-seq growth phenotypes in cell lines from 247 unique donors at multiple 
timepoints (Figure 2A-E, Table S1, S2). For initial experiments we utilized cell lines drawn 
from a large collection of human embryonic stem cells we had assembled and recently 
genetically characterized by whole genome sequencing (Merkle et al., in revision, Merkle et al., 
2017).  In most experiments, we found that one or a few cell lines progressively took over the 
village (Figure 2C, D). Analyses of the whole genome sequences of these cell lines indicated 
that a majority of the hyperproliferative cell lines had acquired growth-promoting mutations 
(Figure 2C), some of which – such as mutations in the TP53 gene and the gene encoding the p53 
inhibitor MDM4 – recurred in multiple cell lines (Loh et al., 2018, Merkle et al., 2017).  The 
ease and low cost of Census-seq analyses made it straightforward to detect cell lines with these 
growth promoting mutations (Figure 2C, D). Though these findings demonstrated the utility of 
Census-seq for identifying stem cell lines with growth-promoting mutations (that would ideally 
be excluded from translational efforts), they also indicated that variation in growth rates among 
stem cell lines must be managed to maintain large villages. 
 
We therefore used Census-seq to explore approaches that would allow us to better scale the size 
of villages. Overall, we found that constructing larger villages of 40-100 cell lines was more 
robust if we first established and then monitored the population dynamics of small “heats” of 8-
12 PSC lines (Figure 2D).  Census-seq analysis of these heats made it possible to identify cell 
lines that were empirically hyper-proliferative, regardless of whether they contained obviously 
culpable acquired mutations, before then choosing which cell lines to include in larger villages. 
For instance, in 7 early heats in which we evaluated 67 cell lines, we identified 13 cell lines 
(19%) that exhibited rapid expansion relative to the other lines (Table S3). Eliminating these 
rapidly growing outliers greatly increased the compatibility of cell lines within a village, 
allowing the maintenance of donor balance over longer co-cultures that were amenable to 
numerous forms of experimental manipulation and cellular phenotyping (Figure 2E).  
  
We next assessed the dynamics of villages during directed stem cell differentiation, which makes 
it possible to investigate genetic influences on phenotypes found only in specific cell types.  As 
an initial test, we employed a rapid, reproducible neuronal differentiation strategy to generate 
homogenous pools of post-mitotic neurons by inducing the expression of Neurogenin 2 (Ngn2)  
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Figure 2.  Donor population dynamics in villages of pluripotent stem cells. 
A. Villages were created from PSCs and cultured or differentiated in vitro.  Census-seq was used to monitor the donor composition 

of these cultures at each passage. 
B. Before creating large villages, smaller “heats” can be used to identify cell lines that are hyper-proliferative. 
C. Several hyper-proliferative PSC lines had acquired growth-promoting mutations in culture.  
D. Hyper-proliferative lines can quickly distort the donor composition of villages, rendering them unsuitable for many kinds of 

experiments. 
E. A variety of steps, including excluding lines with recognizably culpable acquired mutations and other empirically hyper-

proliferative lines, allow villages to be maintained across several passages with relatively stable donor composition. 
F. Villages of PSCs can be differentiated into neurons and cultured for weeks as the neurons mature in vitro, with stable donor 

composition of the village. 
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combined with small-molecule patterning of cells towards a cortical excitatory identity (Nehme 
et al., 2018, Zhang et al., 2013). This approach generated neuronal villages that matured over 
many weeks while maintaining a stable mixture of the donors (Figure 2F), useful for 
perturbation and phenotypic profiling in downstream assays. 

A computational toolkit for village experiments: “Roll Call” and “CSI” 
Simulations showed that the precision of Census-seq analyses would be undermined if a cell 
village was contaminated with cells from a donor who was not expected to be present in a 
village.  To address this, we developed computational approaches to quickly authenticate a 
village (or other DNA mixture) and identify and diagnose the presence of cells with unexpected 
genomes (Figure 3, Methods).  These methods have the added benefit of being generally useful 
for validating the provenance of large numbers of cell lines (Nelson-Rees et al., 1981). 
 
Contamination of a village could in principle arise from a donor of known genotype, or a donor 
of unknown genotype; we developed two computational approaches to address these two cases.  
To illustrate these approaches, we have drawn on the example of a village whose 12 donors 
initially appeared to have maintained a remarkably stable balance through six passages (Figure 
3A).   
 
To detect the presence of donors with known genome sequences, we developed “Roll Call”, 
which utilizes variants that distinguish individual donors from all other donors for whom cells 
might be present in a given lab or project (Figure 3B, S2A-D); we call such variants Identifying 
Rare Variants (IRVs).  The presence of a sufficient number of sequence reads with an individual 
donor’s IRVs confirms the presence of that donor’s cells in a village.  In the experiment in 
question, Roll Call identified that the village DNA contained a great many IRVs from an 
unexpected cell line (CSES15) – a cell line whose genome we had previously analyzed, but was 
not meant to be included in the village – and suggested that this cell line had become more 
abundant in the village with each passage (Figure 3C).  Identifying the contaminating donor 
made it possible to correct the Census-seq analysis to account for this unexpected donor by 
including their genotypes among those of the other candidate donors in Census-seq analysis; this 
analysis revealed that cells from the CSES15 line had in fact taken over the village (Figure 3F). 
Examination of whole genome sequence data from CSES15  revealed that it harbored an 
acquired mutation in MDM4. 
 
A more challenging analytical problem can arise if contaminating cells come from a donor 
whose genotypes are unknown.  We developed the Contaminating Sample Identifier (CSI) 
algorithm to detect the presence of contaminating cells from genomically unknown donors 
(Figure 3D, E, S2E-G). CSI utilizes sequence reads that suggest the presence of alleles that are 
segregating in human populations yet (by chance) absent among the candidate members of a 
village; CSI determines whether such reads are sufficiently numerous that sequencing error is 
unlikely to explain them.  To evaluate CSI, we asked whether it could identify the presence of 
contaminating cells in the village described above, but do so in the absence of any a priori 
genetic data for the contaminating CSES15 line.  Indeed, CSI analysis suggested the presence of 
an unexpected donor, at increasing frequency with each passage (Figure 3E, F).  Follow-up CSI 
and Roll Call analyses of individual cell lines (from which the village was made) allowed us to 
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Figure 3. Using Roll Call and CSI to inspect donor composition of villages 
A. In a typical analysis, Census-seq is used to determine donor composition of a village at each passage. The appearance of a 

strikingly balanced village after 6 weeks in culture prompted the generation of additional analysis tools to further scrutinize the 
donor composition of this and other cell villages. 

B. The Roll Call algorithm is used to confirm the presence or absence of individual donors (with known, a priori genetic variation 
information). Roll Call utilizes Identifying Rare Variants (IRVs) – rare variants that distinguish individual candidate donors from 
all other candidates. 

C. Roll Call identified the intrusion of a familiar (but unexpected) cell line into a village, indicating that this line (light blue) 
dominated donor representation within a few passages. 

D. The Contaminating Sequence Identifier (CSI) algorithm detects the presence of DNA from unexpected donors of unknown 
genotype (orange). 

E. In an in silico analysis blinded to any genetic information about the contaminating cell line, CSI predicted that an unfamiliar 
donor was present and had increased representation with each passage. 

F. Re-evaluating the donor composition of this village using Census-seq with an updated roster of donor cell lines confirmed the 
presence on a dominant intruding cell line.  This line was determined to have acquired multiple growth-promoting mutations, 
including within MDM4, which encodes a regulator of the P53 tumor suppressor. 
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identify the tube that had initially become contaminated with CSES15. 
 
Roll Call and CSI can be used to authenticate cellular reagents – for individual cell lines as well 
as villages – in a wide variety of laboratory contexts. 

Cellular phenotyping and genetic analysis in villages 
To analyze how a cellular phenotype of interest varies among donors, we analyze how sorting or 
selection for that phenotype changes the representation of each donor’s DNA in the cell mixture 
(Figure 4).  Although a donor’s individual cells may also vary in phenotype, donor-to-donor 
variation in the mean and/or variance of such distributions will alter the representation of each 
donor’s DNA in the resulting villages (Figure 4A). For example, to analyze the expression level 
of a specific protein, we stain about 106-107 cells from a cell village with an antibody to that 
protein, then sort the cells based on the immunofluorescence signal (Figure 4A, 4B).  Each 
donor’s quantitative phenotype is then the ratio of their DNA representation in two different 
selected villages (Figure 4C).   
 
The ability to analyze DNA recovered from fixed, sorted cell mixtures enables many kinds of 
analyses.  Intracellular as well as cell-surface proteins can be analyzed.  Flow cytometry 
conditions and gating thresholds can be optimized, for example by using mutant cells, strongly 
perturbed cells, or secondary-antibody-only conditions to define reference distributions of 
phenotypic values (Figure 4C, S3).  Aliquots of a cellular village, once prepared and fixed, can 
be used to analyze many different proteins. 
  
