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Abstract 

Background Voxel-based Morphometry (VBM) studies in Autism Spectrum Disorder (autism) have yielded 

diverging results. This might partly be attributed to structural alterations being associating with the combined 

influence of several regions rather than with a single region. Further, these structural covariation differences 

may relate to continuous measures of autism rather than with categorical case-control contrasts. The current 

study aimed to identify structural covariation alterations in autism, and assessed canonical correlations 

between brain covariation patterns and core autism symptoms. 

Methods We studied 347 individuals with autism and 252 typically developing individuals, aged between 6 

and 30 years, who have been deeply phenotyped in the Longitudinal European Autism Project (LEAP). All 

participants’ VBM maps were decomposed into spatially independent components using Independent 

Component Analysis. A Generalized Linear Model (GLM) was used to examine case-control differences. 

Next, Canonical Correlation Analysis (CCA) was performed to separately explore the integrated effects 

between all the brain sources of gray matter variation and two sets of core autism symptoms. 

Results GLM analyses showed significant case-control differences for two independent components. The 

first component was primarily associated with decreased density of bilateral insula, inferior frontal gyrus, 

orbitofrontal cortex, and increased density of caudate nucleus in the autism group relative to typically 

developing individuals. The second component was related to decreased densities of the bilateral amygdala, 

hippocampus, and parahippocampal gyrus in the autism group relative to typically developing individuals. 

The CCA results showed significant correlations between components that involved variation of thalamus, 

putamen, precentral gyrus, frontal, parietal, and occipital lobes, and the cerebellum, and repetitive, rigid and 

stereotyped behaviors and abnormal sensory behaviors in autism individuals. 
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Limitations Only 55.9% of the participants with autism had complete questionnaire data on continuous 

parent-reported symptom measures. 

Conclusions Covaried areas associated with autism diagnosis and/or symptoms are scattered across the 

whole brain and include the limbic system, basal ganglia, thalamus, cerebellum, precentral gyrus, and parts 

of the frontal, parietal, and occipital lobes. Some of these areas potentially subserve social-communicative 

behavior whereas others may underpin sensory processing and integration, and motor behavior. 
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Background 

Autism spectrum disorder (autism) is an early onset neurodevelopmental condition characterized by 

core deficits in social interaction and communication, along with restrictive interests and behavior, and 

sensory abnormalities (1). Magnetic resonance imaging (MRI) studies have increased our understanding of 

the neuroanatomical underpinnings of autism and show that autism is associated, at the group level, with 

brain structural changes (2). However, many results are not robust across different studies. For example, two 

studies using the same large-scale open access Autism Brain Imaging Data Exchange (ABIDE) dataset (3) 

came to different conclusions with regard to the volume of the pallidum (4, 5). Also, across whole brain 

approaches investigating cortical (i.e. cortical thickness and surface area) and subcortical (i.e. volume) 

features have been inconsistent; two large-scale pooled estimate analytical studies observed diverging results 

of cortical changes in autism (6, 7). Similarly, autism studies quantifying voxel-wise gray matter (GM) 

density also found divergent results of GM differences between autism diagnosed and control individuals; 

for instance, meta-analyses reported diverse changes of GM morphometry in autistic individuals on average, 

reporting either increased or decreased density of right inferior temporal gyrus in autism (8, 9). Even when 

taking age into account, studies still observed different structural brain alterations in children and adolescents 

with autism (10, 11).  

