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SUMMARY:  13 

Building a genotype to phenotype to fitness map of adaptation is a central goal in evolutionary 14 
biology. It is also notoriously difficult even when the adaptive mutations are known because it is 15 
hard to identify which phenotypes make these mutations adaptive. We solve this problem by 16 
first quantifying how the fitness of hundreds of adaptive mutants responds to subtle 17 
environmental shifts and then inferring the existence of fitness-relevant phenotypes implicit in 18 
these patterns of fitness variation. We find that a small number of phenotypes predicts the 19 
fitness of the adaptive mutations near their original glucose-limited evolution condition. 20 
Importantly, phenotypes that matter little to fitness at or near the evolution condition can matter 21 
strongly in distant environments. This suggests that adaptive mutants are locally modular — 22 
affecting a small number of phenotypes that matter to fitness in the environment where they 23 
evolve — yet globally pleiotropic — affecting many phenotypes that contribute to fitness in new 24 
environments.  25 
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INTRODUCTION 43 
 44 
High-replicate laboratory evolution experiments are opening an unprecedented window into the 45 
dynamics and genetic basis of adaptive change by de novo mutation (Crozat et al., 2010; Good 46 
et al., 2017; Lang et al., 2013; Levy et al., 2015; Tenaillon et al., 2012; Venkataram et al., 2016). 47 
One of the key insights revealed by these studies is that in many systems, evolution can 48 
proceed rapidly via many large-effect single mutations (Venkataram et al., 2016)(Crozat et al., 49 
2010; Good et al., 2017; Lang et al., 2013; Levy et al., 2015; Tenaillon et al., 2012)Venkataram 50 
et al., 2016). While the identities of these adaptive mutations are often unique to a specific 51 
replicate of the evolutionary experiment, across many replicates they tend to occur in similar 52 
genes and pathways. Thus, while the diversity of mutations suggests that there might be many 53 
ways to adapt, the much smaller number of apparent functional units implies, in contrast, that 54 
most adaptive mutations affect a small set of key phenotypes (Fig 1A). 55 

Consider the seminal study by Tenaillon et al. (Tenaillon et al., 2012) in which 115 populations 56 
were evolved at high temperature for ~2000 generations. While the authors identified over a 57 
thousand mutations that were largely unique to each population, the number of affected genes 58 
was much smaller with 12 genes being hit over 25 times each. Even greater convergence was 59 
seen at higher levels of organization such as operons. Similarly, Venkataram et al (Venkataram 60 
et al., 2016) find that, of the hundreds of unique genetic mutations that occur during adaptation 61 
to glucose-limitation, the vast majority fall into a relatively small number of genes (mostly IRA1, 62 
IRA2, GPB2, PDE2) and primarily two pathways - Ras/PKA and TOR/Sch9. Thus despite the 63 
diversity of mutations, it is possible that all of their effects can be mapped in one or few 64 
dimensions required to describe their effects on the Ras/PKA or TOR/Sch9 pathways. These 65 
are just two examples, but the pattern has been seen repeatedly (Barghi et al., 2019; Crozat et 66 
al., 2010; Good et al., 2017; Lang et al., 2013; Lind et al., 2015). Note that this pattern is seen 67 
not only in experimental evolution but also in cancer evolution. Individual tumors are largely 68 
unique in terms of specific mutations, but these mutations affect a much smaller set of driver 69 
genes and an even smaller number of higher functional units such as signalling pathways 70 
(Hanahan and Weinberg, 2011, 2000). 71 

The mapping of adaptive mutations to a smaller number of functional units and thus a  low-72 
dimensional space representing their phenotypic effects (Fig 1A) is consistent with theoretical 73 
models of adaptation. These theoretical models argue that adaptive mutations, especially those 74 
of substantial fitness benefit, cannot affect too many phenotypes at once as most such effects 75 
should be deleterious and thus inconsistent with the overall positive effect on fitness (Fisher, 76 
1930; Orr, 2000). More recent studies likewise suggest that selection against mutations with 77 
high pleiotropy, i.e. mutations that affect many phenotypes, has resulted in a modular 78 
architecture of the genotype-phenotype map, in which genetic changes can influence some 79 
phenotypes without affecting others (Altenberg, 2005; Collet et al., 2018; Melo et al., 2016; 80 
Wagner et al., 2007; Wagner and Altenberg, 1996; Wagner and Zhang, 2011; Welch and 81 
Waxman, 2003). This architecture would allow single mutations to drive large low-dimensional 82 
phenotypic shifts. It would also explain the observations that very large collections of adaptive 83 
mutations are not diverse in terms of affected genes, pathways, and phenotypes. The reason for 84 
this is that only mutations that affect the genes, pathways, and phenotypes that represent the 85 
correct module most relevant to adaptation in the study environment will be adaptive. 86 

While theoretically appealing, the possibility that observed adaptive mutations indeed affect only 87 
a very small number of phenotypes is difficult to reconcile with the notion that organisms are 88 
tightly integrated (Kacser and Burns, 1981; Paaby and Rockman, 2013; Rockman, 2012). 89 
Further, there is experimental evidence of widespread pleiotropy, for example, from genome 90 
wide association studies that suggest every gene can influence every trait, at least to some 91 
extent (Boyle et al., 2017; Chesmore et al., 2018; Sella and Barton, 2019; Sivakumaran et al., 92 
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2011; Visscher and Yang, 2016). It is possible that pleiotropy is common, but strongly adaptive 93 
mutations observed in experimental evolution are unusual in that they have few pleiotropic 94 
phenotypic effects. Another possibility is that these mutations do have pleiotropic side effects 95 
but these matter little to fitness in the evolution condition (Fig 1B). Note that here we do not 96 
need to claim that these phenotypic effects never matter to fitness but rather that they do not 97 
matter to fitness in the condition where they evolved. In fact the key prediction of this model is 98 
that one should be able to detect such latent pleiotropy by showing that additional phenotypic 99 
changes matter to fitness in other environments (Fig 1C). 100 

If the model depicted in Fig 1B and C is true, then it is possible that adaptive mutations are 101 
locally modular — that they affect very few phenotypes that matter to fitness in the evolution 102 
condition — and globally pleiotropic. Under this model, the large number of distinct mutations 103 
available to adaptation becomes important. Indeed while these mutations tend to influence 104 
similar genes and pathways, their phenotypic effects do not simply collapse to a low 105 
dimensional functional space. Instead this genetic diversity becomes a source of consequential 106 
phenotypic diversity, but only once these genetic variants leave the local environment in which 107 
they originated. 108 

In order to test this model and better understand the genotype-phenotype-fitness map, we face 109 
the difficult task of identifying which phenotypes adaptive mutations affect and then determining 110 
how these phenotypes contribute to fitness. This is a challenging problem as the possible 111 
number of phenotypes one can measure is virtually infinite, e.g. the expression level of every 112 
gene or the quantity of every metabolite (Coombes et al., 2019; Mehlhoff et al., 2020). Further, 113 
many measurable phenotypes are related in complex ways (Geiler-Samerotte et al., 2019). 114 
Mapping their contribution to fitness requires a complete understanding of how genetic changes 115 
lead to molecular changes and how these percolate to higher functional levels and ultimately 116 
influence fitness (Kemble et al., 2020). This might be possible to do in some cases where the 117 
phenotype to fitness mapping is simple (e.g. antibiotic resistance driven by a specific enzyme or 118 
tRNA or protein folding mediating specific RNA or protein function) (Baeza-Centurion et al., 119 
2019; Cowperthwaite et al., 2005; Diss and Lehner, 2018; Domingo et al., 2019; Harmand et al., 120 
2017; Karageorgi et al., 2019; Li and Zhang, 2018; Otwinowski et al., 2018; Pressman et al., 121 
2019; Sarkisyan et al., 2016; Starr et al., 2018; Weinreich, 2006) but is exceptionally difficult for 122 
complex phenotypes. 123 

Moreover, to distinguish the model in Fig. 1A from Fig 1B, we need to understand these 124 
genotype-phenotype-fitness maps not only in the environment in which adaptive mutants 125 
evolved, but also in other environments, as depicted in Fig. 1C. And we need to do this for many 126 
adaptive mutants so that we can assess the extent to which different mutants affect different 127 
phenotypes. Considering the scope of this challenge, it is not surprising that despite much 128 
theoretical discussion of modularity and pleiotropy as it relates to adaptation, experimental 129 
approaches to address these questions have lagged behind. 130 