As a model cellular phenotype, we analyzed genetic influences on the Survival of Motor Neuron 
(SMN) protein, which in humans is encoded by the paralogous SMN1 and SMN2 genes on 
chr5q13 (Lefebvre et al., 1995, Lorson et al., 1999, Monani et al., 1999). SMN deficiency results 
in widespread splicing defects and causes Spinal Muscular Atrophy (SMA).  Though the coding-
sequence differences that distinguish SMN1 from SMN2 are all synonymous changes in codon 
usage, SMN2 lacks a key splicing enhancer, with the result that the majority of SMN2 mRNAs 
produce a shorter protein (SMNdelta7) whose inability to rescue SMN1 deficiency has been 
attributed to protein instability and perhaps to nonsense-mediated decay (Burnett et al., 2009, 
Hua et al., 2008).  SMN deficiency is primarily caused by mutations in SMN1, which are under 
these circumstances not rescued by SMN2.  An emerging therapeutic strategy for SMN 
deficiency is to cause the SMN2 pre-mRNA to splice in an SMN1-like manner, producing a 
protein that can rescue SMN1 deficiency (Finkel et al., 2016, Groen et al., 2018, Hua et al., 2010, 
Meyer et al., 2009, Palacino et al., 2015, Ramdas and Servais, 2020). 
  
To first see whether Census-seq could be used to recognize an individual with a strong SMN-
protein-expression phenotype, we created a 19-donor PSC village that included iPSCs derived 
from an SMA patient (iPSC322A).  The cell village was fixed, stained with a monoclonal 
antibody recognizing the SMN protein (produced by both the SMN1 and SMN2 genes), and 
sorted based on anti-SMN immunoreactivity (Figure 4B, C).  We then separately collected cells 
whose immunoreactivity was in the upper and lower quintiles relative to the rest of the village 
(Figure 4C, Figure S3).  Census-seq comparison of these “SMN-immunoreactivity-high” and 
“SMN-immunoreactivity-low” villages revealed that, as expected, cells from the SMA patient  
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Figure 4.  Using cell villages and Census-seq to analyze cellular phenotypes at population scale. 
A. A cellular phenotype may be affected by both inter-individual biological variation and single-cell variation (in biology or 

measurement).  Sorting or selecting the cells in the village based on this phenotype creates derived villages.  If inter-individual 
biological variation shapes this cellular phenotype, then the derived villages will have different donor compositions.  A donor’s 
change in representation between such derived villages is a quantitative phenotype that can then be analyzed genetically or in 
relationship to other variables, such as donor age or health status. 

B. Ascertainment of inter-individual variation in protein expression from cell villages using Census-seq.  A cell village is fixed and 
stained with an antibody to a protein or post-translational modification of interest.  The cell village is FACS-sorted for level of 
immunoreactivity.  The donor composition of each cell fraction is analyzed by Census-seq.  

C. A cell village was analyzed for expression levels of the SMN protein.  The pilot village, consisting of PSCs from 19 donors, 
included cells from a donor with spinal muscular atrophy (SMA, a recessive genetic disorder caused by SMN deficiency) and two 
carriers of recessive SMA mutations.  Comparisons of the FACS-derived SMN-high and SMN-low cell villages by Census-seq 
indicated that cells from all three donors were more abundant in the SMN-low than the SMN-high fraction.  This effect was 
strongest for cells from the SMA patient, and also detectable in the two carriers. 
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were greatly over-represented (3.1-fold) in the SMN-low fraction relative to the SMN-high 
fraction (Figure 4C).  Interestingly, cells from two additional cell lines were also over-
represented in the SMN-low fraction (1.9-fold and 1.4-fold, Figure 4C). Examination of WGS 
data  from the 19 cell lines in the village revealed that these two cell lines came from 
heterozygous carriers of an SMN1 deletion. 
 
In addition to the SMA patient and two SMN1 deletion carriers, the other 16 PSC donors also 
varied in their DNA contribution to the SMN-low and SMN-high cell villages (Figure 4C). To 
see whether such variability was driven by genetic variation, we analyzed this phenomenon in a 
larger village of 113 iPSC lines obtained from the California Institute of Regenerative Medicine 
(Figure 5A), whose genomes we also analyzed by WGS and make available as part of this work 
(Lin et al., 2020).  Census-seq revealed abundant variation in the SMN-expression phenotype 
(Figure 5A) even among donors whose WGS data indicated that they did not harbor 
heterozygous or homozygous deletions in SMN1. To determine the genetic source of this 
phenotypic variation, we used the Census-seq measurements to perform a genome-wide 
association study (GWAS) of the SMN-expression phenotype – which we scored as the log-ratio 
of each donor’s representation in the SMN-high and SMN-low fractions – focusing on 96 iPSC 
lines that were sufficiently well-represented in the villages to yield high-precision measurements 
of their representations (Figure 5B, 6D, blue symbols; Methods). This analysis yielded a 
genome-wide significant (p = 2.91x10-14) association to the locus on chromosome 5 containing 
the SMN genes.  The phenotype mapped most strongly to common copy-number variation of the 
SMN1 and SMN2 genes. We found most individuals had inherited 2 to 6 such genes (total), 
which we measured in each donor by applying the Genome STRiP algorithm to the individual 
donors’ WGS data (Figure 5C, 7B) (Handsaker et al., 2011, Handsaker et al., 2015).  The strong 
statistical significance of this relationship – which resulted from both the number of donors in 
the analysis (96) and the high correlation of gene copy number with the Census-seq SMN 
phenotype measurements (r2 = 0.59) – meant that the genetic basis of this phenotype could in 
principle have been mapped in an unbiased genome-wide search. 
  
Each copy of SMN2 can only partially rescue loss of an SMN1 allele – despite being expressed in 
the same tissues and cell types – a failure that could in principle be due to differences in the 
stability or activity of the proteins generated by SMN1 and SMN2 (Figure 5D).  To separately 
quantify the contributions of SMN1 and SMN2 to SMN protein abundance, we used the fact that 
SMN1 and SMN2 each exhibit common variation in copy number; we inferred each donor’s gene 
copy number for SMN1 and SMN2 by utilizing paralogous sequence variants that distinguish 
between the genes (Methods).  Linear regression of the donors’ Census-seq SMN-expression 
phenotypes against their SMN1 and SMN2 gene copy numbers revealed that both SMN1 and 
SMN2 copy number contributed positively to SMN protein expression, with SMN1 making a 
greater contribution (Figure 5E).  This result confirms that SMN1 generates somewhat more or 
longer-enduring SMN protein than does SMN2.  However, the modest difference between the 
per-copy effects of SMN1 and SMN2 (Figure 5E) suggests that protein instability is not on its 
own a sufficient explanation for the inability of SMN2 to rescue SMN1 deficiency and is 
consistent with the hypothesis that SMNdelta7 also has reduced activity. 
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Figure 5.  Genetic basis of an SMN protein expression phenotype. 
A. A village of iPSCs from 113 donors was assembled.  The cells in the village were fixed, immunostained for SMN protein, and 

sorted into SMN-high and SMN-low fractions.  Genomic DNA from the two fractions was analyzed by Census-seq.  For genetic 
analysis, each donor’s SMN-expression phenotype was quantified from the relative abundance of his/her genomic DNA (cells) in 
the SMN-high and SMN-low fractions. 

B. Manhattan plot showing genome-wide association analysis of this SMN protein-expression phenotype.  This analysis revealed 
genome-wide-significant association at the locus containing the SMN1 and SMN2 genes, which exhibit common variation in gene 
copy number.  Genome-wide-significant associations involved SMN2 gene copy number and (more strongly) the combined copy 
number of SMN1 and SMN2.  SMN2’ refers to a calculation of SMN2 gene copy number that excludes a potential null allele 
characterized in Figure. 7. 

C. Correlation of the Census-seq SMN protein-expression phenotype with the summed gene copy number of SMN1 and SMN2 
genes. 

D. Though SMN1 and SMN2 encode identical amino acid sequences, a sequence variant in a splice enhancer causes many SMN2 
mRNAs to splice in a way that excludes exon 7, resulting in a protein that is less stable and potentially less functional. 

E. SMN1 and SMN2 contribute unequally to the Census-seq SMN protein-expression phenotype.  Bars indicate coefficients of a 
linear regression of the SMN protein-expression phenotype against SMN1 and SMN2 gene copy numbers.  Error bars indicate 
standard error. 
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Pharmacogenetics in cell villages 
  
An important therapeutic approach is to coax SMN2 to splice in an SMN1-like manner, 
generating a more stable and/or more effective protein. The clinical candidate LMI070 
(Branaplam) was identified in a screen for modulators of SMN2 splicing (Cheung et al., 2018, 
Singh and Singh, 2018).  LMI070 appears to interact with the splicing enhancer in exon 7 and to 
increase levels of SMN protein in cells in a concentration-dependent manner (Figure 6A).  The  
efficacy of LMI070 for treating SMA is currently being evaluated in phase I/II clinical trials in 
multiple countries (NCT02268552). 
  
As humans often vary in drug responses, a key need in biomedical research is to be able to 
anticipate individuals’ response to drugs and predict who might have an optimal or non-optimal 
response.  We sought to understand whether cell villages could be used to identify variation in 
drug response and uncover genetic contributions to drug response.  We first found concentrations 
of LMI070 that could cause changes in SMN protein expression (full-length and SMNdelta7) 
across three cell lines with varying gene copy number of SMN1 and SMN2 (Figure S4). Villages 
of iPSCs were then exposed to either LMI070 (0.1uM) or a vehicle control (DMSO) for 24 hours 
(Figure 6B) before being sorted into SMN-high and SMN-low fractions.  We measured each 
donor’s relative-drug-response phenotype by calculating how LMI070 treatment changed the 
distribution of that donor’s DNA into the SMN-high and SMN-low cell fractions, relative to the 
vehicle control (DMSO) (Figure 6C, Methods); this drug-response phenotype variable was 
calculated from the results of four Census-seq analyses (Figure 6B, C). 
 