A commonality to all these studies is their reliance on mass-univariate statistics. This approach identifies 

alterations in isolated regions or voxels but ignores possible relationships between them. The brain is a 

complex system of interconnected networks, and research into the neural basis of autism has moved away 

from focusing on local abnormalities into conceptualizing autism as a disorder of alterations in structural and 

functional brain connectivity (12). This implies that structural brain alterations in autism likely reflect the 
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combined influence of several regions and are not confined to one specific region (13, 14). The present paper 

aims to advance prior work on brain structural neural correlates of autism in two ways. First, we aim to move 

away from the standard univariate approach and incorporate an alternative that adheres more closely to the 

hypothesis of autism as a disconnection syndrome (13), thus providing greater sensitivity for between-group 

effects. For this purpose, we identify inter-regional sources of structural covariation using Independent 

Component Analysis (ICA) (15), a data-driven unsupervised approach that allows the identification of 

interconnected brain regions across the whole brain. It has previously been applied successfully to identify 

covariance of brain morphometry in patients with psychiatric disorders (16-18). Second, we move beyond 

the categorical autism case-control comparison towards exploring associations between brain structure and 

symptom dimensions or profiles of autism. Although former studies have used univariate approaches to 

explore the relationship between brain substrates and clinical phenotypes (6, 19), such associations are 

potentially the consequence of integrated effects across multiple symptoms dimensions and brain regions, 

rather than simple associations between a specific brain region and a specific symptom dimension. To study 

such multidimensional associations multivariate methods are effective (20, 21) and here we achieve this 

integration using Canonical Correlation Analysis (CCA) (22).   

In summary, we investigate alterations in GM morphometric covariations in a deeply phenotyped large 

European autism case-control sample (23, 24) that allows us to improve our understanding of correlated 

structural brain alterations in autism. Subsequently, we focus on the covariation between the identified 

structural features and symptom behavior profiles among individuals with autism. 
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Methods 

Participants 

The participants were selected from the first wave of the European Autism Interventions—A Multicentre 

Study for Developing New Medications (EU-AIMS) Longitudinal European Autism Project (LEAP) dataset, 

which is a large multicenter study that aims to identify and validate biomarkers for autism (24). In total, six 

centers are involved: Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United 

Kingdom; Autism Research Centre, University of Cambridge, United Kingdom; Radboud University 

Medical Centre, Nijmegen, the Netherlands; University Medical Centre Utrecht, the Netherlands; Central 

Institute of Mental Health, Mannheim, Germany; and University Campus Bio-Medico, Rome, Italy. Each 

participant underwent clinical, cognitive, and MRI assessment. Autism diagnoses were confirmed by 

clinicians according to the Diagnostic and Statistical Manual-IV (DSM-IV), International Statistical 

Classification of Diseases and Related Health Problems 10th Revision (ICD-10), or DSM-5. The study was 

approved by local ethical committees in each participating center, and written informed consent was provided 

by all participants and/or their legal guardians (for those<18 years old). For further details on experimental 

design and clinical assessments, see (23, 24).  

In the present study, we selected participants with available structural MRI data. All images were 

inspected visually and subjects were excluded in cases of brain injury or structural abnormalities (e.g. 

enlarged ventricles or cysts), excessive head motion, or preprocessing failure (n=29). We excluded the 

participants from the Rome site due to low sample size (n=1). We also excluded participants without full-

scale intelligence quotient (FSIQ) data in the further statistical analyses (n=5). This resulted in a sample of 

599 participants from 5 sites, including 347 individuals with autism and 252 typically developing (TD) 
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controls. Demographic and clinical information is shown in Table 1.  

 

Clinical Measures 

We used the Autism Diagnostic Interview-Revised (ADI) (25) and the Autism Diagnostic Observational 

Schedule 2 (ADOS) (26) to quantify past (ever and previous 4-to-5 years) and current autism symptoms of 

the social interaction, communication, and restricted repetitive behaviors (RRB) domains. We used T-scores 

(age- and sex-adjusted) of the Social Responsiveness Scale 2nd Edition (SRS) (27) in the autism group to 

assess severity of autistic traits/symptoms and the Repetitive Behavior Scale-Revised (RBS) (28) to measure 

repetitive and rigid behaviors associated with autism. Moreover, sensory processing abnormalities of autism 

were assessed with the Short Sensory Profile (SSP) (29). To examine associations between clinical features 

in autism and brain measures, we created two sets of clinical measures: 1) the subscale scores of ADI-R and 