Here we suggest a way to model the genotype-phenotype-fitness relationship that avoids the 131 
problem of measuring each phenotype and its effect on fitness explicitly. We argue that it is 132 
possible to investigate the genotype-phenotype-fitness map by comparing how the fitness 133 
effects of many mutations change across a large number of environments. The way each 134 
mutant’s fitness varies across environments must be related to its phenotype, and thus the way 135 
mutants co-vary in fitness across environments tells us whether they affect similar fitness-136 
relevant phenotypes. We can use the profiles of fitness across a set of environments to identify 137 
the total number of fitness-relevant phenotypes affected across a collection of adaptive mutants, 138 
the extent to which different mutants affect different phenotypes, and whether the contribution of 139 
each phenotype to fitness changes across environments. 140 
 141 
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Here we build a genotype-phenotype-fitness model for hundreds of adaptive mutations that 142 
originally evolved in a glucose-limited environment. We use this model to accurately predict the 143 
fitness of these mutants across a set of 45 environments that vary in their similarity to the 144 
evolution condition. We find that the behavior of adaptive mutations can be described by a low-145 
dimensional phenotypic model. In other words, these mutants affect a small number of 146 
phenotypes that matter to fitness in the glucose-limited condition in which they evolved. We find 147 
that this low-dimensional phenotypic model makes accurate predictions of mutant fitness in 148 
novel environments even when they are distant from the evolution condition. Moreover, we find 149 
that some phenotypes that contribute very little to fitness in the evolution condition become 150 
surprisingly important in some novel environments. This suggests that adaptive mutations are 151 
globally pleiotropic in that they affect many phenotypes overall, but that they are locally modular 152 
in that only a small number of these phenotypes have substantial effects on fitness in the 153 
environment they evolved in. Overall, we suggest that this set of adaptive mutations contains 154 
substantial and consequential latent phenotypic diversity, meaning that despite targeting similar 155 
genes and pathways, different adaptive mutants may respond differently to future evolutionary 156 
challenges. This finding has important consequences for understanding how directional 157 
selection can generate consequential phenotypic heterogeneity both in natural populations and 158 
also in the context of diseases such as cancer and viral or bacterial infections. In addition, our 159 
results show that our abstract, top-down approach is a promising route of analysis for 160 
investigating the phenotypic and fitness consequences of mutation. 161 
 162 

Figure 1. Adaptive mutations can be locally modular and globally pleiotropic. (A) A collection of 163 
adaptive mutations may affect a small number of phenotypes (four black squares). (B) Alternatively, these 164 
mutations may collectively (and individually) affect many phenotypes, but only a small number of 165 
phenotypes may matter to fitness (those indicated by black squares with thick arrows pointing to fitness), 166 
whereas the other phenotypes may make very small contributions to fitness (those indicated by the gray 167 
squares and thin, dashed lines leading to fitness). (C) Under the model in B, the contribution of each 168 
phenotype to fitness can change depending on the environment. Thus fitness differences between 169 
seemingly similar mutants can be revealed by measuring fitness in more environments. Such fitness 170 
differences suggest the presence of phenotypic differences between mutants. 171 