Cells’ LMI070-response phenotype correlated strongly with gene copy number of SMN2 (p = 
3.22x10-6) but not SMN1 (p > 0.01), consistent with the hypothesis that LMI070 affects SMN 
protein levels by acting specifically upon SMN2 (Figure 6E, F).  These results replicated in a 
distinct village of hESCs (Figure S5).  These results contrasted strongly with the baseline SMN-
expression phenotype, which was affected more strongly by SMN1 than SMN2 variation (Figure 
5E). 
 
Because SMN1 deficiency strongly affects neurons, we also characterized the LMI070 response 
phenotype in villages of neural cells. A village of neural cells (from 50 donors) was generated 
using a lentiviral-based delivery system to induce the expression of Ngn2 (Figure S6) and 
treated with LMI070 for 24hr before Census-seq analysis. Both the SMN-expression phenotype 
and LMI070 drug-response phenotype associated with SMN2 copy number (Figure S6C, D; p = 
2.36x10-4, p = 1.15 x 10-3), replicating the results from the iPSC village. 
  
Despite the large apparent effect of SMN2 gene copy number on response to LMI070, we found 
that cells from donors with the same number of SMN2 gene copies often exhibited quite different 
response to LMI070 (Figure 6F), potentially reflecting additional genetic effects.  To better 
ascertain the full spectrum of DNA variation at the SMN1/SMN2 locus, we analyzed WGS data 
from 767 individuals (Methods).  We found that many donors carried an apparent deletion of 
SMN2 exons 7 and 8, including the LMI070 binding site (Figure 7A, B, C; we refer to this allele 
as “SMNdel” below). Although the deletion was present in the genomes of 10% of the sampled 
individuals with European ancestry, it has only recently been described (Vijzelaar et al., 2019).  
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Figure 6. Pharmacogenetic analysis of response to SMN therapy. 
A. An emerging therapeutic approach for SMA is to cause SMN2 to splice in an SMN1-like manner.  The drug LMI070 was 

developed to do this. 
B. An iPSC village of 113 donors was split into two villages, which were then treated with either LMI070 or a vehicle control 

(DMSO).  Both the LMI070-treated and the vehicle-treated villages were then fixed, immunostained and sorted into SMN-high 
and SMN-low fractions.  

C. For genetic analysis, a donor’s LMI070-response phenotype was calculated from her/his relative cellular contributions to these 
four fractions. 

D. Estimated contribution of each of the 113 donors to each of the four derived villages. 
E. Correlation of the Census-seq LMI070-response phenotype with SMN1 gene copy number. 
F. Correlation of the Census-seq LMI070-response phenotype with SMN2 gene copy number. 
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Figure 7.  Pharmacogenetic analysis of response to SMN therapy. 
A. In analysis of whole genome sequence generated from genomic DNA from the individual iPSC donors, 22 of the 113 donors were 

found to have sequence reads or mate-paired reads that appeared to jump over a 6-kb genomic segment (flanked by two Alu 
repeats) containing two exons of the SMN2 gene.  Those same individuals tended to have reduced copy number of the 6-kb 
segment (red) relative to the other individuals (blue), as estimated from read depth of coverage across the genomic locus. 

B. Across 767 genomes analyzed by whole genome sequencing, copy number of this 6-kb segment (SEGR) was in many individuals 
less than copy number of the rest of the SMN1/SMN2 gene (SEGL).  (Note that the >99% sequence identity between SMN1 and 
SMN2 requires that the paralogous sequences from these two genes be counted together for this analysis.)  This population-level 
pattern confirms that SEGR is affected by a cryptic, common deletion allele. 

C. This cryptic, common deletion allele (“SMNdel”) removes two exons, including the exon that encodes the putative binding site for 
LMI070. 

D. Cells from individuals with the SMNdel allele in their genomes tend to have a smaller response to LMI070 (as measured by the 
Census-seq LMI070-response phenotype) relative to cells from other individuals with the same SMN2 gene copy number.  Red 
points: SMNdel carriers.  Black points: Other iPSC donors. 

E. The Census-seq LMI070-response measurements more strongly fit a model in which SMNdel is treated as a null allele of SMN2. 
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Re-analysis of the Census-seq data to account for the SMNdel allele showed that carriers of 
SMNdel were indeed the donors whose cells exhibited a weak response of SMN expression to 
LMI070 treatment (Figure 7D, red).   The Census-seq LMI070-response phenotype correlated 
much more strongly with a measure of “intact” SMN2 gene copy number that we obtained by 
treating SMNdel as a null allele (r2 = 0.36, p = 3.71-10), suggesting that SMNdel carriers under-
respond to LMI070 (Figure 7E).  In fact, we found evidence that SMNdel is either not translated, 
or encodes a much less stable protein than SMN2 does: excluding SMNdel copies from genetic 
measurements of SMN2 gene copy number greatly strengthened the association with the SMN 
baseline protein-expression phenotype (Figure 5B).  Simultaneous linear regression of the 
Census-seq SMN-expression and LMI070-response phenotypes against gene copy numbers of 
SMN1, SMN2 (excluding SMNdel), and SMNdel (Figure S7) indicated the SMNdel allele, in 
addition to encoding an LMI070-unresponsive RNA, also encodes a much less stable isoform of 
the SMN protein than canonical SMN2 gene copies do.  

Discussion 
 
Genetic variation shapes almost all human phenotypes, creating a profound opportunity for 
biological discovery and translational biology if science can begin to reveal how human alleles 
– individually, and in concert – shape the life of cells.  To help realize this scientific possibility, 
we developed “village-in-a-dish” experimental systems, in which cells from scores of donors are 
grown, perturbed and phenotyped in a single reaction chamber; these systems enable population-
genetic approaches to cell-biological questions.  The analysis of these systems is enabled by 
three computational methods – Census-seq (Figure 1), Roll Call (Figure 3), and CSI (Figure 3) 
– which reveal and learn from the donor composition of cell and DNA mixtures. The practical 
execution of such systems is further enabled by ways to create and maintain high-quality cell 
villages.   
 
Human genomes teem with functional variation.  Here, even at a single locus, Census-seq 
analyses revealed effects of at least three kinds of genetic variation.  These included (i) SMN1 
gene copy number, which affected SMN protein levels at baseline but not responsiveness to 
LMI070 therapy; (ii) SMN2 gene copy number, which affected SMN protein levels at baseline 
and also response to LMI070; and (iii) a cryptic SMN2 allele (SMNdel), common but not 
routinely screened for in clinical diagnostics, which compromised SMN protein levels and 
abrogated LMI070 response (Figure S7).    
 
Since our goal in describing these systems is to make them as facile and adaptable as possible, 
we here discuss practical lessons for creating and maintaining villages and designing larger 
research strategies to utilize them.  
 
Variation in the relative growth rates of cells from different donors presents both an interesting 
area of scientific inquiry and a day-to-day practical challenge for cell villages.  By making it 
easy and inexpensive to collect population information at every cell passage, Census-seq makes 
it possible to measure proliferation phenotypes at a population scale, to screen hundreds of lines 
for growth phenotypes and growth-promoting mutations, and to quantify the effects of such 
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mutations (Figure 2).  When using Census-seq to address other biological questions, however, a 
natural emphasis will be on containing such population dynamics.  We describe (Methods) 
practical approaches for doing this, including sequencing to identify acquired mutations, 
designing small villages (“heats”) to identify empirically hyper-proliferative cell lines (Figure 
2), and – for experiments on post-mitotic or differentiated cell types – quickly moving PSC 
villages into post-mitotic states (Figure 2).  
 
Though cell villages and populations enable primary genetic discoveries in Census-seq, it is 
useful in many contexts to analyze individual control cell lines alongside villages, and to seed 
villages with one or more lines already known to harbor strong effects.  The choice of sorting or 
selection criteria in Census-seq experiments can be enhanced by comparison to one or more 
individual cell lines expected to have a strong phenotype.  For example, flow-cytometric analysis 
of cells from an SMA patient informed the flow-cytometric gating strategy that we then applied 
to the village for population-scale genetic analyses of SMN protein expression (Figures 4, 5, 
S3).  Positive- and negative-control lines can also be derived by methods including gene editing 
CRISPR-i, CRISPR-a, and pharmacological perturbation of individual lines (Gasperini et al., 
2019, Larson et al., 2013, Hsu et al., 2014).  The further inclusion of such lines in villages 
enables the effects of population-genetic variation to be compared to the effects of strong 
laboratory perturbations.  The ability to detect expected, positive-control effects also serves as a 
useful gate establishing that an experiment has been executed successfully.  The inclusion of 
such positive controls may also allow the lack of variation across scores of other cell lines to be a 
meaningful statement about biological constraint on a cellular phenotype. 
 
Our finding that cells from carriers of the SMNdel allele responded less strongly to LMI070 
raises an interesting issue that will need to be addressed for many drug candidates that target 
RNA metabolism.  Polymorphisms that influence RNA structure and regulation may be much 
more abundant than polymorphisms that influence the peptide sequence of the encoded protein, 
the traditional drug target.  Census-seq could be used to identify, prior to clinical studies, 
individuals and genotypes who would have optimal and/or unexpected responses to such 
therapeutic candidates.  
 