ADOS, both instruments were rated by qualified examiners, and 2) the total scores of SRS, RBS, and SSP, 

we included parent-rated reports only and limited the analyses to within the autism group. Further, concerning 

the potential effect of comorbidity with Attention Deficit Hyperactivity Disorder (ADHD), we included 

comorbidity with ADHD as an additional covariate in analyses. ADHD symptoms were assessed with the 

ADHD DSM-5 rating scale that includes symptom scales of inattention and hyperactivity/impulsivity scores. 

The ADHD DSM-5 rating scale was based on either parent-report or self-report scores; self-report scores 

were only used when parent-reports were unavailable. The categorical output of the ADHD rating scale was 

used in this study. The summary for each of these clinical measures can be found in Table 1. 

 

MRI data acquisition 

All participants were scanned on 3T MRI scanners (University of Cambridge: Siemens Verio; King’s 
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College London: GE Medical Systems Discovery MR 750; Mannheim University: Siemens TimTrio; 

Radboud University: Siemens Skyra; Rome University: GE Medical Systems Sigma HDxTt; Utrecht 

University: Philips Medical Systems Achieva/Ingenia CX). High-resolution structural T1-weighted images 

were acquired with full head coverage, at 1.2 mm thickness with 1.2×1.2 mm in-plane resolution. For all 

other scanning parameters, please see Supplementary Table S1. Consistent image quality was ensured by a 

semi-automated quality control procedure. 

 

GM density estimation 

Voxel-based morphometry (VBM) is a spatially-unbiased whole-brain approach that extracts voxel-wise 

GM density (the amount of GM at a voxel) estimations. We performed VBM analyses using the CAT12 

toolbox (30) in SPM12 (Wellcome Department of Imaging Neuroscience, London, UK). T1-weighted images 

were automatically segmented into GM, white matter, and cerebrospinal fluid and affine registered to the 

MNI template to improve segmentation. All resulting segmented GM maps were then used to generate a 

study-specific template and registered to MNI space via a high-dimensional, nonlinear diffeomorphic 

registration algorithm (DARTEL) (31). A Jacobian modulation step was included using the flow fields to 

preserve voxel-wise information on local tissue volume. Images were smoothed with a 4 mm full-width half-

max (FWHM) isotropic Gaussian kernel. 

 

Structural ICA decomposition 

All participants’ VBM data were simultaneously decomposed into 100 spatially independent sources of 

spatial variation using MELODIC-ICA (15). Such ICA decomposition provides, at each independent 

component, a brain map reflecting a pattern of GM density covariation across participants, and a participant’s 
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loading vector reflecting the contribution of each participant to each component. 100 components were 

chosen to capture as much variation as possible while remaining statistically powered (less than 25% of the 

total number of subjects (32)). However, the dependence on the model order (i.e., number of components) 

was also examined using different model orders; more precisely, in addition to the 100 dimensional 

factorization, we also considered an automatic dimension estimation approach as implemented in 

MELODIC-ICA and a 50 dimensional independent component factorization.  

 

Statistical approach 

For completeness we first performed a standard mass-univariate statistical analyses directly on the GM 

densities. To that end we used a Generalized Linear Model (GLM) to detect group differences (autism vs. 

TD) on GM densities using the FMRIB Software Library v6.0 (FSL) (33). Participants’ VBM maps were 

considered as the dependent variable and diagnostic group as the independent factor, with age, sex, FSIQ, 

and scan site as covariates. Significance was assessed using permutation testing (5000 permutations) and 

correction for multiple comparisons was achieved using Threshold-Free Cluster Enhancement (TFCE, two-

tailed, threshold at p<0.05) (34, 35).  

Next, we considered the results of the ICA factorization of the VBM data. A GLM was used to examine 

differences between autistic and TD individuals, by using each participant's loading to each component as a 

dependent variable, diagnostic group as independent variable, and age, sex, FSIQ, and scan site as regressors. 