RESULTS 172 

Mutants that improve fitness under glucose limitation vary in their genotype-by-173 
environment interactions 174 
 175 
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A previous evolution experiment generated a collection of hundreds of independent mutations 176 
that each provide a benefit to yeast cells growing in a glucose-limited environment (Levy et al., 177 
2015). Many of these mutants, which began the evolution experiment as haploids, underwent 178 
whole-genome duplication to become diploid, which improved their relative fitness (Venkataram 179 
et al 2016). Some of these diploids acquired additional mutations, including amplifications of 180 
either chromosome 11 or 12 as well as point mutations, which generated additional fitness 181 
benefits. The adaptive mutants that remained haploid acquired both gain- and loss-of-function 182 
mutations in nutrient-response pathways (Ras/PKA and TOR/Sch9). Some other mutations 183 
were also observed, including a mutation in the HOG pathway gene SSK2 (Venkataram et al., 184 
2016). Although these mutants have been well-characterized at the level of genotype and 185 
fitness, it is unclear what phenotypes they affect. The first question we address is whether these 186 
diverse mutations collectively affect a large number of phenotypes that matter to fitness, or 187 
whether these mutants are functionally similar in that they collectively alter a small set of fitness-188 
relevant phenotypes.  189 
 190 
Understanding the map from genotype to phenotype to fitness is extremely challenging because 191 
each genetic change can influence multiple traits, not all of which are independent or contribute 192 
to fitness in a meaningful way. We contend with this challenge by measuring how the relative 193 
fitness of each adaptive mutant changes across a large collection of similar and dissimilar 194 
environments, which we term the “fitness profile”. When a group of mutants demonstrate similar 195 
responses to environmental change, we conclude that these mutants affect similar phenotypes. 196 
By clustering mutants with similar fitness profiles across a collection of environments, we can 197 
learn about which mutants influence similar phenotypes, as well as estimate the total number of 198 
fitness-relevant phenotypes represented across all mutants and all investigated environments. 199 
 200 
Because our mutant strains are barcoded, we can use previously-established methods to 201 
measure their relative fitness in bulk and with high-precision (Venkataram et al., 2016). 202 
Specifically, we compete a pool of the barcoded mutants against an ancestral reference strain 203 
over the course of several serial dilution cycles. During each 48 hour cycle, the yeast are given 204 
fresh glucose-limited media which supports 8 generations of exponential growth after which 205 
glucose is depleted and cells transition to non-fermentable carbon sources. After every 48 hour 206 
cycle, we transfer ~5x10^7 cells to fresh media to continue the growth competition. We also 207 
extract DNA from the remaining cells to PCR amplify and sequence their barcodes. We repeat 208 
this process four times, giving us an estimate of the frequency of each barcode at five time-209 
points. By quantifying the log-linear changes in each barcode’s frequency over time and 210 
correcting for the mean-fitness change of population, we can calculate the fitness of each 211 
barcoded mutant relative to the reference strain (Fig 2A; Methods). 212 
 213 
Using this method, we quantify the fitness of a large number of adaptive mutants in 45 214 
environments. We focus on a set of 292 adaptive mutants that have been sequenced, show 215 
clear adaptive effects in the glucose-limited condition in which these mutants evolved (hereafter 216 
“evolution condition”; EC) (Fig 2B; Table S1), and for which we obtained high-precision fitness 217 
measurements in all 45 environments. These environments include some experiments from 218 
previously published work (Li et al., 2018; Venkataram et al., 2016), as well as 32 new 219 
environments including replicates of the evolution condition, subtle shifts to the amount of 220 
glucose, changes to the shape of the culturing flask, changes to the carbon source, and addition 221 
of stressors such as drugs or high salt (Table S2). 222 
 223 
In order to determine the total number of phenotypes that are relevant to fitness in the EC, we 224 
focus on environments that are very similar to the EC but still induce small yet detectable 225 
perturbations in fitness. We do so because the phenotypes that are the most relevant to fitness 226 
may change with the environment (Fig 1B and Fig 1C). Thus, we partition the 45 environments 227 
into a set of “subtle” perturbations, from which we will detect the phenotypes relevant to fitness 228 
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near the EC, and “strong” perturbations which we will use to study whether these mutants 229 
influence additional phenotypes that matter in other environments (Fig 1C). 230 
 231 
To partition environments into subtle and strong perturbations of the EC, we rely on the nested 232 
structure of replicate experiments performed in the EC. We performed nine such replicates, 233 
each at different times, which each included multiple replicates performed at the same time. We 234 
observe much less variation across replicates performed simultaneously than across replicates 235 
performed at different times (p < 1e-5 from permutation test). Variation across experiments 236 
performed at different times is often referred to as “batch effects” and likely reflects 237 
environmental variability that we were unable to control (e.g. slight fluctuations in incubation 238 
temperature due to limits on the precision of the instrument). These environmental differences 239 
between batches are as subtle as possible, as they represent the limit of our ability to minimize 240 
environmental variation. Thus, variation in fitness across the EC batches serves as a natural 241 
benchmark for the strength of environmental perturbations. If the deviations in fitness caused by 242 
an environmental perturbation are substantially stronger than those observed across the EC 243 
batches, we call that perturbation “strong”. 244 
 245 
More explicitly, to determine whether a given environmental perturbation is subtle or strong, we 246 
subtract the fitness of adaptive mutants in this environment from their average across the EC 247 
batches. We then compare this difference to the variation in fitness observed across the EC 248 
batches. Sixteen environmental perturbations provoked fitness differences that were similar to 249 
those observed across EC batches (Z-score < 2). These environments, together with the nine 250 
EC batches, make up a set of subtle environmental perturbations. The remaining 20 251 
environments, where the average deviation in fitness is substantially larger than that observed 252 
across batches (Z-score > 2), were classified as strong environmental perturbations (Fig 2C, 253 
top; Methods). 254 
 255 
The rank order of the fitnesses of many mutations is largely preserved across the 25 256 
environments that represent subtle perturbations (Fig 2C, bottom). For example, IRA1 nonsense 257 
mutants, which are the most adaptive in the EC, generally remain the most adaptive across the 258 
subtle perturbations. Additionally, the GPB2 and PDE2 mutants have similar fitness effects 259 
across EC batches and only occasionally switch order across the subtle environmental 260 
perturbations. In contrast, the 20 environments that represent strong perturbations reveal clear 261 
genotype-by-environment interactions (Fig 2C, bottom). For example, altering the transfer time 262 
from 48 to 24 hours (the “1 Day” environment in Fig 2C) affects GPB2 mutants more strongly 263 
compared to the other mutants in the Ras/PKA pathway, including IRA1 and PDE2. The 264 
strongest environmental perturbations reveal clear tradeoffs for some of these adaptive 265 
mutants. For example, PDE2 and IRA1-nonsense but not GPB2 mutants are particularly 266 
sensitive to osmotic stress as indicated by the NaCl and KCl environments. Additionally, IRA1-267 
nonsense mutants become strongly deleterious in the long transfer conditions that experience 268 
stationary phase (5-, 6-, 7-Day environments) (Li et al., 2018). In contrast to complex behavior 269 
exhibited by the adaptive haploids, the diploids appear to be relatively robust to strong tradeoffs, 270 
appearing similarly adaptive across all perturbations, subtle and strong. 271 
 272 
The observation that different mutants have different and fairly complex fitness profiles suggests 273 
that they have different phenotypic effects. Even PDE2 and GPB2, which have similar fitnesses 274 
in the EC and are negative regulators of the same signalling pathway, have different fitness 275 
profiles. Do these diverse phenotypic effects contribute to fitness in the EC? To examine how 276 
many phenotypes matter to fitness in the EC, we test whether it is possible to create low 277 
dimensional models that capture the complexity of the fitness profiles of all adaptive mutants 278 
across all subtle perturbations.  279 
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Figure 2. Measuring fitness for a collection of adaptive mutants across many environments 281 
reveals gene-by-environment interactions. (A) Schematic of fitness measurement procedure. Adaptive 282 
mutants tagged with DNA barcodes are pooled at a 1:9 ratio with an ancestral reference strain. The pool 283 
is then propagated for several growth cycles, where the population is diluted into fresh media at fixed time 284 
intervals. DNA is extracted from each time-point, and the barcode region is PCR amplified and then 285 
sequenced. A mutant’s relative fitness is calculated based on the rate of change of its barcode’s 286 
frequency, corrected for the mean fitness of the population (see Methods). Relative fitness is calculated in 287 
units of “per cycle”, representing the improvement of each barcode relative to the reference over the 288 
course of the time between transfers. (B) Relative fitness of each mutant in the evolution condition, 289 
calculated as the average across all 9 Evolution Condition (EC) batches. (C) (top) Environments are 290 
ordered from left to right depending on the degree to which they perturb mutant fitness from the average 291 
fitness observed across all EC batches. Environments in which average mutant fitness is within two 292 
standard deviations of average mutant fitness across EC batches are denoted in black and make up the 293 
subtle perturbation set. Environments in which aggregate mutant behavior exceeds two standard 294 
deviations are shown in red and make up the strong perturbations set. (bottom) This plot displays, for the 295 
four most common types of adaptive mutation observed in response to glucose limitation (Venkataram et 296 
al., 2016), the average fitness in each of the 45 environments we study. Brackets on the right represent 297 
the amount of variation in fitness observed for each type of mutation across the EC batches, with the 298 
notch representing the mean and the arms representing two standard deviations on either side of the 299 
mean.  300 
 301 
 302 
A model including 8 fitness-relevant phenotypes captures fitness variation across subtle 303 
environmental perturbations  304 
 305 
We utilize these complex fitness profiles to estimate the number of phenotypes that contribute to 306 
fitness in the EC. Given that many of these mutants affect genes in the same nutrient response 307 
pathway, the number of unique phenotypes they affect may be small. Alternatively, given the 308 
observation that these mutants have different interactions with environments that represent 309 
strong perturbations (Fig 2C), this number may be large. We use singular value decomposition 310 
(SVD) to ask how much of the complexity in these fitness profiles can be captured by a low 311 
dimensional phenotypic model (Fig 3A). SVD creates a model, consisting of two abstract multi-312 
dimensional spaces.  313 
 314 
The first space, P, represents the phenotypic effects of each mutant as a dimension (there are k 315 
phenotypic dimensions depicted in Fig 3A). Each mutant is represented by coordinates 316 
specifying a location in the phenotype space P (e.g. mutant 1 having 317 
coordinates(𝑝11, 𝑝12, 𝑝13, . . . , 𝑝1!)). The ancestral reference lineage, which, by definition, has 318 
relative fitness zero in every environment, is placed at the origin (e.g. (0, 0, 0, … 0)) in this 319 
phenotypic space. In this sense, we can think of a mutation's effect on any phenotype as a 320 
measure of the distance from the location of the mutant to the origin.  321 
 322 
The second space, E, represents the contribution of each of the phenotypes in P to fitness, and 323 
thus has the same number of dimensions as P. If a phenotype does not contribute substantially 324 
to fitness in any environment, it is not represented as a dimension in either space. Therefore, 325 
our model captures only fitness-relevant phenotypes. In space E, each environment is 326 
represented by coordinates specifying a location (e.g. environment 1 having coordinates 327 
(𝑒11, 𝑒12, 𝑒13, . . . , 𝑒1!)). These coordinates in E reflect the contribution (weight) of each of the k 328 
phenotypic dimensions on fitness in that environment. For example, an environment where only 329 
a single phenotype matters to fitness would be placed at the origin for all the axes, except for 330 
the axis corresponding to the single phenotypic dimension that matters. Environments for which 331 
the same phenotypes contribute to fitness will be placed closer together in the space E.  332 
 333 
In this model, each phenotype contributes to fitness independently, by definition, such that the 334 
fitness of mutant i in environment j is determined by each phenotypic effect of mutant i,scaled by 335 
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the contribution of that phenotype to fitness in environment j. A linear combination of these 336 
weighted phenotypic effects determines the fitness of mutant i in environment j: 337 