Additional challenges may arise in other experimental contexts. Mitotic cells present challenges 
in population dynamics (Figure 2) that were managed by the techniques we describe here – 
including genetic screening (for acquired mutations) and empirical growth-rate measurement (in 
cellular “heats”). Similarly, variability in pluripotency after reprogramming or exposure to 
various environmental conditions across cells’ lifetime may influence their differentiation 
potential (Cahan and Daley, 2013, Nishizawa et al., 2016).  The refraction of cells down a 
particular pathway may even be shaped by genetic variation, a potential area for Census-seq 
analyses. Finally, a central challenge to the maintenance and expansion of cellular resource 
banks that are required to facilitate population-scale experiments has been detecting cell line 
contamination and validating of donor identity (Liang and Zhang, 2013, Rouhani et al., 2014). 
These issues have historically been of major concern and have real implications on experimental 
reproducibility (Neimark, 2015, Nelson-Rees et al., 1981). The methods described here 
(including Census-seq, Roll Call and CSI) create a greatly expanded and inexpensive tool kit for 
validating the identity and purity of cellular resources. 
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Village-in-a-dish systems make a tradeoff between detection of cell-autonomous and cell-
nonautonomous genetic effects.  By analyzing cells from all donors together, Census-seq 
normalizes most cell-non-autonomous effects across donor genotypes.  Most of these cell-
nonautonomous effects are common sources of experimental noise – for example, effects of cell 
density and its downstream effects on metabolite concentrations, cellular waste-product 
concentrations, cell-cell contacts, and (for neurons) synaptic stimulation and activity.  The 
normalization of such effects in Census-seq makes cell-autonomous effects more visible above 
experimental noise; this was evidenced by the strong explanatory power of common alleles in 
almost all of our experiments (Figures 5-7) and the ability of these experiments to establish 
genotype-phenotype relationships at genome-wide statistical significance.  In many contexts, 
though, cell-nonautonomous effects may be of real interest, so it is important to think about how 
to design Census-seq experiments to ascertain them.  Census-seq could be readily used to map 
cells’ responses to a non-cell-autonomous stimulus such as a ligand.  However, different kinds of 
analysis would be needed to map genetic effects on the magnitude of the stimulus itself; this 
might be possible in Census-seq if the ligand’s synthesis can be made the subject of a Census-seq 
analysis. 
 
A key question for population-scale cell biology and systems-biological modeling involves the 
ability to discover and quantify modest, quantitative effects.  The experiments described here 
ascertained strong, rare, Mendelian effects (as in cells from an SMA patient) and more modest, 
common effects, such as effects of common variation in gene copy number on protein expression 
and therapeutic response.  Key to the ability to discover and characterize modest, quantitative 
effects is the ability to equalize technical factors across donors, reducing experimental noise and 
thus increasing the detectability of genetic signals relative to noise.  The specific parameters 
chosen for selections and screens are also important and are worth careful thought and 
optimization.  For example, the flow-cytometric gates used to select for derived villages (Figure 
S3) can be critical for measuring genetic effects with high sensitivity.  Since Census-seq 
molecular and computational analyses are inexpensive (sequencing expenses are about $100 per 
village), we encourage researchers to experiment with a variety of parameters and observe the 
impact of these variables on measurement of known, positive-control effects. 
 
Complex phenotypes with multi-locus inheritance will present interesting challenges to the 
design of Census-seq experiments, often requiring analysis in still-larger numbers of donors.  We 
anticipate that the optimal approach to this will involve analyzing multiple villages each of 60-
120 donors, with modest overlapping membership to inform meta-analysis. In our experience, 
most of the returns of Census-seq in scalability and well-controlled measurement are already 
realized at the scale of 40-120 donors – a level at which village assembly can also be performed 
by a single scientist in a single session.  Villages of 40-120 donors might provide a natural unit 
of larger meta-analyses that seek to find genetic effects that are rare or modest in magnitude. 
 
In selecting more complex phenotypes for study, a promising next direction may be in analyzing 
oligogenic phenotypes that might be affected by variation at a few loci, perhaps focusing on 
those pathways or molecular complexes in which genome-wide association studies (by SNP 
arrays or exome sequencing) have already identified risk variants or haplotypes in several 
different genes. Such constellations of (common and rare) genetic effects may suggest a natural 
integration point for cellular-genetic analysis.  In schizophrenia, for example, many different 
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genetic associations involve subunits of the L-type calcium channels, whose expression, 
membrane localization or even physiology could be made the subject of cellular screens and 
selection (Lam et al., 2019, Schizophrenia Working Group of the Psychiatric Genomics, 2014). 
 
Polygenic phenotypes will ultimately require the largest samples and present the greatest 
challenge – and perhaps also the greatest reward, since such polygenetic architectures have been 
extremely challenging to dissect by traditional biological methods and are hypothesized to 
involve indirect effects through complex cellular networks (Boyle et al., 2017).  An exciting 
possibility is that, even for polygenic illnesses, it may be possible to find cellular phenotypes that 
are potential convergence points of genetic effects whose functional connection was not 
previously appreciated. Such cellular phenotypes might associate in villages with donors’ 
polygenic risk scores, which for many complex phenotypes identify individuals with risk 
equivalent to that of well-known monogenic mutations (Khera et al., 2018).  Villages can in 
principle be designed from individuals in the two “tails” of a polygenic risk-score distribution – 
i.e. who have extremely high or low polygenic risk scores.  It is challenging to predict how many 
donors will be required for such analyses, as any prediction presumes an answer to a central 
unknown question – the extent to which different genetic effects on a disease phenotype will 
converge upon a few key cellular processes.  We hope population-scale experimental systems 
present an empirical, data-driven path toward answering these and many other questions. 
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Supplementary Figures  

Figure S1. Construction and quantification of cell villages. 
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Figure S1. Construction and quantification of cell villages. 
A. Equal quantities of genomic DNA from 10 donors was mixed, sequenced and analyzed by Census-seq.  The plot compares the 

aliquoted donor-contribution proportions of the DNA mixture to the Census-seq estimates from the sequencing data. 
B. Genomic DNA from six donors was mixed in an arithmetic progression of quantities as estimated by three DNA-quantitation 

technologies (Qubit, Nanodrop, Tapestation).  Donor contribution to the resulting DNA mixtures was then estimated by Census-
seq.  Census-seq estimates of donor-specific contributions to the mixture agreed most strongly with input estimates from the 
Qubit (r2 = 0.993). 

C. Cell lines were mixed using three different methods of cell quantification, with the goal of making equimolar mixtures; pie charts 
show the resulting donor composition of each mixture as estimated by Census-seq.  The three cell-counting methods were: a 
hemocytometer (Countess, for live/dead estimation; flow cytometry with selection for SSEA4 and Tra-1-60 positive and 
pluripotent) cells; and an automated cell counter (Scepter) based on cell size.  

D. Using the data from (D), the coefficient of variation (standard deviation divided by the mean) of the donor contributions was 
estimated for each of the methods of cell quantification. 

E. Precision of the Census-seq algorithm as a function of (i) the type of a priori genome-variation data available for each donor (line 
colors) and (ii) the depth to which the village genomic DNA is sequenced (y-axis).  A key relationship is that deeper a priori 
genetic analysis (e.g. WGS, blue curve) of the individual donors’ genomes makes it possible to infer the donor composition of 
mixtures even from sequence data that are relatively low-coverage.  Analysis is based on a WGS data mixed from 40 donors. 

F. Results of in silico data-mixing experiments to estimate the bias and variance of Census-seq inferences for donors who have 
contributed small proportions (0.05% to 1%) to a mixture.  WGS data from 40 unrelated donors was mixed in silico, with 30 
donors at an arithmetic series of representations from 0.05% to 1.00% in 0.05% increments, and 10 donors (for whom data not 
shown) at higher representations, such that the 40 donors’ representations summed to 1.  This was repeated for 10 simulations, in 
each of which donors were permuted between the low and high representation groups at each iteration to generate a total of 300 
observations of each bin.   

G. Bias of Census-Seq estimates (as a fraction of the estimate) for donors who have contributed small fractions (< 1%) of a cell or 
DNA mixture. Using the data shown in S1F, the median absolute error in representation was calculated as exp(median 
(abs(log(donor % representation in silico  / donor % representation inferred by Census-Seq )))).  Bias in donor representation was 
substantially greater for donors contributing <0.3% to a mixture.  Bias was <15% at a representation of 0.3%, and <10% at a 
representation of 0.4%.  We believe that this bias arises from PCR and sequencing errors, which result in reads that (as a group) 
tend to bias upward the estimated representation of very-low-contribution donors.  For this reason, we exclude from some genetic 
analyses those donors with contributions of <0.3% to a mixture.   

H. To assess the potential effect of having genetically related donors in a mixture, three in silico mixtures of 40 donors were 
constructed for: 40 unrelated individuals; 20 parent/child pairs; and 20 sibling pairs. In each analysis, WGS data from these 
donors was mixed uniformly at a representation of 0.025; the data mixture was then analyzed by Census-seq.  Error in 
representation was calculated as the difference between the known and Census-seq-inferred donor-contribution estimates.  95% of 
inference were within an absolute error of 0.001.  The median absolute error in representation estimates were similar: unrelated 
3.4x10-4, sibling= 4.1x10-4, parent-child= 2.6x10-4. 

I. To evaluate the robustness of Census-seq inference to the inclusion of genetically related individuals in a village, in silico data 
mixing was used to simulate a village of 20 sibling pairs, with the same distribution of representations as in Fig. 1E. 