To avoid the results of case-control differences being biased by IQ, we repeated the same procedure by 

excluding participants in Schedule D (FSIQ<75, more details see Supplementary subsection 2). Considering 

that autism is highly comorbid with ADHD (36), we also controlled for comorbidity with ADHD by adding 

a dummy-coded variable (with/without ADHD) to the original GLM analyses (autism vs. TD) in the case-
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control ICA analysis. Multiple comparison correction was implemented using false discovery rate (FDR) 

(p<0.05) (37). 

We also explored independently the relationships between each estimated brain component and 

subscales of ADI and ADOS, SRS, RBS, and SSP in the autism group using GLM analyses and again 

correction for multiple comparisons was implemented with the FDR method (p<0.05). Then, to 

simultaneously explore the relationship between all the brain structural phenotypes estimated through ICA 

and all symptom phenotypes in the autism group, we used CCA. In the considered scenario, CCA is able to 

learn, at each canonical variate, linear projections of the brain structural sources and the behavioral measures 

that maximize the correlation between them at the participant level. Here, we performed two separate CCA 

analyses to link the independent components participants’ contributions to subsets of behavioral measures; 

in the first CCA analyses (CCA1) we included the subscales of ADI and ADOS as clinical measures and in 

the second (CCA2) we used total scores of SRS, RBS, and SSP. For each CCA analysis the statistical 

significance of each canonical variate was determined by permutation testing (10,000 permutations, 

Bonferroni corrected p<0.05/number of canonical variates). To evaluate the contribution of each independent 

source and each clinical measure to the CCA projections we used the structural coefficient of each variable 

as noted in (38). The reliability of the CCA results presented as well as its dependence on the number of 

subjects were tested using a leave-one-out cross-validation approach (Supplementary subsection 3). 

 

Results 

Mass-univariate statistics 

The standard mass-univariate GLM analysis of the VBM data comparing cases and controls did not 
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show significant group differences for voxel-wise GM volumes. Although no fully corrected statistical 

significance was assessed, we observed that the areas showing nominal significance (p<0.05) involved left 

temporal cortex, and bilateral cerebellum. We provide these uncorrected statistical results in supplementary 

materials Figure S2. 

 

Group effect on ICA decomposition 

The structural data ICA decomposition provided a set of 100 independent spatial sources, each of which 

is connected to a vector that depicts the degree of each participant’s contribution to the corresponding 

components. For clarity, we further refer to these vectors as the participant loadings. Post-hoc GLM analyses 

of these participant loadings showed nominal significant case-control differences at nine independent 

components (ICs) (p<0.05, i.e. IC10, IC13, IC14, IC15, IC23, IC28, IC31, IC48, and IC 99, see 

Supplementary Figure S3). Of these, two components, IC10 (β=-0.147, p=8.850x10-5, effect size [Cohen’s d] 

d=-0.358) and IC14 (β=-0.132, p=5.450x10-4, d=-0.321), survived multiple comparison correction (FDR 

corrected, p<8.072x10-4). These results were not driven by age, sex, or scan site.  

In Figure 1, we present summary images reflecting the brain areas involved in the structural variances 

occurring at these two components. The top row of Figure 1 shows that IC10 primarily relates to structural 

variation in the bilateral insula, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC), and caudate nuclei. 

Among these brain regions, the bilateral caudate exhibits alterations in the opposite direction to the others. 

Given the negative beta coefficient obtained from the GLM analysis between participant loadings at IC10 

and the diagnosis group labels, individuals with autism demonstrate increased GM densities in the bilateral 

caudate and decreased densities in the bilateral insula, IFG, and OFC. The bottom row of Figure 1 shows that 

IC14 mainly involves variations in the bilateral amygdala, hippocampus, and parahippocampal gyrus (PHG). 
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Similarly, according to the sign of the beta values obtained through the GLM, the autism group shows 

decreased densities in the areas involved in IC14.  