 𝑓"# = 𝑝"1𝑒1# + 𝑝"2𝑒2# + 𝑝"3𝑒3#+. . . +𝑝"!𝑒!# 338 
 339 

In this model, mutants with similar fitness profiles, for example mutants 1 and 2 in Fig 3A, will be 340 
inferred as having similar phenotypic effects, and thus be located near each other in the 341 
phenotypic space P. Mutants with dissimilar fitness profiles, for example mutants 3 and 4 in Fig 342 
3A, can be inferred to have at least some differing phenotypic effects, which might be mediated 343 
by a different effect on a single phenotypic component or different effects on many. Mutants with 344 
dissimilar fitness profiles are informative about the number of dimensions needed in this 345 
abstract model of phenotypic space.  346 
 347 
Here, we focus on counting the number of phenotypes that contribute to fitness in the original 348 
glucose-limited environment in which these adaptive mutants evolved. We used SVD to build an 349 
abstract model that captures fitness profiles of all 292 adaptive mutants across the 25 subtle 350 
perturbations. This model suggests that the majority of the variation in fitness for the 292 351 
adaptive mutants across the 25 subtle perturbations can be explained by eight phenotypic 352 
dimensions. The first phenotypic component is very large and explains 95% of variation in 353 
fitness across all mutants and all subtle perturbations (Fig 3A). This component captures the 354 
variation in fitness explainable in the absence of genotype-by-environment interactions, where 355 
each mutation has a single effect that is scaled by the environment. As such, this first 356 
component effectively represents each mutant’s average fitness in the EC (Fig S2) and the 357 
average impact of each subtle perturbation on mutant fitness (Fig S2). It is not surprising that 358 
this component explains much of this variation, as the fitness of mutants in the EC should be 359 
predictive of fitness in similar environments. The next seven components capture additional 360 
variation not detectable from the simple 1-component model and thus represent genotype-by-361 
environment interactions. Of these, the first four capture 87% of the variation not captured by 362 
component one (67.8%, 8.3%, 5.6%, and 5.3%, respectively). The remaining three interaction 363 
components each capture less than 2% of the variation not captured by component one (Fig 364 
3A). We cannot distinguish any additional components, beyond these eight, from noise. This is 365 
because we see components that explain a similar amount of variation when we apply SVD to 366 
datasets composed exclusively of values generated by our noise model (Fig3A; see Methods for 367 
additional details). 368 
 369 
We confirm that these eight phenotypic components capture meaningful biological variation in 370 
fitness using bi-cross-validation. Specifically, we designate a balanced set of 60 of the 292 371 
mutants as a training set, chosen such that the recurrent mutation types — diploids, high-fitness 372 
diploids, Ras/PKA mutants — are roughly equally represented (see Methods). The remaining 373 
232 mutants comprise the test set. This set contains all mutation types represented by only a 374 
single mutant, including all TOR/Sch9 (TOR1, SCH9, KOG1) and HOG (SSK2) pathway 375 
representatives, as well as the rest of the recurrent mutants that were not picked for the training 376 
set. We iteratively construct phenotype spaces using the 60 training mutants while holding out 377 
one subtle perturbation at a time and creating the space with the data from the remaining 24 378 
subtle perturbations. We then predict the fitness of the 232 held-out testing mutants in the held-379 
out condition. We do so using all 8 components, and again with only 7, 6, and so on. Then, we 380 
ask whether the 8 component model does a better job at predicting mutant fitness than the 381 
other, lower dimensional models. If a component reflects measurement noise rather than 382 
biological signal, then the inclusion of this component would lead to overfitting and should harm 383 
the model’s ability to predict fitness in the held-out data. Instead we find that, on average across 384 
the 25 iterations, prediction power improves from the inclusion of each of the eight components. 385 
This confirms that even the smallest of these components captures biologically meaningful 386 
variation in fitness across the 25 subtle perturbations of the EC. However, the gain in predictive 387 
power decreases for each component. The model with only the first component explains on 388 
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average 85% of weighted variance for the test mutants in the left-out conditions. A model with 389 
only the top five components explains 95.1%, and all eight components explain 96.2% of 390 
variation. This suggests that the last few components have very small contributions to fitness in 391 
the environments near the EC. 392 
 393 
A model including 8 fitness-relevant phenotypes recapitulates known features of 394 
adaptive mutations 395 
 396 
We next ask whether the 8-dimensional phenotypic space clusters adaptive mutants found in 397 
similar genes or pathways (e.g. Ras/PKA or TOR/Sch9), or that represent similar mutation types 398 
(haploid v. diploid). We use Uniform Manifold Approximation and Projection (UMAP) to visualize 399 
the distance between all the mutants in this phenotypic space. Since the first phenotypic 400 
dimension captures the average fitness of each mutant in the EC, and since we already know 401 
that mutations to the same gene have similar fitness in the EC (Fig. 2B), we exclude the first 402 
phenotypic dimension from this analysis, though the inclusion of the first component does not 403 
change the identity of the clusters (Fig S3). By focusing on the other 7 components, we are 404 
asking whether genotype-by-environment interactions also cluster the mutants by gene, 405 
mutation type, and pathway. 406 
 407 
These 7 genotype-by-environment interactions indeed cluster the adaptive mutants by type and 408 
by gene (Fig 3B). Specifically, the diploids, IRA1-nonsense, GPB2, and PDE2 mutants each 409 
form distinct clusters (p = 0.0001, p = 0.006, p = 0.0001, and p = 0.0001, respectively). 410 
Interestingly, six high-fitness diploids (diploids with higher than average diploid fitness in the EC) 411 
also form a distinct cluster (p = 0.0001) despite whole genome sequencing having revealed no 412 
mutations in their coding sequences (Fig. 3B). To generate p-values, we calculated the median 413 
pairwise distance, finding that multiple mutations in the same cluster are indeed more closely 414 
clustered than randomly chosen groups of mutants.  415 
 416 
Interestingly, the three smallest components, which capture very little variation in fitness across 417 
the environments that reflect subtle perturbations of the EC, cluster some mutants by genotype 418 
(Fig S3). Specifically, PDE2, GPB2, and IRA1-nonsense mutants are each closer to mutants of 419 
their own type than to other adaptive haploids (p = 0.0001, p = 0.0001, and p = 0.03, 420 
respectively). Note that the space defined by the three smallest components does not cluster 421 
IRA1-nonsense mutants away from diploids (p = 0.718). This suggests that some mutants, e.g. 422 
IRA1-nonsense and diploids, have smaller effects on these three phenotypic components. 423 
Overall, our abstract phenotypic model, which reflects the way that each mutant’s fitness 424 
changes across environments, reveals that mutations to the same gene tend to interact similarly 425 
with the environment. This indicates that our approach is a useful and unbiased way to identify 426 
mutations that share functional effects (Li et al., 2018). 427 
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Figure 3. Subtle environmental perturbations reveal an 8-component phenotypic model that 428 
reflects known biological features. (A) To infer fitness-relevant phenotypes, we measure the fitness of 429 
mutants in a collection of environments and compare their fitness profiles. Mutants with similar fitness 430 
profiles (mutants 1 and 2) are inferred to have similar effects on phenotypes. Mutants with dissimilar 431 
fitness profiles (mutants 3 and 4) are inferred to have dissimilar phenotypic effects. We use SVD to 432 
decompose these fitness profiles into a model consisting of two abstract spaces: one that represents the 433 
fitness-relevant phenotypes affected by mutants (P) and another which represents the degree to which 434 
each phenotype impacts fitness in each environment (E). Here, we represent the model with k fitness-435 
relevant phenotypes. The model’s estimate for fitness for a particular mutant in a particular environment is 436 
a linear combination of each mutant phenotype (mutant 1 is represented by the vector 437 
(𝑝11, 𝑝12, 𝑝13, . . . , 𝑝1!)) scaled by the degree to which that phenotype affects fitness in the relevant 438 
environment (environment 1 is represented by the vector(𝑒11, 𝑒12, 𝑒13, . . . , 𝑒1!)). We show two examples of 439 
the equation used to estimate fitness for the mutants and environments highlighted in the left panel. Note 440 
that, for presentation purposes, we show SVD as inferring two matrices. It in fact infers three, but is 441 
consistent with our presentation if you fold the third matrix, which represents the singular values, into E 442 
(see Methods). (B) Decomposing the fitness profiles of 292 adaptive mutants across 25 subtle 443 
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environmental perturbations reveals 8 fitness-relevant phenotypic components. The variance explained 444 
by each component is indicated as a percentage of the total variance. The percentages in parentheses 445 
indicate the relative amount of variation explained by each component when excluding the first 446 
component. Each of these components explain more variation in fitness than do components that capture 447 
variation across a simulated dataset in which fitness varies due to measurement noise. These simulations 448 
were repeated 1000 times (grey lines) and used to define the limit of detection (dotted line). (C) An 449 
abstract space containing 8 fitness-relevant phenotypic components reflects known biological features. 450 
This plot shows the relationships of the mutants in a 7-dimensional phenotypic space that excludes the 451 
first component, visualized using Uniform Manifold Approximation and Projection (UMAP). Mutants that 452 
are close together have similar fitness profiles and are inferred to have similar effects on fitness-relevant 453 
phenotypes. Mutants with mutations in the same gene tend to be closer together than random, in 454 
particular IRA1 nonsense mutants in dark blue, GPB2 mutants in dark green, PDE2 mutants in dark 455 
orange, and diploid mutants in red. Six high-fitness diploid mutants also form a cluster despite no known 456 
genetic similarities.  457 
 458 
Fitness variation across subtly different environments predicts fitness in substantially 459 
different environments 460 
 461 
Now that we have identified the phenotypic components that contribute to fitness in 462 
environments that represent subtle perturbations of the EC, we can test the ability of these 463 
phenotypic components to predict fitness in more distant environments. Specifically, we can 464 
measure how the contribution of each of these components to fitness changes in new 465 
environments. We can also determine whether the phenotypic components that contribute very 466 
little to explaining fitness variation near the EC might at times have large explanatory power in 467 
distant environments (as depicted in Fig 1B and 1C). 468 
 469 
To test this we performed bi-cross-validation, using the eight component model constructed 470 
from fitness variation of 60 training mutants across 25 subtly different environments to predict 471 
the fitness of 232 test mutants in the environments that represent strong perturbations of the 472 
EC. To evaluate the predictive power of the model, we compare our model’s fitness predictions 473 
in each environment to predictions made using the average fitness in that environment. Thus, 474 
negative prediction power indicates cases where the model predicts fitness worse than 475 
predictions using this average.  476 
 477 
The 8-dimensional phenotypic model, which was generated exclusively with the data from 478 
subtle environmental perturbations, has substantial predictive power in distant environments 479 
(Figure 4). Predictions explain 29% to 95% of the variation in fitness of the 232 test mutants 480 
across strong environmental perturbations. For instance, in an environment where glucose 481 
concentration was increased from 1.5% to 1.8% and the flask was changed to one that 482 
increases the oxygenation of the media (the “Baffle, 1.8% Glucose” environment), we predict 483 
95% of weighted variance with the full 8-component phenotypic model, in contrast to 51% with 484 
the 1-component model (Fig 4B). This ability to predict fitness is retained even when the first 485 
component (effectively the fitness in EC) is a poor predictor of mutant fitness. For example, in 486 