J. To evaluate the robustness of Census-seq inference to the inclusion of genetically related individuals in a village, in silico data 
mixing was used to simulate a village of 20 parent-child pairs, with the same distribution of representations as in Fig. 1E. 
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Figure S2. Algorithms and validation analyses for the Roll Call and CSI tools for authenticating 
cell villages 
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Figure S2. Algorithms and validation analyses for the Roll Call and CSI tools for authenticating 
cell villages 
A. The Roll Call algorithm leverages Identifying Rare Variants (IRVs) – rare alleles that are present in the genome of only one of the 

candidate donors – to determine which candidate donors have contributed cells/DNA to a mixture.  (Census-seq offers more-
accurate quantification of donors’ quantitative contributions than Roll Call does, but only when starting with a complete and 
accurate list of donors.)  The formula shows the calculation of the Roll Call score (for an individual donor, using that donor’s 
IRVs), with which the algorithm evaluates whether a donor has contributed to a DNA mixture.  In this formula, a and r refer to 
the numbers of observations of the reference and alternate alleles at that donor’s IRVs in the village sequencing data. 

B. DNA sequence data from 40 unrelated donors was mixed at known proportions.  Roll Call scores for these donors (x-axis) are 
compared to the proportions in which DNA data have been mixed (y-axis).  An additional 147 donors (shown in red), whose 
DNA sequence data was not included in the data mixture, received scores < 0.005 [0.002-0.004]. 

C. Analysis by Roll Call and Census-seq of a synthetic mixture of WGS data from 24 unrelated individuals, mixed at an arithmetic 
of contributions across donors.  Donors that are known to be in the mixture are observed at close to their correct mixtures.  
Donors not in the mixture have scores < 0.005 [0.003-0.004]. 

D. Roll Call analysis of an example cell village confirmed the presence of 45 expected donors (grey circles); confirmed the absence 
of all but one of the unexpected donors absent (red circles); and flagged the presence of a donor not intended to have been 
included in that village (red circle at y=0.014); follow-up analysis confirmed contamination by cells from this unexpected donor. 

E. The CSI (Contaminating Sample Identifier) algorithm calculates an intrusion score from sites that are monomorphic among the 
expected donors (but variable in the wider population from which the donors are sampled) – i.e. from alleles that should not have 
arisen from the expected donors’ genomes and must therefore represent contaminating cells or sequencing errors.  CSI utilizes 
genomic sites known to vary in the wider population (from which the donors are sampled) that happen to be monomorphic among 
the candidate donors.  fa is the fraction of allelically informative reads (at these sites) that contain the alternative allele; s is the 
sequencing error rate; m is the mean minor allele frequency of these alleles. 

F. Distributions of CSI scores for in silico villages created by WGS data mixing to have 0%, 2.5%, or 5% contamination from an 
“unknown” donor to whose genetic data the CSI analysis was blinded.  The in silico mixing experiments each involved a mixture 
of 39 known, unrelated donors at varying concentrations and (in the 2.5% and 5% cases) an additional randomly selected unrelated 
donor, to whose genetic data the CSI analysis was blinded.   100 simulated villages per contamination level were analyzed.   The 
100 null (uncontaminated) simulations yielded CSI scores of 0.0074 +/- 0.0011; CSI scores in all 100 of the 2.5% contamination 
simulations exceeded any result from this null distribution. 

G. Results of CSI analyses of synthetic mixtures of WGS data from 18 known donors, plus an additional unexpected donor for whom 
WGS data was spiked in (to the mixture) at several proportions (“% contamination simulated”, x-axis).  Note that because the CSI 
formula utilizes the mean minor allele frequency of “unexpected” alleles in the sampled population, the CSI intrusion score 
estimates %contamination correctly only if the intruding cell line is indeed from the population used to estimate this – in this case, 
1000 Genomes European-ancestry sample (EUR, orange), since the simulated contaminating line was of European ancestry. When 
other populations are used, or when the unexpected donor is related to an expected donor (not shown), the intrusion score mis-
estimates %contamination. Since the identity of a genomically unknown contaminating line is by definition not knowable a priori, 
the intrusion score is primarily intended to be used as a diagnostic for contamination rather than as a precise measurement of 
%contamination; however, its change within a village (e.g. over cell passages) in principle reflects change in the proportion of 
contaminating cells within the village. 
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Figure S3. Use of flow cytometry to enrich cell villages for SMN-high and SMN-low cells 
A. Cells from a village were dissociated, fixed and immunostained with a monoclonal antibody directed against the protein encoded 

by SMN1 and SMN2. Gating controls were set using unstained cells (left panel) and cells stained with an anti-mouse Alexa fluor-
647 conjugated secondary antibody alone (middle panel). 99.7% of cells stained with the anti-SMN antibody were captured using 
these gates (right panel). The Alexa fluor-488 channel served as an internal control for autofluorescence. 

B. Gates were established to capture the top 20% of SMN-stained cells (SMN-high) and the bottom 20% (SMN-low) of cells based 
on SMN immunoreactivity. Cells from the iPSC322A patient donor line were also analyzed to characterize antibody staining and 
inform gating (left panel); >98% of cells from the patient cell line.  Then, cell fractions were collected from villages treated with a 
DMSO vehicle control (middle panel) or LMI070 (right panel). 

C. Histogram representation of the anti-SMN staining data from panels S4A and S4B, to facilitate comparison of these distributions 
across experiments and conditions.  
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Figure S4. Characterization of LMI070 effects on SMN RNA transcript expression in PSCs in vitro  
A. Cell lines from individual donors of varying SMN1 and SMN2 gene copy numbers were chosen to find effective doses of LMI070 

treatment in culture, for subsequent cell-village experiments. 
B. In this model, as levels of SMNdelta7 transcripts are decreased by the activity of LMI070, we expect a corresponding increase in 

levels of SMN full-length transcript and SMN protein. 
C. Measurements (by RT-PCR) of the levels of SMN full length (black) and SMNdelta7 (grey) RNA transcripts in donor cell lines of 

varying SMN copy number. Note that SMNdelta7 transcripts are produced only in the two donors with SMN2 genes (left and right 
panels), and that the expression of such transcripts is reduced by treatment with LMI070. 
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Figure S5. Using Census-seq to analyze genetic contributions to SMN protein phenotypes in a pilot 
village of hESCs. 

Companion replication data to Figures 5C and 6EF, drawing upon an additional cell village of hESC lines.  
A. Correlation of the Census-seq SMN protein-expression phenotype with common variation in the total (summed) copy number of 

SMN1 and SMN2 genes. 
B. Correlation of the Census-seq LMI070-response phenotype with SMN1 gene copy number. 
C. Correlation of the Census-seq LMI070-response phenotype with SMN2 gene copy number. 
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Figure S6. Pharmacogenetic analysis of response to LMI070 treatment in a village of 
differentiated neurons. 
A. Differentiation protocol used to generate a village of neurons derived in vitro from 50 iPSC donors.  Cell lines transduced with 

lentivirus to drive Ngn2 expression were induced with doxycycline, selected using puromycin, and pooled at day 6 of 
differentiation. The village was treated with LMI070 on day 12 and harvested for flow cytometry 24 hours later. 

B. Micrograph of the neuronal village at day 13 of differentiation. 
C. Correlation of the Census-seq SMN protein-expression phenotype with common variation in SMN2 gene copy number. 
D. Correlation of the Census-seq LMI070 drug-response phenotype with common variation in SMN2 gene copy number. 
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Figure S7. Contributions of SMN1, intact SMN2 genes (excluding SMNdel) and SMNdel alleles to 
Census-seq phenotypes for SMN protein expression and response to splicing correction by 
LMI070. 
A. Contributions of SMN1 genes, intact SMN2 genes (SMN2’, which excludes SMNdel alleles), and SMNdel alleles to the 

SMN protein-expression Census-seq phenotype. Bars indicate coefficients of a linear regression of the SMN protein-
expression phenotype against SMN1, SMN2’, and SMNdel gene copy numbers.  Error bars indicate standard error. 

B. Contributions of SMN1 genes, intact SMN2 genes (SMN2’, which excludes SMNdel alleles), and SMNdel alleles to the 
LMI070-response Census-seq phenotype. Bars indicate coefficients of a linear regression of the SMN protein-expression 
phenotype against SMN1, SMN2’, and SMNdel gene copy numbers.  Error bars indicate standard error. 
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STAR Methods 

RESOURCE AVAILABILITY 

Lead contact and materials availability 
Further information and requests for resources and reagents should be directed to the Lead 
Contact, Steve McCarroll (mccarroll@genetics.med.harvard.edu). 

Data and code availability  

All data reported in this manuscript, including Census-sequencing data, drug sensitivity 
measures, and other cell line features used in the analysis, will be available on a companion web 
site for the paper. 

Custom code used in the analysis, and for generating all figures, is available at: 

https://github.com/broadinstitute/Drop-seq 

SMN genotype-phenotype analyses: 
https://github.com/broadinstitute/dropseqrna/blob/master/transcriptome/R/ghoshs/Census_GenoP
heno_Regression.R 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Acquisition of human pluripotent cell lines 
As a source for human embryonic stem cells used in this study, we utilized a collection of 
curated hESCs we described previously (Merkle et al., 2017). Briefly, we sought to acquire a 
large cohort of hESCs approved for use by the National Institutes of Health (NIH) that were 
readily available and free of karyotypic or disease-causing abnormalities 
(http://grants.nih.gov/stem_cells/registry/current.htm). These cell lines were subjected to whole 
exome sequencing and whole genome sequencing, and were banked after minimal passaging 
(Table S1, S3). 
  