The robustness of the ICA results to the model order choice was evaluated by considering, in addition 

to the original 100-dimensional factorization, an automatic dimensionality estimation procedure resulting in 

a 91-dimensional factorization, and a 50-dimensional factorization. We observed that the main components 

reported (IC10 and IC14) are highly reproducible independent of the model order choice. For details, see 

Supplementary materials subsection 6a.  

To validate the ICA results not being biased by low IQ participants, an additional validation was 

performed by taking FSIQ into account to exclude the participants in Schedule D from the ICA factorization. 

This showed that a unique IC, corresponding to the original IC10, survived FDR correction (see 

Supplementary materials subsection 6b). Further, the effect of comorbidity with ADHD on brain structural 

variations was determined using data from 500 participants (for detailed demographic information, see 

Supplementary Table S4). This analysis showed that IC14 remained significantly associated with the autism 

group (FDR corrected, p=9.669 x10-4). However, IC10 was no longer associated with autism (p=0.004).  

Further, post-hoc GLM analyses of the relationships between brain ICs and symptom ratings did not 

provide any significant associations (Supplementary Table S5).  

 

Relating gray matter spatial variation patterns to symptoms profiles  

As a final step, we applied CCA to examine the associations between the 100 components and the two 

sets of clinical measures among the autism cases only. The CCA1 (linking ADI and ADOS subscale scores 

to brain measures), involved 325 autism participants and showed a Bonferroni corrected (p=0.05/5=0.010) 

significant relationship (Figure 2a,c, r=0.701, permutation p=0.008). In this main CCA mode, IC16, IC61, 
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IC89, and IC14 were the highest contributors to the correlation with autism symptoms, and the ADOS RRB 

subscale loaded most on the association with the brain measures (Figure 3a, b). Among the four components, 

IC16 mainly involved density variations in bilateral thalamus and putamen (canonical weight: 0.447), IC61 

in right lateral occipital and left superior parietal lobe (canonical weight: -0.366), and IC89 in the left 

precentral gyrus (canonical weight: -0.333). For details, see Supplementary Figure S6a. Note that IC14 is 

among the components previously reported showing linear significant case-control group effects. The regions 

involved in IC14 were mentioned above (canonical weight: -0.312). Since higher scores of the ADI and 

ADOS reflect more severe autism symptoms, positive values of IC16 suggest that higher loading on this 

component is related to more severe symptoms in autism, and negative values of IC61, IC89, and IC14 meant 

that lower loadings on these three ICs are associated with more severe symptoms. In Figure 2a, participants 

were color coded according to their ADOS-RRB scores to illustrate how the ADOS-RRB score drives the 

canonical correlation.  

In CCA2 we linked SRS, RBS, and SSP scores to the brain measures of 194 individuals with autism, 

which is 55.9% of all participants with autism (lower number due to missing questionnaire data). We found 

a Bonferroni corrected (p=0.05/3=0.017) significant relationship (Figure 2b, r=0.840, permutation p=0.002, 

Figure 2d). In this main CCA mode, IC82, IC99, and IC100 were the highest contributors to the correlation 

with behavior profiles, and SSP score loaded most on the association with the brain measures in the autism 

group (Figure 3c, d). IC82 mainly involved variations in the bilateral cerebellum (canonical weight: 0.414), 

IC99 in the left lateral occipital and parietal lobe, and bilateral precentral gyrus (canonical weight: 0.277), 

and IC100 in the left inferior frontal gyrus and right middle frontal lobe (canonical weight: 0.262). For details, 

see Supplementary Figure S6b. Similarly, lower loadings on these three ICs were related to more severe 

symptoms. In Figure 2b, each participant was color coded according to their SSP score, and it shows how 
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SSP score drives the correlation. In this case, both IC10 and IC14 ranked outside the top 20 of the 100 

components, suggesting that these two components with significant case-control difference have no strong 

contribution to the CCA2 correlation. However, for completeness, direct interpretation (referring to 

uncorrected coefficients) of the CCA2 weights ranks IC14 as the third strongest contributor to this canonical 

correlation (Supplementary Figure S7).  