the environment where salt (0.5 M NaCl) was added to the media, the 1-component model 487 
predicts fitness worse than predictions based on the average fitness for this environment, 488 
resulting in negative variance explained (Fig 4A and 4B). This is due to the fact that mutant 489 
fitness in this environment reflects extensive genotype-by-environment interactions, such that 490 
the fitness of mutants in this environment is uncorrelated with EC fitness. However, our 491 
predictions of mutant fitness in the 0.5 M NaCl environment improve when made using the 8-492 
component phenotypic model, which predicts 72% of weighted variance. Astoundingly, the 8-493 
component model captures strong tradeoffs between mutants with high fitness in the EC and 494 
very low fitness in this high salt environment, specifically for IRA1-nonsense and, to a lesser 495 
extent, PDE2 mutants (Fig 4B). This was surprising because there appears to be very little 496 
variation in fitness of these mutants across the subtle compared to the strong perturbations (Fig 497 
2C).  498 
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 499 
This ability to predict fitness is also observed for mutations in genes and pathways that are not 500 
represented in the 60 that comprise the training set (e.g. those with mutations in TOR/Sch9 and 501 
HOG pathway genes). For example, the 8-component model explains 93% of variation in the 502 
“Baffle, 1.8% Glucose” environment and 71% of variation in the 0.5M NaCl environment for 503 
these mutations, compared to 76% and 31% variance explained for the 1-component model, 504 
respectively. This indicates that our model is able to capture shared phenotypic effects that 505 
extend beyond gene identity. Altogether, our ability to accurately predict the fitness of new 506 
mutants in new environments suggests that the phenotypes our model identifies reflect causal 507 
effects on fitness.  508 
 509 
Most strikingly, phenotypic models that include the three smallest phenotypic components, 510 
which together contribute only 1.1% to variance explained across the subtle environmental 511 
perturbations (Fig 4A), often explain a substantial amount of variance in the distant 512 
environments (Fig 4A; lower panel). For example, the three minor components contribute 17% 513 
of the overall weighted variance explained in the 1-Day condition (𝑅(" = 0.6 -  5-component 514 
model, 𝑅(" = 0.73 - 8-component model; (0.73-0.6)/0.73 = 0.17) and 45% in the 6-Day 515 
environment, (𝑅(" = 0.25 - 5-component model, 𝑅(" = 0.46 - 8-component model) (Fig 4A and 4B). 516 
In contrast, for other strong environments (e.g. Baffle - 1.8% Glucose, 8.5uM GdA (B9) and 517 
Baffle - 2.5% Glucose), the three smallest components do not add much explanatory power (Fig 518 
4A). These observations demonstrate that phenotypic components that make very small 519 
contributions to fitness in the EC can contribute substantially to fitness in other environments. 520 
Overall, these observations suggest an answer to questions about how adaptation is possible 521 
when mutations have collateral effects on multiple phenotypes: not all of those phenotypes 522 
contribute substantially to fitness in the EC (Fig 1C).  523 
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Figure 4. Mutant fitness variation across subtly different environments predicts mutant fitness in 524 
novel and substantially different environments. (A) Top panel vertical axis shows the accuracy of 525 
fitness predictions in each of 45 environments on the horizontal axis. The accuracy is calculated as the 526 
coefficient of determination, weighted such that each mutation type contributes equally. The left side of 527 
this plot represents predictions of mutant fitness in subtle environmental perturbations. These predictions 528 
are generated by holding out data from that environment when building the phenotypic model. The right 529 
side of the plot displays predictions of mutant fitness in strong environmental perturbations. These 530 
predictions are generated using a phenotypic model inferred from fitness variation across all 25 subtle 531 
different environments (denoted by each of the points or open circles) and for each of the 25 leave-one-532 
out models (range of predictions is depicted with the error bars surrounding each point or open circle). 533 
Predictions from the 8-component model (red point) are typically better than the 1-component mode 534 
(open circle) and sometimes better than the 5-component model (black point). Bottom panel vertical axis 535 
shows the percent of the 8-component model’s improvement due to the three minor components 536 
(calculated by the percent difference between the 5- and 8- component models). The left side shows the 537 
improvement of the prediction in subtle environmental perturbations when that subtle perturbation was 538 
held out. The right side shows the improvement of the prediction in strong environmental perturbations 539 
when using the full model (dots) or the 25 leave-one-out models (the error bars represent the range of 540 
improvement). (B) For each subplot, the horizontal axis shows the measured fitness value. The vertical 541 
axis shows the predicted fitness value when predictions are made using the 1-component (top row), 5-542 
component (middle row), or 8-component (bottom row) models. Columns represent different 543 
environments. Points are colored by the mutation type. Note that 𝑅$! less than zero indicates that the 544 
prediction is worse than predictions using the mean fitness in that condition (see Methods).   545 
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Not all mutants affect all phenotypes and not all environments make all phenotypes 546 
important 547 
 548 
Next we explore the extent to which the contribution of a phenotypic component to fitness is 549 
isolated to a specific environment and/or a specific type of mutation (Fig 5). We find that many 550 
phenotypic components matter more to fitness in some environments than others. For instance, 551 
component 2 adds on average 36% of the weighted variance in fitness across strong 552 
perturbations, despite adding only 7% on average across the subtle environmental 553 
perturbations. This contribution is, however, variable, with the second component adding over 554 
90% of variance explained for the two environments with Benomyl and Baffled flasks (the 555 
“Baffle, 0.4 μg/ml Benomyl” and “Baffle, 2 μg/ml Benomyl” environments) and only 0.3% for the 556 
environment in which the transfer time was lengthened from two to three days (Fig 5A). 557 
 558 
This environment-dependence is also true for the smallest two components. Specifically, 559 
predictions of mutant fitness in the 0.5 M NaCl environment are improved from the inclusion of 560 
component 7, adding 7.5% to weighted variance explained (Fig 5A). Predictions of mutant 561 
fitness in the 6 Day transfer environment show improvement from the inclusion of the 8th 562 
component, which adds over 15% to weighted variance explained (Fig 5A). However, the 563 
predictions of fitness in the 6 Day environment are not improved from the inclusion of the 7th 564 
component and the predictions in 0.5 M NaCl are not improved markedly by the inclusion of the 565 
8th component (Fig 5A). This suggests that the phenotypic effects represented by these small 566 
components contribute substantially in some environments and not others. 567 
 568 
We further asked whether these effects are not only environment-specific but also mutant-569 
specific. To do so, we focused on environments for which the two smallest components 570 
contribute substantially to fitness (e.g. 0.5 M NaCl). We looked at the extent to which each of 571 
these components improves power to predict the fitness of each of the 232 held-out mutants. 572 
We found these components improve the fitness predictions for some classes of mutants far 573 
more than for others. For example, fitness predictions for mutations in GPB2, diploids with 574 
chromosome 11 amplifications, and high-fitness diploids with no known mutations each 575 
improved by over 4 standard deviations of measurement error in the 0.5 M NaCl environment 576 
due to the inclusion of the 7th component (Fig 5B). This phenotypic component also has 577 
importance in the 1-Day transfer environment, albeit to a lesser degree, resulting in 578 
improvements of roughly 1 standard deviation for each of these mutation types. This suggests 579 
that these mutants have some phenotypic effect that contributes only slightly to fitness in many 580 
environments, including those that represent subtle perturbations of the EC, but that are 581 
particularly important in the 0.5 M NaCl and 1 Day transfer environments. Similarly, we find that 582 
the 8th component also improves predictive power for specific types of mutants in specific 583 
environments. In this case, diploids with chromosome 11 amplifications and PDE2 mutants have 584 
particularly strong improvements in the 6-Day transfer environment (11 and 5 standard 585 
deviations, respectively) and thus likely have a shared phenotypic effect that is captured by 586 
component 8 (Fig 5B).  587 
 588 
In sum, not all mutants affect all eight phenotypic components to the same degree and not 589 
all phenotypic components contribute substantially to fitness in all environments. This 590 
idiosyncrasy suggests that directional selection, e.g. selection for improved fitness under 591 
glucose limited conditions, can generate rather than reduce phenotypic diversity. Though 592 
adaptation winnows phenotypic diversity by choosing mutants that affect similar fitness-relevant 593 
phenotypes, these mutants may have latent effects on a larger number of phenotypes. When 594 
the environment changes, these latent phenotypic effects may have larger contributions to 595 
fitness, thus revealing the phenotypic diversity generated by the adaptive process.  596 
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Figure 5. The contribution of a phenotypic component to fitness changes across environments 597 
and differs for different types of mutants. (A) Some phenotypic components improve fitness 598 
predictions in some environments substantially more than they do in others.  The vertical axis shows the 599 
improvement in the predictive power of our 8-component phenotypic model due to the inclusion of each 600 
component. For example, the improvement due to component 7 is calculated by the difference between 601 
the 7-component model and the 6-component model. The improvement of predictive power for each of 602 
the subtle environmental perturbations is shown as a gray point and for each of the strong perturbations 603 
in black. Magnification shows improvement upon including each of the two smallest components, with 604 
three strong perturbations highlighted. (B) Some phenotypic components improve fitness predictions for 605 
some mutants substantially more than they do for others. For example, the 7th component explains little 606 
variation in the 6-Day environment, but the 8th component explains a lot of variation in fitness in the 6-607 
Day environment and is particularly helpful in predicting the fitness of Diploid + Chromosome 11 608 
Amplification mutations in this environment. Vertical axis shows the improvement in predictive power (in 609 
units of standard deviation of measurement error) for each type of mutant (denoted on the horizontal axis) 610 
in one of three environments (1 Day, 6 Day, and 0.5 M NaCl) when adding either the 7th (top panel) or 611 
the 8th (bottom panel) component. Mutants are ordered by the improvement due to the 7th component in 612 
the 1 Day environment. Since some types of mutants are more common, e.g. diploids, there are more 613 
data points in that category.  614 
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DISCUSSION 615 
 616 
Here we succeeded in building a low-dimensional statistical model that captures the relationship 617 
from genotype to phenotype to fitness for hundreds of adaptive mutants. Mapping the complete 618 
phenotypic and fitness impacts of genetic change is a key goal of biology. Such a map is 619 
important in order to make meaningful predictions from genetic data (e.g. personalized 620 
medicine) and to investigate the structure of biological systems (e.g. their degree of modularity 621 
and pleiotropy) (500 Genomes Field Experiment Team et al., 2019; Collet et al., 2018; Eguchi et 622 
al., 2019; Zan and Carlborg, 2020). Our model allows us to do both of these things. We made 623 
accurate predictions about the fitness of unstudied mutants across multiple environments, and 624 
we gained novel insights about the nature of pleiotropy of the adaptive process. Specifically, we 625 
learned that adaptation is modular in the sense that hundreds of diverse adaptive mutants 626 
collectively influence a small number of phenotypes that matter to fitness in the evolution 627 
condition. We also learned that different mutants have distinct pleiotropic side effects that matter 628 
to fitness in other conditions.  629 