To analyze cells from a larger number of individuals, using lines that could be readily acquired 
by any lab, we extended our analysis to include iPSCs from the cellular resource developed by 
the California Institute for Regenerative Medicine (CIRM). Cell lines of low passage number 
were obtained, expanded, submitted for whole genome sequencing, banked after minimal 
passaging, and regularly monitored for karyotypic abnormalities using the Illumina Global 
Screening Array (GSA). As a general rule, cell lines used in this study were passaged a 
maximum of 6 times after thawing to minimize the acquisition of karyotypic abnormalities or 
other deleterious mutations (Table S1, S3). 
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METHOD DETAILS 

Cell culture of Human pluripotent stem cells 
Human embryonic stem cells and human induced pluripotent stem cells (hESCs and iPSCs, 
Table S1) were grown using StemFlex™ Medium (A3349401, Gibco™) supplemented with 
Normocin™ Antimicrobial Reagent (Invivogen, Ant-nr-1) on tissue culture dishes coated with 
Geltrex™ LDEV-Free Reduced Growth Factor Basement Membrane Matrix (A1413202, 
Gibco™) and maintained in 5% CO2 incubators at 37 °C. iPSCs were dissociated to single cell 
suspension using Accutase® (AT 104, Innovative Cell Technologies, Inc.). To prevent cell 
death, cell culture media was supplemented with ROCK inhibitor (Sigma, Y-27632, 10 µM) for 
24hr following passaging. Cell lines were expanded to 10 cm plates, and when approaching 
confluency, cell lines were cryopreserved in CryoStor® (07930, StemCell Technologies) for 
further use. Cell lines were passaged a maximum of 6 times in an effort to preserve karyotypic 
integrity. 

Lentiviral transduction and neuronal differentiation 
Lentiviral transduction. Cell lines were transduced with lentivirus cocktail to express 
tetracycline-inducible murine Neurogenin 2 (Ngn2) tagged with a puromycin resistance gene, in 
combination with tetracycline inducible GFP, as described (Ho et al., 2016; Nehme et al., 2018). 
PSCs were grown using StemFlex™ Medium (Gibco™, A3349401) on tissue culture dishes 
coated with Geltrex™ LDEV-Free Reduced Growth Factor Basement Membrane Matrix 
(Gibco™, A1413202) and maintained in 5% CO2 incubators at 37 °C. iPSCs were dissociated to 
single cell suspension using Accutase (Innovative Cell Technologies, Inc., AT 104). The 
concentration of cells in suspension was estimated using the Scepter Automated Cell Counter 
(Millipore Sigma). Cells were plated at a density of 100 000 cells/cm2 and incubated while in 
suspension with media containing 10 uM ROCK-Inhibitor (Sigma, Y27632), and lentivirus 
particles at a final MOI of 2. Three independent viruses were co-transduced to induce the 
expression of NGN2 using doxycycline (pTet-O-Ngn2-puro; pTet-O-EGFP; Ub-rtTA, gift from 
Marius Wernig; Lentivirus was produced by ALSTEM). Transduced cells were expanded to 10 
cm plates and 10 vials (2M cells/vial) of each cell line was cryopreserved in CryoStor® 
(StemCell Technologies, 07930) for further use. 
  
Neuronal differentiation. Differentiation of PSCs towards neuronal identity was performed as 
described (Nehme et al., 2018). Neuronal differentiation was initiated (day 1) by the addition of 
Doxycycline hyclate (2 µg/mL) to N2 supplemented media (Thermo Fisher, 17502048,) in the 
presence of patterning factors SB431542 (Tocris, 1614, 10 µM), XAV939 (Stemgent, 04-00046, 
2 µM) and LDN-193189 (Stemgent, 04-0074, 100 nM) (referred to here as differentiation 
media). Non-transduced cells were removed from the cultures using Puromycin selection (5 
µg/µL), from days 2 to 6. On day 3, cells were passaged into differentiation media supplemented 
with 5-Ethynyl-2'-deoxyuridine (Life Technologies, A10044, 10 µM). On day 6 of 
differentiation, cells were dissociated with Accutase®, counted using the Scepter™ Automated 
Cell Counter (Millipore Sigma), and villages of immature neurons were generated using 0.5 x 
106 cells from each donor cell line. Villages were plated at a density of 40 000 cells/cm2 in 
Neurobasal media (Gibco, 21103049) supplemented with B27 (Gibco, 17504044, 50X), 
doxycycline (2 µg/mL), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor 
(CTNF), and glial cell-derived neurotrophic factor (GDNF) (R&D Systems 248-BD/CF, 257-
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NT/CF, and 212-GD/CF at 10 ng/mL each). Neuronal villages were co-cultured with murine 
glial cells (at a density of 70 000 cells/cm2) derived from postnatal pups (P0) as previously 
described (Di Giorgio et al., 2008). Villages were harvested at weekly intervals for Census-seq 
analysis. Neuronal villages were treated with LMI070 (see below) for 24 hours at day 12 of 
differentiation (Figure S6). 

Treatment with LMI070 
To enhance splicing of the SMN2 transcript to include exon 7, the small molecule LMI070 (also 
referred to as NVS-SM1 or Branaplam (Novartis; MedChemExpress, HY-19620)) was added to 
cell culture media for 24 hr under standard culture conditions. To determine the optimal dose of 
LMI070 in our cellular systems, a dose response was performed using a range of concentrations 
from 0.01 to 1 uM (Figure S4). Inclusion of exon 7 in the SMN2 transcript was used as an 
indicator of effectivity. 0.1 uM was found to be optimal and used in all future experiments. 

Generation of villages of human pluripotent cell lines 
Individual human pluripotent cell lines (cultured as described above) were dissociated using 
Accutase and resuspended in StemFlex supplemented with ROCK inhibitor. Approximately 0.5 
x 106 cells/cell line were combined to generate villages ranging from 10 to 115 donors and cells 
were plated at a density of 30 000 cells/cm2. To monitor donor composition over time in culture, 
0.5 x 106 cells were harvested during routine weekly passaging and samples were pelleted and 
stored at -20oC. Three different methodologies were used to quantify cellular concentrations 
depending on downstream applications (Figure S1BCDE). 

Quantification of cellular suspensions using the Countess™ hemocytometer. 
Cell enumeration using the Countess™ II Automated Cell Counter (AMQAX1000, Thermo 
Fisher) was used for routine cell density and viability estimations. Cell pellets generated from 
cell lines cultured in 6-well plate format were resuspended in 0.5 ml StemFlex supplemented 
with 10 uM ROCK inhibitor. 10 ul of a 1:1 mixture of cellular suspension and Trypan Blue 
solution (15250061, Thermo Fisher) was loaded into a Countess cell counting chambered slide 
and cell concentrations and viabilities were measured. To generate villages, 0.5 x 106 viable cells 
from each donor cell line were mixed, 0.5 x 106 cells of the village were sampled for downstream 
Census-seq analysis, and remaining cells were plated at a density of 30 000 cells/cm2. 

Quantification of cellular suspensions using the Scepter™ Automated Cell Counter. 
To generate villages of cells (including iPSCs and neural precursors), concentrations of cell 
suspensions were determined using the Scepter™ 2.0 Handheld Automated Cell Counter 
(Millipore Sigma, PHCC20060) equipped with 60 uM Scepter™ Cell Counting Sensors 
(Millipore Sigma, PHCC60050). Dilutions of cell suspensions (100 fold) were routinely 
quantified and concentrations indirectly calculated. 
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Antibody-mediated pluripotency selection and precise sorting of cell lines using flow 
cytometry 
To generate villages of pluripotent stem cells used to characterize growth/proliferation 
phenotypes (Figure 2), flow cytometry using antibodies selecting for markers of pluripotency 
was used to select for cells of the highest quality combined with precision counting. Prior to 
immunostaining, cells were dissociated using Accutase® and cell densities were measured using 
the Countess™ Hemocytometer. 5 x 106 cells from each cell line were resuspended in FACS 
buffer (1 x PBS, 7.5% BSA, 1 mM EDTA, 10 uM Y27632, and Nomrocin™) and cells were 
immunostained with fluorescently labeled antibodies directed against  SSEA4 and TRA-1-60 
(BD Biosciences, Alexa Fluor® 647 Mouse anti-SSEA-4 Clone  MC813-70   (RUO), 560219; 
Alexa Fluor® 488 Mouse anti-Human TRA-1-60 Antigen Clone  TRA-1-60   (RUO), 560173) at 
a concentration of 1:500 for 30 min at RT. Cells were washed with FACS buffer repeatedly and 
stained with DAPI (1 ug/ml). 0.5 x 106 DAPI-/SSEA4+/TRA-1-60+ cells were collected for each 
cell line using the BD FACSAria™ II flow cytometer (BD Biosciences). Collected cells were 
pooled and plated at a density of 30 000 /cm2. 