The CCA robustness analyses indicated that the main CCA modes of both CCA analyses were reliably 

estimated in a leave-one-subject out setting (Supplementary Figure S1). In CCA1, the weights of the main 

CCA mode of each leave-one-out analysis correlated on average above 0.94 with the weights of original main 

CCA mode in brain loadings and above 0.95 in behavior phenotypes when the sample was bigger than 122 

subjects. In CCA2, the weights of the main CCA mode related on average above 0.92 in brain loadings and 

above 0.96 in behavior profiles when the sample was bigger than 111 subjects. Both CCA analyses are no 

reproducible for sample sizes smaller than (approximately) 100 subjects. 
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Discussion 

The present study used a reliable approach to quantify inter-individual differences in GM morphometry 

covariations in a deeply phenotyped large sample of individuals with and without autism. The standard, 

univariate VBM analysis did not show significant case-control differences. We then utilized an ICA 

decomposition of all participants GM density images, and similarly performed a case-control post-hoc 

statistical analyses. This analysis showed that autism was significantly associated with alterations in two 

independent sources of GM density covariations. These findings corroborated our hypothesis that alterations 

in brain morphometry in autism are associated with the combined influence of several regions rather than 

with a single region. In a following step, we applied CCA to explore multivariate associations between sets 

of continuous measures of core symptoms and sets of ICA-derived morphometry measures within the autism 

group, and were able to identify significant relationships between brain components and symptom profiles. 

Notably, one of the components which showed significant case-control differences was also among the 

highest loading components in the CCA.    

Our findings showed two covarying sets of brain areas that structurally differed between cases and 

controls. While one source of GM density covariation, IC10, mainly related to the bilateral insula, IFG, OFG, 

and caudate, another source, IC14, primarily involved the bilateral amygdala, hippocampus, and PHG. The 

brain regions within each component are anatomically clustered and symmetrical, which indicates that the 

independent structural covariation alteration in the GM of individuals with autism is concentrated in nearby 

brain areas. This is in line with a previous study that used a similar approach (39). It is further in line with 

organizing principles of the brain that regions tend to be more interconnected when they are located close to 

each other (40, 41). However, when we compared the regions loading on the two components, the covarying 
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regions of each component distribute in different brain locations. This suggests that neuroanatomic alterations 

underlying autism are more widely distributed at the whole brain level. It is of note that, when accounting 

for ADHD comorbidity, IC14 remained significant but IC10 did not. This suggests that IC14 is more 

specifically related to autism associated structural variations, even after linearly accounting for ADHD effects, 

while IC10 might reflect variations associated with both autism and ADHD. 

The brain regions with high loadings on either of these two components, i.e. insula, amygdala, 

hippocampus and PHG have lower densities in autism and have earlier been associated with autism (9, 42). 

The opposite direction of the alteration of the caudate nucleus in autism has also previously been found (43). 

This is not the case for the IFG and OFG, which showed lower densities in autism in our study, where prior 

studies found mixed results (44, 45). Importantly, the brain regions identified by our analyses have earlier 

been implicated in the neurobiology and/or neurocognition of autism. In IC10, structural and/or functional 

alterations of the insula, IFG, and OFC have been associated with social and non-social cognitive 

impairments in autism (45-48). A meta-analysis reported abnormal functional activations of the insula, IFG, 

and OFG during social cognition tasks in autism (49). Additionally, variance of the caudate nucleus volume 

was found to correlate with the severity of RRB symptoms in autism (43). Together with deviant structural 

and functional connectivity between frontal cortical areas and striatum in autism (46, 50, 51), structural 