 630 
Building genotype-phenotype-fitness maps of adaptation has long been an elusive goal due to 631 
both conceptual and technical difficulties. Indeed, the very first part of this task, namely the 632 
identification of causal adaptive mutations, presents a substantial technical challenge (500 633 
Genomes Field Experiment Team et al., 2019; Barrett et al., 2019, 2008). Fortunately, in some 634 
systems such as in microbial experimental evolution and studies of cancer and resistance in 635 
microbes and viruses, genomic methodologies combined with availability of repeated 636 
evolutionary trials allow us now to detect with high confidence specific genetic changes 637 
responsible for adaptation. In the context of microbial evolution experiments, lineage tracing and 638 
genomics have opened up the possibility of not only detecting hundreds of specific adaptive 639 
events but also measuring their fitness precisely and in bulk (Good et al., 2017; Levy et al., 640 
2015; Li et al., 2019, 2018; Nguyen Ba et al., 2019; Venkataram et al., 2016). Thus in these 641 
cases we are coming close to solving the technical challenge of building the genotype to fitness 642 
map of adaptation.  643 
 644 
However, adding phenotype into this map remains a huge challenge even despite substantial 645 
progress in mapping genotype to phenotype (Burga et al., 2019; Camp et al., 2019; Exposito-646 
Alonso et al., 2018; Geiler-Samerotte et al., 2016; Jakobson and Jarosz, 2019; Lee et al., 2019; 647 
Paaby et al., 2015; Yengo et al., 2018; Ziv et al., 2017). In principle, we now have advanced 648 
tools to measure a large number of phenotypic impacts of a genetic change, for instance 649 
through high throughput microscopy, proteomics, or RNAseq (Manzoni et al., 2018; Ritchie et 650 
al., 2015; Zhang and Kuster, 2019). The conceptual problem is how to define phenotypes given 651 
the interconnectedness of biological systems (Geiler-Samerotte et al., 2019; Paaby and 652 
Rockman, 2013). If a mutation leads to complex changes in cell size and shape, should each 653 
change be considered a distinct phenotype? Or if a single mutation changes the expression of 654 
hundreds or thousands of genes, should we consider each change as a separate phenotype? 655 
Intuitively, it seems that we should seek higher order, more meaningful descriptions. For 656 
example, perhaps these expression changes are coordinated and reflect the up-regulation of a 657 
stress-response pathway. Unfortunately, defining the functional units in which a gene product 658 
participates remains difficult, especially because these units re-wire across genetic 659 
backgrounds, environments, and species (Geiler-Samerotte et al., 2019; Pavličev et al., 2017; 660 
Sun et al., 2020; Zan and Carlborg, 2020).  661 
 662 
If mutations influence more than one phenotype, then the mapping from phenotype to fitness 663 
also becomes challenging. To investigate this map, we would need to find an artificial way to 664 
perturb one phenotype without perturbing others such that we could isolate and measure effects 665 
on fitness. Mapping phenotype to fitness is further complicated by the environmental 666 
dependence of these relationships (Fragata et al., 2019). For example, a mutation that affects a 667 
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cell’s ability to store carbohydrates for future use might matter far more in an environment where 668 
glucose is re-supplied every 6 days instead of every 48 hours.  669 