Phenotype-based sorting of SMN-high and SMN-low cellular populations 
To allow for genotype-phenotype correlations based on SMN protein expression, villages of 
iPSCs or NGN2-induced neurons (at 14 days of differentiation) were immunostained with a 
monoclonal antibody directed against SMN (BD Biosciences, 610647) and segregated into new 
‘sub-villages’ comprising populations of the lowest and highest SMN expressing cells. 
Following dissociation with Accutase®, 10 x 106 cells from villages of iPSCs or neurons were 
fixed and permeabilized using the Fixation/Permeabilization Solution Kit (BD Biosciences, 
554714). Cells were resuspended in FACS buffer (1 x PBS, 7.5% BSA, 1 mM EDTA, 10 uM 
Y27632, and Nomrocin™) and incubated in the presence of anti-SMN at a concentration of 1: 
500 for 30 min at RT. Cells were washed repeatedly in FACS buffer and incubated with donkey-
anti-mouse-Alexa-647 secondary antibody (Life Technologies, A-31571) at a concentration of 
1:5000 in FACS buffer supplemented with DAPI (1 ug/ml) for 30 min at RT. After repeated 
washing, cells were sorted using the BD FACSAria™ II flow cytometer (BD Biosciences). 
Gating strategies were developed to select for single, live, intact cells in the absence of 
autofluorescence (using an empty 555 nm channel as control) (Figure S5). For neurons, an 
additional GFP (488 nm) selection gate was applied to separate Human neurons (GFP+) from co-
cultured mouse glia. Cells determined to be positively stained for SMN (647 nm) were compared 
to unstained or secondary antibody-only controls, and gates were set using the patient cell line 
iPSC3222A as an indicator of low levels of SMN expression. To generate sub-villages, fractions 
encompassing the bottom (SMN-low) and top (SMN-high) 20% of cells were independently 
collected (500 000 cells each). An aliquot of unsorted cells representing donor representation of 
the original village was collected to serve as a control. Collected cells were pelleted and stored at 
-20oC for DNA isolation. 

Quantitative analysis of SMN1 and SMN2 transcript abundance by qPCR 
SMN transcript abundance was quantified in cell lines of varying SMN1 and SMN2 copy number 
as follows: Genea52 (copy number SMN1:SMN2; 2/2), RUES1 (2/0), and iPSC322A (0/2). Cells 
were treated in the presence or absence of LMI070 as described. Total RNA was isolated from 
cell pellets using the RNeasy Mini Kit (Qiagen, 74104). cDNA was synthesized using iScript 
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cDNA Synthesis Kit (Bio-Rad, 1708890). Two primer sets were used to detect SMN transcripts 
as described previously (Integrated DNA Technologies (Sumner et al., 2006): SMNFL spanning 
exons 6, 7 and 8 (forward, 5’-CAAAAAGAAGGAAGGTGCTCACATT-3’; reverse, 5’-
GTGTCATTTAGTGCTGCTCTATGC-3’; probe, 5’-6FAM-CAGCATTTCTCCTTAATTTA-
MGBNFQ-3’), and SMNdelta7 spanning the exon 6-8 junction (forward, 5’- 
CATGGTACATGAGTGGCTATCATACTG-3’; reverse, 5’- 
TGGTGTCATTTAGTGCTGCTCTATG-3’; probe, 5’-6FAM- 
CCAGCATTTCCATATAATAGC-MGBNFQ-3’). mRNA levels were normalized to an internal 
control (Human Beta Glucuronidase (GUSB), Life Technologies, 4333767T). For samples 
treated with LMI070, SMN1 and SMN2 levels were compared to a DMSO-treated control. qRT-
PCR was performed using TaqMan™ Fast Advanced Master Mix (ThermoFisher Scientific, 
4444963). 

DNA Isolation from fixed or frozen cell pellets 
Cell pellets were resuspended in 600 ul Cell Lysis Solution (Qiagen, 158906) supplemented with 
3 ul Proteinase K (NEB, P8107S). Samples were incubated for 1 hr at 56oC. For samples that had 
been fixed with aldehydes (for example, for immunostaining prior to FACS), samples were 
further incubated overnight at 65oC. RNases were removed by incubating samples in the 
presence of 2 ul of RNase A (Qiagen, 158922) for 30 min at 37oC and samples were chilled for 5 
on ice. Proteases were precipitated using 200 ul of Protein Precipitation Solution (Qiagen, 
158910) and centrifuged for 10 min at 12 000 g at 4oC. DNA was precipitated from supernatants 
by adding 600 ul 100% isopropanol and centrifuging for 10 min at 12 000 g at 4oC. DNA pellets 
were washed with 600 ul 70% ethanol, and centrifuged for 5 min at 12 000 g at 4oC. Pellets were 
air dried and resuspended in 50 ul of dH20 or 10 mM Tris-Cl, pH 8.5. 

Generation and sequencing of libraries 
Sequencing libraries were generated from isolated DNA using either TruSeq Nano DNA Library 
Prep Kit (Illumina, NP-101-1001) or Nextera DNA Flex Library Prep Kit (Illumina FC-121-
1030) in combination with the NeoPrep Library Prep System (Illumina, SE-601-1001). Libraries 
were sequenced using the NextSeq 500 Sequencing System (Illumina, SY-415-1001) with the 
NextSeq 500 High Output v2 Kit (75 cycles, FC-404-2005). Runs were set up as a single 85 bp 
reads and included an index read when libraries were pooled. For scaled analyses, 16 Census-Seq 
samples are pooled into one NextSeq run with a minimum requirement of 16-32 million reads 
per library (about 1X coverage).   

Sequence Alignment Protocol 
Raw sequence data were demultiplexed using the Picard tools ExtractIlluminaBarcodes and 
IlluminaBasecallsToSam.  The resulting demultiplexed libraries were validated for both relative 
library size (library balance) as well as absolute size, to flag potential bioinformatic issues with 
demultiplexing, as well as benchside library generation issues.  The demultiplexed libraries were 
then aligned to a human reference genome with BWA.  The reference genome used was selected 
to match the same build used in the VCF file that contained the reference genotypes for the 
experiment’s donor pool.  
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For experiments for which human cells were grown on a bed of mouse glia, alignment was 
performed using a multi-organism reference and the reads were competitively aligned to both 
genomes.  Sequencing reads were then filtered to reads that mapped at high quality (MQ>=10) to 
the human genome.   

Variant Call Format (VCF) pre-analysis Processing 
Prior to running Census-seq, VCF files were processed to filter variants and add additional site-
level information.  Variants were first normalized to their appropriate reference sequence using 
BCFTools; this splits multiallelic SNPs into multiple biallelic SNPs, and sets the reference allele 
to be the reference base of the genome at that position.  Variants that were monomorphic were 
dropped, as well as those without a PASS filter, where the site was flagged as problematic during 
VCF generation.  Sites without rsID annotations were updated using information from dbSNP 
when possible, and otherwise site names were changed to 
chromosome:position:ref_allele:alt_allele. Allele frequencies calculated from the 1000 Genomes 
Project were annotated at all available sites. 

Computational analysis methods 
 
Methods to detect the presence of individuals’ DNA within DNA mixtures have been a lively 
area of computational investigation (Egeland et al., 2003, Hu and Fung, 2003, Balding, 2003, 
Clayton et al., 1998).  Our goal with Census-seq, Roll Call and CSI was to develop a suite of 
algorithms with which to detect and precisely quantify individual donors’ contributions to 
cell/DNA mixtures and to detect the presence of contaminating DNA/cells of known or unknown 
genotypes. 

Census-seq algorithm (precise quantification of donor contribution to cell/DNA mixtures) 
The goal of Census-seq is to measure the contribution of each donor to a 
cell mixture – both to monitor population dynamics, and for quantitative phenotyping. We do 
this systematically, routinely and inexpensively, without the need for single-cell analysis, simply 
by lightly sequencing genomic DNA from the cells. The donor mixture determines what ratio of 
alleles are present at every SNP. We developed a gradient-descent algorithm to find the donor-
mixing coefficients that maximize the likelihood of any observed sequence data.  
  
For Census-seq to perform accurately, input sequencing and VCF data is filtered on a per-run 
basis.  Sequence reads are filtered to high quality mappings (MQ>=10) on the autosomes that 
have not been flagged as PCR duplicates.  VCF sites are considered if they meet all of the 
following criteria: each site has GQ score of at least 30, is a diploid site, is polymorphic in the 
subset of donors in the population, and at least 90% of donors have a genotype quality score 
>=30.  In addition, for genotype array-based data where site quality scores may not be available, 
sites where the reference base is ambiguous [A/T, C/G] are not considered.  Variant sites are also 
rejected if they are not common in the population – only sites with ~5% allele frequency are 
included in analysis. 
  
Given these filtered inputs, a matrix of donor genotypes and the counts of the reference and 
alternate allele at each variant are generated.  Census-seq then uses these to find a vector of 
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donor-specific contributions (to the mixture) that best explains the observed counts of alleles at 
each site in the sequence data.  The algorithm initializes with the donor proportions set to equal 
values (1/number of donors), then runs through an estimation maximization (EM) procedure.  
During each step, the allele frequency of each site is calculated from the genotypes of the donors 
and their relative proportion in the pool.  The initial likelihood of the sequencing data given the 
starting donor ratios is calculated at each SNP by the likelihood function (see below) and the 
results summed across all sites.  To determine how to change the donor ratios to explain the data, 
an adjustment term is calculated for every donor/site, and the results are summed across sites for 
each donor.  This adjustment factor is then scaled by an additional parameter and added to each 
donor’s representation. To determine this scaling value the algorithm employs a univariate 
optimizer to maximize the donor likelihood. The adjustment is then applied to the data, and the 
algorithm repeats the adjustment/ likelihood optimization loop until convergence. 
  

Log-likelihood Function: 
 
For any set of donor-mixing coefficients (and resulting allele frequencies in the DNA mixture), 
he log-likelihood of the Census-seq sequencing data is calculated as: 

 
where i (= 1, 2, …, n) indexes the full set of SNPs used in analysis; f(a,i) and f(b,i) are the 
frequencies of the two alleles for SNP i; and Ai and Bi are the numbers of observations of these 
alleles in the Census-seq sequencing data. 
 