covariation in striatum and frontal areas may underlie atypical functional fronto-striatal connectivity, and this 

has been associated with repetitive behavior and executive functioning impairments in autism (3, 44). In the 

present study, the density of caudate nuclei increase simultaneously with densities decreasing on other areas 

in autism, which fits with the results of a few functional studies that indicate inverse functional changes of 

these areas (52). Particularly, the special pattern of GM densities changes in frontal and striatal areas might 

serve an important role in autism-related symptoms.  
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In IC14, we found decreased densities of amygdala and hippocampus, where the structural alterations 

have previously been related to social deficits in autism (6, 53). The amygdala, hippocampus, and PHG 

subserve cognitive and emotional functions that were found abnormal in individuals with autism (49, 54, 55). 

In addition to being involved in emotion and face processing, the three areas have been proposed as structures 

critical for working memory in autism (56). Furthermore, these cognitive domains exert bidirectional effects 

on each other, with atypical social-emotional processing influencing memory performance in individuals 

with autism, and memory being involved in complex information processing and executive functioning, 

which in turn affects social cognition (56, 57). In sum, given the potential functional interactions between 

these three brain areas, the structural covariance alterations of the amygdala, hippocampus, and PHG found 

in our study, may underlie or contribute to abnormal functional connections of these areas, and thus underlie 

poor performance on social cognition and memory tasks in individuals with autism. 

 Our multivariate correlation analyses moved from the case-control comparison to the use of continuous 

symptoms among individuals with autism and identified two prominent relationships between all structural 

brain covariances and symptoms in autism. Three of the four brain components that ranked top in this analysis 

did not show case-control differences, while there was one component (IC14) that differed between cases 

and controls and also significantly correlated with the severity of autism symptoms assessed by ADI and 

ADOS. The brain areas loading high on the brain components identified in the CCA are somewhat different 

from those implicated in the case-control analyses. These former brain areas are the thalamus, putamen, 

precentral gyrus, and parietal and occipital lobes in CCA1, and the cerebellum, frontal lobe, and again 

precentral gyrus, and parietal and occipital lobes in CCA2. These are foremost areas of the brain implicated 

in the processing and higher order integration of sensory information and motor functions. This makes sense 

since repetitive, rigid and stereotyped behaviors and abnormal sensory behaviors seem to drive the brain-
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behavior associations much more than the measures on social-communication symptoms. Note that variance 

within the different autism symptom domains (social-communication, repetitive behaviors and sensory 

abnormalities) was similar and cannot explain the differential symptom-brain associations.  

 Overall, the results of our multivariate analyses on case-control differences and on continuous measures 

of symptom severity among those with autism demonstrate the complexity of the brain morphometry 

correlates of autism. Brain areas involved are scattered across the whole brain and include the limbic system, 

basal ganglia, thalamus, cerebellum, precentral (motor) gyrus, and parts of the frontal, parietal, and occipital 

lobes.       

 

Strengths and limitations 

The strengths of our study are the use of a large deeply phenotyped sample, bottom-up data-driven 

analyses, a multivariate approach for examining brain-symptom associations, and a large set of continuous 

measures of core autism symptoms. A limitation is that only 55.9% of the autism group had complete 

questionnaire data on continuous parent-reported symptom measures, which may have lowered statistical 

power for this analysis. 

 

Conclusions 

We demonstrate brain morphometry differences between individuals with autism and typical controls in 

the inter-regional covariation of the insula, frontal area, caudate, amygdala, hippocampus, and PHG. Further, 

we highlight associations between covariation in density of the thalamus, putamen, precentral gyrus, frontal, 

parietal, and occipital lobes, and the cerebellum, and core autism symptoms, in particular repetitive behaviors 
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and abnormal sensory behavior. Future studies may link our morphometry findings with data on brain 

function obtained from cognitive tests and/or functional and resting-state MRI, and with genomics data. 
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Figure 1. The components showed significant case-control differences. The component maps were 

thresholded at 3<|Z|<5. IC10, component number 10; IC14, component number 14. 
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Figure 2. Main CCA mode scatter plots of participant loadings’ weights versus symptom profile weights. 