 670 
In our study, we turned the challenge of environment-dependence into the solution to the 671 
seemingly intractable problem of interrogating the phenotype layer of the genotype-phenotype-672 
fitness map. We rely on the observation that the relative fitness of different mutations changes 673 
across environments. We assume that differences in how mutant fitness varies across 674 
environments must stem from differences in the phenotypes each mutation affects. Rather than 675 
a priori defining the phenotypes that we think may matter, we use the similarities and 676 
dissimilarities in the way fitness of multiple mutants vary across environments to define 677 
phenotypes abstractly via their causal effects on fitness. This allows us to dispense with 678 
measuring the phenotypes themselves and instead focus on measuring fitness with high 679 
precision and throughput, since tools for doing so already exist (Venkataram et al., 2016). This 680 
approach has the disadvantage of not identifying phenotypes in a traditional, more transparent 681 
way. Still, it represents a major step forward in building genotype-phenotype-fitness maps 682 
because it makes accurate predictions and provides novel insights about the phenotypic 683 
structure of the adaptive response. 684 

 685 
We successfully implemented this approach using a large collection of adaptive mutants 686 
evolved in a glucose-limited condition. The first key result is that the map from adaptive mutant 687 
to phenotype to fitness is modular, such that it is possible to create a genotype to phenotype to 688 
fitness model that is low dimensional. Indeed, our model detects a small number (8) of fitness-689 
relevant phenotypes, the first two of which explain almost all of the variation in fitness (98.3%) 690 
across 60 adaptive mutants in 25 environments representing subtle perturbations of the 691 
glucose-limited evolution condition. This suggests that the hundreds of adaptive mutations we 692 
study — including mutations in multiple genes in the Ras/PKA and TOR/Sch9 pathways, 693 
genome duplication (diploidy), and various structural mutations — influence a small number of 694 
phenotypes that matter to fitness in the evolution condition. This observation is consistent with 695 
theoretical considerations suggesting that mutations that affect a large number of fitness-696 
relevant phenotypes are not likely to be adaptive. It also explains findings from other high-697 
replicate laboratory evolution experiments and studies of cancer that show hundreds of unique 698 
adaptive mutations tend to hit the same genes and pathways repeatedly. Our work confirms the 699 
intuition that these mutations all affect similar higher-order phenotypes (e.g. the level of activity 700 
of a signaling pathway). This suggests that, despite the genetic diversity among adaptive 701 
mutants, adaptation may be predictable and repeatable at the phenotypic level.  702 

 703 
Note that although we detect only 8 fitness-relevant phenotypes, we expect the true number to 704 
be much larger as the detectable number is limited by the precision of measurement. We expect 705 
this partly because we know that if we had worse precision in this experiment we would have 706 
detected fewer than 8 phenotypic components (Fig 3). Still, these additional undetected 707 
components cannot be very consequential in terms of their contribution to fitness in the 708 
evolution condition, given how well the first 8 components capture variation in environments that 709 
are similar to the evolution condition.  710 
 711 
Surprisingly, the model built only using subtle environmental perturbations was also predictive of 712 
fitness in environments that perturbed fitness strongly. Indeed in some of these environments, 713 
such as the environment where 0.5 M NaCl was added to the media or the time of transfer was 714 
extended from two to six days, many of the mutants are no longer adaptive and some of them 715 
become strongly deleterious. Here the fitness of the mutants in the evolving condition is a very 716 
poor predictor of fitness but the full 8-dimensional phenotypic model explains from 29% to 95% 717 
of the variance. What was particularly interesting is that the explanatory power of different 718 
dimensions was very different for the strong compared to subtle perturbations. For instance, the 719 
second dimension which explained 7% of weighted variation on average in the subtle 720 
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perturbations, explained 36% on average in the environments that represent strong 721 
perturbations. The pattern was particularly striking for the smallest dimensions which at times 722 
explained 15% in the strong environmental perturbations while again explaining at most 1% in 723 
the subtle environments. 724 
 725 
This discovery emphasizes that, although the smaller phenotypic dimensions contribute very 726 
little to fitness in the evolution condition (Fig 1B), they can at times have a much larger 727 
contribution in other environments (Fig 1C). This makes intuitive sense. For instance, we know 728 
that some of the strongest adaptive mutations in our experiment, the nonsense mutations in 729 
IRA1, appear to stop cells from shifting their metabolism towards carbohydrate storage when 730 
glucose levels become low (Li et al., 2018). This gives these cells a head start once glucose 731 
again becomes abundant and does not appear to come at a substantial cost, at least not until 732 
these cells are exposed to stressful environments (e.g. high salt or long stationary phase) (Li et 733 
al., 2018). This example, and more generally the observation that phenotypic effects that are 734 
unimportant in the evolving condition can become much more important in other environments, 735 
supports the idea that adaptation can happen through large effect mutations because many of 736 
the pleiotropic phenotypic effects will be inconsequential in the local environment (Fig 1B – C). 737 
We can thus argue that the low-dimensional phenotypic space near the evolution condition 738 
hides latent and consequential phenotypic complexity across the collection of locally 739 
phenotypically similar mutants. This complexity is hidden from natural selection in the evolution 740 
condition but becomes important once the mutants leave the local environment and are 741 
assessed globally for fitness effects. Thus, with respect to their effects on fitness-relevant 742 
phenotypes, adaptive mutants may be locally modular, but globally pleiotropic. 743 
 744 
The notion of latent phenotypic complexity is exciting as it generates a mechanism by which 745 
directional selection generates rather than removes diversity. This suggests a solution to long-746 
standing questions in evolutionary biology about how diversity persists despite directional 747 
selection (Walsh and Blows, 2009). Directional selection may promote multiple mutants that 748 
affect similar fitness-relevant phenotypes in the evolution condition, but each mutant could have 749 
disparate meaningful phenotypic effects that do not contribute immediately to fitness. When the 750 
environment changes, these latent phenotypic effects may now matter, allowing for diverse 751 
solutions to a variety of possible new environments. This latent phenotypic complexity also has 752 
the potential to alter the future adaptive paths that a population takes even in a constant 753 
environment. Indeed, these phenotypically diverse mutants are likely to affect the subsequent 754 
direction of adaptation given that subsequent mutations can shift the context in which 755 
phenotypes are important in the same way as do environmental perturbations. The end result is 756 
that directional selection can enhance diversity both within a population and across populations 757 
adapting to the same stressors.  758 
 759 
The phenomenon of latent phenotypic complexity being driven by adaptation is dependent on 760 
there being multiple mutational solutions to an environmental challenge, such that different 761 
adaptive mutations might have different latent phenotypic effects. Latent phenotypic diversity 762 
might be less apparent in cases where adaptation proceeds through mutations in a single gene 763 
and certainly would not exist if adaptation relies on one unique mutation. Thus, in some ways 764 
latent phenotypic diversity reflects redundancies in the mechanisms that allow cells to adapt to a 765 
challenge. One such putative redundancy in the case investigated in this paper is that the 766 
Ras/PKA pathway can be constitutively activated by loss of function mutations to a number of 767 
negative regulators including IRA1, PDE2, and GPB2. Mutations in these genes might be 768 
redundant in the sense that they influence the same fitness-relevant phenotype in the evolution 769 
condition, which in this case is likely flux through the Ras/PKA pathway. This type of 770 
redundancy is commonly observed in laboratory evolutions, as evidenced by studies that 771 
combine adaptive mutants to find they are no more adaptive than the most fit single mutant 772 
(Tenaillon et al., 2012) and the observation that subsequent adaptive mutations tend to be in 773 
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other pathways (Aggeli et al., 2020). The major insight from our paper is that we show that 774 
mutations with redundant effects on fitness in the evolution condition are not necessarily 775 
identical because they may influence different latent phenotypes. This observation adds to a 776 
long list of examples demonstrating that redundancies, such as gene duplications and 777 
dominance, allow evolution the flexibility to generate diversity. 778 