The derivative of the above likelihood function with respect to the donor-specific mixing 
coefficients is used to calculate a gradient ascent direction in the form of an adjustment factor for 
each donor; this adjustment term reflects the extent to which an increase (or decrease) in that 
donor’s mixing coefficient improved the likelihood of the Census-seq data.  During each loop of 
the EM, each donor’s mixing coefficient (contribution estimate) is adjusted by a factor that is 
proportional to the result of the following formula: 

 
Where i (= 1, 2, …, n) indexes the full set of SNPs used in analysis; gi is the genotype of the 
donor at SNP i ( = 1 if homozygous for the reference allele, 0 if homozygous for the alternate 
allele, and 0.5 if heterozygous); and f(a,i) and f(b,i) are the frequencies of the two alleles for SNP i. 
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Roll Call algorithm (to establish which donors have contributed to a cell/DNA mixture) 
Census-seq requires a complete and accurate list of donors in order to estimate each donor’s 
contribution accurately.  However, cell lines can become contaminated with cells from other 
donors; tubes can be mislabeled; and sample swaps can occur even despite best efforts. The 
probability of such errors increases with the number of cell lines in an experiment – thus, 
population-scale experiments are inherently more vulnerable to error.  We thus developed an 
algorithm (“Roll Call”) to create a complete list of the donors who have contributed to a 
cell/DNA mixture (from a larger set of genomically characterized candidates, for example, all of 
the cell lines in a lab).  Roll Call uses each donor’s private (singleton) alleles to find evidence 
that a donor is present in a mixture in which s/he doesn’t belong. To do this, we measure (for all 
of the sequence reads that touch these sites) the fraction of the sequence reads that individual’s 
IRVs.  Since this donor is in principle the only source of alternate alleles at the IRV sites, the 
fraction of these alleles observed can be directly related to the presence of the donor to the 
mixture.  In the equation below, we count the observations (sequence reads) that (in the absence 
of sequence errors) could only arise from a given individual, divided by the total number of reads 
at those sites. This is less precise than Census-seq at quantifying donor representation, because it 
draws upon a small fraction of all variable sites; the utility of Roll Call is to search through a 
very large set of potential donors to determine presence/absence and thereby authenticate a 
village prior to Census-seq analysis. 
 
Roll Call uses the same VCF and sequencing read filtering as Census-seq, with one exception - 
instead of retaining common sites, Roll Call leverages IRVs (rare identifying variants) - sites that 
are private to a single donor in the VCF.  Since these IRVs are the only source of alternate alleles 
in the sequencing data, the fraction of alleles in the sequencing data observed in a sequencing 
pool can directly be related to the proportion of donors in the pool.   
  
To generate the counts of IRVs, the algorithm filters the VCF to a set of heterozygous sites that 
are private to donors in the VCF.  The pileup of reference and alternate alleles is generated at 
those sites in the sequencing data.  For each donor, those pileups are then aggregated into a 
single result, and the Roll Call score is calculated: 
 

2𝑎
𝑎 + 𝑟

 
 
where a is the number of alternate alleles (and r is the number of reference alleles) observed for 
that donor’s IRVs at heterozygous sites.   
 
Note that PCR and sequencing error cause the Roll Call score to be slightly positive even for 
donors who have not contributed to a mixture.  For any experiment, a background null 
distribution of Roll Call scores can be estimated by including (in the input VCF) many 
individuals not expected to have contributed to the cell/DNA mixture; this distribution can then 
inform the selection of an experiment-specific threshold for the Roll Call score.   
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We routinely use Roll Call to validate and if necessary refine the donor list prior to Census-seq 
analysis. 
  

CSI - Contaminating Sample Identifier (detection of cells/DNA from genomically unknown 
donors) 
What if a pool were visited by cells from a genomically “unknown” donor? If we don’t have 
genotypes for the contaminating donor(s) a priori, we need another way to detect the presence of 
“unknown unexpected” visitors.  We developed the CSI algorithm to do this. CSI utilizes 
observations of alternate alleles that could not have arisen from the expected donors’ genomes 
and must therefore represent sequencing errors or contaminating cells.  We first identify all 
genomic sites and alleles that are absent among the donors we expect in the pool but present at 
some minimum frequency in the wider population (as estimated from the Thousand Genomes 
Project or gnomAD data).  We then look for evidence of such alleles in the village DNA 
sequencing data.  By correcting for sequencing error rate, we distinguish between two models: 
sequencing errors and an unwelcome visitor.  
  
CSI utilizes observations of alternate alleles that could not have arisen from the 
expected donors’ genomes and must therefore represent sequencing errors or 
contaminating cells.  We first identify all alleles that are absent among the donors 
we expect in the pool but present at some minimum frequency in the wider population.  
 
CSI uses the same VCF and sequencing read filtering as Census-Seq with one exception - the 
variant sites selected from the VCF are those for which all donors in the experiment have the 
reference genotype, and the minor allele frequency (MAF) of these sites in a wider population is 
at least 2.5%  This population allele frequency can be computed from a variety of potential 
sources, including (i) all donors in the VCF file not expected to be present in the experimental 
mixture; or, (ii) an external reference population such as those provided by the 1000 Genomes 
Project or gnomAD. 
  
To calculate the CSI intrusion score, we count observations of of reference and alternate alleles 
across all such sites and aggregate the results.  We then calculate the CSI intrusion score by 
taking into account the sequencing error rate and average minor allele frequency of the sites 
queried. 
  
CSI intrusion score: 

 
Where Fa is the fraction of sequencing reads (at these sites) observed to contain the alleles that 
are absent among the candidate donors; s is the sequencing error rate; and m is the mean minor 
allele frequency (of these alleles) in the population from which the potential donors are sampled. 
 

( fa − s)
m
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Note that while the CSI intrusion score is proportional to the degree of contamination from 
unexpected donor(s), two possibilities can cause it to deviate: (i) if the unexpected donor is 
related to an expected/candidate donor; or (ii) if the unexpected donor comes from a different 
population than the population used to estimate the mean MAF of the absent alleles.  (However, 
changes in the CSI score across time are likely to represent changes in the contribution of a 
contaminating donor.)  For this reason, we generally use the CSI score to authenticate or flag cell 
villages rather than to precisely measure contamination; a cell village contaminated by an 
unknown donor would not be suitable for Census-seq analysis anyway. 

QUANTIFICATION AND STATISTICAL ANALYSIS 
In analyzing the SMN-expression phenotype, we aggregated results from two villages of iPSCs, 
one of 113 donors, which we called CIRM1, and another with 38 donors, which we called 
SMN6. 
 
For each village, we calculate an SMN-expression phenotype measure for each donor as the 
log10-fold change in the representation of that donor in the SMN-high fraction of the village 
over their representation in the SMN-low fraction of the village: 𝑆𝑀𝑁𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	 =
𝑙𝑜𝑔34 (𝑟𝑒𝑝6786/𝑟𝑒𝑝:;<).  
 
Census-seq has reduced precision in quantifying donors who have contributed less than 0.2% of 
the cells/DNA in a mixture.  To account for this, as a quality control measure, we exclude from 
association analysis any donors who have less than 0.3% representation in any of the relevant 
derived villages (in this case, SMN-high or SMN-low). 72 of the donors from the village of 113 
and 37 donors from the village of 38 donors passed this filtering step and were used in 
downstream genetic analysis. 
 
20 of the 28 donors shared between the two villages were above threshold in both villages. To 
construct an aggregate table of the two villages, we averaged the SMN-expression phenotype 
measurements from both villages for these 20 donors. Then, for the remaining 76 unique donors, 
we used the SMN-expression phenotype calculated from the one village in which it passed QC. 
 
This resulted in a set of 96 donors with SMN-expression phenotype measurements suitable for 
genetic analysis. We performed linear regression of these 96 measurements against the number 
of copies of the SMN genes (Figure 4C).  

Measurement of quantitative phenotype and of quantitative drug response 
 
We had collected two additional fractions of SMN-high and SMN-low for each village after 
treatment with the drug LMI070. Using these two LMI070-treated fractions, we calculated 
𝑆𝑀𝑁𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛for the donors in each village when treated with LMI070. We then calculated 
the difference of 𝑆𝑀𝑁𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 of the donor when treated with LMI070 and 
𝑆𝑀𝑁𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛of the donor when not treated with LMI070, calling this difference 
𝐿𝑀𝐼070𝐷𝑟𝑢𝑔𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒. 𝐿𝑀𝐼070𝐷𝑟𝑢𝑔𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	 = 	𝑆𝑀𝑁𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛EFG4H4IJKLIKM −
𝑆𝑀𝑁𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛O;PIJ;: 
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Since we used two new fractions to calculate drug response, our quality control of the data had to 
adjust to take these into account. In particular, we filtered the data from each village to only 
include donors that had a representation of at least 0.3% in all 4 fractions. 67 donors from the 
village of 113 and 36 of the village of 38 passed QCl, with 11 of the 28 common donors passing 
in both villages. We averaged values for the 11 common donors and created an aggregate table to 
use for downstream analysis that had measurements for 92 unique donors. Finally, we ran a 
linear regression of the effect of SMN2 copy number on LMI070 drug response and found that 
there was a significant linear correlation between SMN2 copy number and LMI070 drug 
response (Figure 6D) that was even stronger when we discount any copies of the SMNdel variant 
of the gene in the regression model (Figure 6E). 
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