One dot per participant in each graph is coded with gradient colors according to the scores of ADOS RRB 

(a) and SSP (b), respectively. The second row shows the histograms of the null distribution of correlation 

values obtained from the main CCA mode at 10,000 random participants’ permutations in the autism sample 

with ADI and ADOS scores (c), and with SRS, RBS, and SSP scores (d). The true r-value is marked by a red 

cross. ADI, Autism Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observational Schedule 2; 

SRS, Social Responsiveness Scale 2nd Edition; RBS, Repetitive Behavior Scale-Revised; SSP, Short Sensory 

Profile; RRB, restricted and repetitive behaviors. 
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Figure 3. Main CCA mode corrected loadings of each component and symptom profiles. (a, c) display the 

degree that each component contributed to the main CCA mode related with ADI and ADOS (a), and with 

SRS, RBS, and SSP (c). The two components with significant group effects are displayed in red. (b, d) show 

the loadings of symptom profiles in each main CCA mode. CCA, canonical correlation analysis; ADI, Autism 

Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observational Schedule 2; SRS, Social 

Responsiveness Scale 2nd Edition; RBS, Repetitive Behavior Scale-Revised; SSP, Short Sensory Profile. 
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Table 1. Participant characteristics 

Demographic 
Autism, n = 347 TD, n = 252 

t/𝒳" p value 
Mean SD Mean SD 

Age, years a 16.79  5.56 16.92  5.71 -0.270  0.788  
FSIQ a  99.40  18.94 104.88  18.26 -3.549  p<0.001 
 FSIQ>=75 a, b  104.29 14.95 109.02 13.07 -3.883 p<0.001 
 FSIQ<75 a, b 66.61 5.44 63.69 9.20 1.399 0.172 
    n % n %     
Sex, male/female c  253/94 72.9/27.1 163/89 64.7/35.3 4.658 0.031 
ADHD rating scale d, 
with/without ADHD 

139/160 46.5/53.5 21/180 10.4/89.6 71.750 p<0.001 

Symptom Profiles Mean SD Mean SD     
ADI e       

 Social 
Interaction 

16.80  6.66      

 Communication 13.50  5.62      
 RRB 4.32  2.67      

ADOS f       
 Social Affect 6.04  2.59      
 RRB 4.73  2.78      

SRS T-score g 70.59  12.06  47.24 8.79   

RBS h 15.76  13.42  2.20 8.28   

SSP i 138.62  27.28  175.97 16.18     

TD, typically developing; SD, standard deviation; FSIQ, full-scale intelligence quotient; ADI, Autism 

Diagnostic Interview-Revised; RRB, restricted, repetitive behaviors; ADOS, Autism Diagnostic 

Observational Schedule 2; SRS, Social Responsiveness Scale 2nd Edition; RBS, Repetitive Behavior Scale-

Revised; SSP, Short Sensory Profile. 

a Statistical differences were assessed by two-sample t-test. 

b In Schedule A, B, and C, there are 302 participants with autism and 229 participants with TD. Schedule D 

comprised 45 participants with autism and 23 TD individuals. 

c Sex difference was examined by the chi-square test.  

d ADHD rating scores were available for 500 participants, including 299 individuals with autism and 201 TD 

individuals. 
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e ADI scores were available for 332 participants. 

f ADOS scores were available for 339 participants. We considered calibrated severity scores.  

g Parent report SRS scores were available for 284 participants with autism and 135 TD individuals.  

h RBS scores were available for 277 participants with autism and 133 TD individuals. 

i SSP scores were available for 201 participants with autism and 115 TD individuals. 

g, h, i In all questionnaires, the scores of the autism group only were used in our study, and they are all parent-

rated. 
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