 779 
One disadvantage of our approach is that the phenotypic components that we infer from our 780 
fitness measurements are abstract. They represent causal effects on fitness, rather than 781 
measurable features of cells. For this reason, perhaps we should not refer to them as 782 
phenotypes but rather “fitnotypes” (a mash of the terms “fitness” and “phenotype”) that act much 783 
like the causal traits in Fisher’s geometric model (Fisher, 1930; Harmand et al., 2017; Lourenço 784 
et al., 2011; Martin and Lenormand, 2006; Tenaillon, 2014; Tenaillon et al., 2007) or a 785 
selectional pleiotropy model (Paaby and Rockman, 2013). Despite this limitation, these 786 
fitnotypes have proven useful in allowing us to understand the consequences of adaptive 787 
mutation. In addition to insights explained above, we also learned that adaptive mutants in the 788 
same gene do not always affect the same fitnotypes. For example, we found that IRA1-789 
missense mutations have varied and distinct effects from IRA1-nonsense mutations. Further, we 790 
believe that identifying fitnotypes will ultimately prove useful in identifying the phenotypic effects 791 
of mutation. The fitnotypes can serve as a scaffold onto which a large number of phenotypic 792 
measurements can be mapped. Even though fitnotypes are independent with respect to their 793 
contribution of fitness, and contribute to fitness linearly, the mapping of commonly measured 794 
features of cells (e.g. growth rate, the expression levels of growth supporting proteins like 795 
ribosomes) onto fitnotypes may not be entirely straightforward. Nonetheless, methods such as 796 
Sparse Canonical Correlation Analysis (Suo et al., 2017) hold promise in such a mapping and 797 
might help us can relate traditional phenotypes to fitnotypes.  798 
 799 
An important question for future research is how common is the pattern we detected in this 800 
study and whether it applies to other cases of adaptation in other systems. The method we 801 
described is generic and can be applied to any system as long as the fitness of a substantial set 802 
of mutants can be profiled for fitness across a moderately large set of environments. This is 803 
becoming possible to do in many systems. It is also already clear that the notion that diverse 804 
genetic changes can have redundant effects in one environment but distinct and consequential 805 
effects in other environments is important to our understanding of adaptation in other settings, 806 
including in the context of antibiotic resistance and cancer. Indeed in cancer, tumors even within 807 
a particular type of cancer, say lung adenocarcinoma, tend to be extremely genetically diverse 808 
even if considering only driver mutations (The Cancer Genome Atlas Research Network, 2014) . 809 
The driver mutations do fall into a smaller number of key driver genes and even fewer 810 
pathways. While this apparent redundancy might suggest that all tumors are in fact functionally 811 
similar in that they solve a small set of functional challenges (Hanahan and Weinberg, 2011, 812 
2000), the notion of latent diversity we propose here suggests that the specific paths taken by 813 
the tumors early might matter once the tumor encounters a new challenge such as when they 814 
are treated by a cancer therapy. Substantial heterogeneity of tumor response to therapy is 815 
consistent with this notion.  816 

 817 
Despite the accumulation of large amounts of genomic and phenomic data, integrating this 818 
information to identify the phenotypic consequences of mutation that are ultimately responsible 819 
for fitness remains incredibly challenging. Our approach allows us to create an abstract 820 
representation of the causal effects of genetic mutation and their changing contribution to fitness 821 
across environments. This top-down view provides an opening to solving this problem, and 822 
combining these approaches with phenotypic measurements will allow us to answer age-old 823 
questions about the structure of biological systems and adaptation in a conceptually new and 824 
technically powerful and high-throughput way. 825 
 826 
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METHODS 1077 
 1078 
LEAD CONTACT AND MATERIALS AVAILABILITY 1079 
Further information and requests for resources and reagents should be directed to and will be 1080 
fulfilled by the Lead Contact, Dmitri Petrov (dpetrov@stanford.edu). 1081 
 1082 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 1083 
The yeast strains used in this study can be grown and maintained using standard methods (e.g. 1084 
YPD media in test tubes, glycerol stocks for long term storage at -80°C), but should be 1085 
propagated in the appropriate selection environment (a glucose-limited minimal media - M3 1086 
medium for the evolution condition) for comparable fitness and phenotypic measurements. All of 1087 
the strains we study are of genetic background MATɑ, ura3Δ0, ybr209w::Gal-Cre-KanMX-1088 
1/2URA3-loxP-Barcode-1/2URA3-HygMX-lox66/71. 1089 
Experiments were performed with barcoded mutants isolated from a previous evolution 1090 
experiment (Levy et al., 2015). To measure their fitness, these mutants were competed against 1091 
a constructed reference strain with a restriction site in the barcode region (Venkataram et al., 1092 
2016).  1093 
Since we utilize some data from previous experiments (Li et al., 2018; Venkataram et al., 2016), 1094 
the collection of adaptive barcoded mutants that we studied differed slightly across 1095 
environments. These differences can be thought of as another parameter that varies across the 1096 
environments (e.g. in addition to glucose or salt concentration). In some experiments, we used a 1097 
collection containing 4,800 adaptive mutants that do not necessarily start at equal frequency 1098 
(Venkataram et al., 2016). In other experiments, we used a collection containing a subset of 500 1099 
of these mutants where each one starts at equal frequency (Li et al., 2018; Venkataram et al., 1100 
2016). Though the smallest collection of mutants we study comprises 500 strains, our work 1101 
focuses on 292 of these (Table S1). We focus on strains for which we obtained fitness 1102 
measurements in 45 environments and for which mutations conferring fitness advantages have 1103 
been previously identified, either by whole genome sequencing or using a drug to test ploidy (Li 1104 
et al., 2018; Venkataram et al., 2016). 1105 
In a few experiments, we spiked in re-barcoded mutants and additional neutral lineages as 1106 
internal controls. Since re-barcoded mutants are identical, except for the barcode, these teach 1107 
us about the precision with which we can measure a mutant’s fitness. Specifically, we spiked in 1108 
ten re-barcoded IRA1-nonsense mutants (each with a frameshift insertion AT to ATT mutation at 1109 
bp 4090) and ten IRA1-missense mutants (each with a G to T mutation at bp 3776). Neutral 1110 
lineages teach us about the behavior of the unmutated reference strain, which we must infer 1111 
because it’s barcode is eliminated from the experiment before sequencing. The spiked in 1112 
neutrals include ten barcoded lineages from the original evolution experiment (Levy et al., 2015) 1113 
for which whole genome sequencing did not reveal any mutations (Venkataram et al., 2016) and 1114 
previous fitness measurements did not reveal any deviation from the reference (Li et al., 2018; 1115 
Venkataram et al., 2016).  1116 
 1117 
 1118 
 1119 
 1120 
 1121 
 1122 
 1123 
 1124 
 1125 
 1126 
 1127 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.25.172197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/


 
 

28 

METHOD DETAILS 1128 
 1129 
Conducting the barcoded fitness measurements 1130 
Fitness measurement experiments were performed as described previously (Li et al., 2018; 1131 
Venkataram et al., 2016), where growth competitions were set up between a pool of barcoded 1132 
mutants and a reference strain. The change in the frequency of each barcode over time reflects 1133 
the fitness of the adaptive mutant possessing that barcode, relative to the reference strain.  1134 
 1135 
We conducted fitness measurements under a variety of conditions (Table S2) that represent 1136 
perturbations of the condition in which these adaptive mutants evolved. Briefly, we separately 1137 
grew up an overnight culture of the barcode pool and the ancestral reference strain in 100mL 1138 
M3 (minimal, glucose-limited) medium (Verduyn et al., 1992). We then mixed these saturated 1139 
cultures at a 1:9 ratio such that 90% of cells represent the reference strain. This ratio allows for 1140 
mutants to compete against the ancestor rather than competing against each other. We then 1141 
inoculated 400𝜇L of this mixed culture (∼ 5 × 107cells) into 100mL of fresh media in 500mL 1142 
DeLong flasks. The type of media used, and sometimes the shape of the flask, varied 1143 
depending on condition (Table S2). This culture was then grown at 30°C in an incubator shaking 1144 
at 223 RPM for 48 hours. After 48 hours of growth, 400𝜇L of saturated culture was transferred 1145 
into fresh media of the same type, in a new flask of the same type. This serial dilution was 1146 
usually continued 4 times, yielding 5 time-points over which to measure the rate at which a 1147 
barcode’s frequency changed, though some experiments include one more or one less 1148 
depending on the experimenter and on whether technical problems (e.g. PCR failure) caused 1149 
loss of time-points. 1150 
 1151 
After each transfer of 400 𝜇L, the left-over 9600𝜇L was frozen so that we could later sequence 1152 
the barcodes present at every time-point. To prepare this culture for freezing, it was transferred 1153 
to 50mL conicals, spun down at 3000 rpm for 5 minutes, resuspended in 5mL of sorbitol 1154 
freezing solution (0.9M sorbitol, 0.1M Tris-HCL pH 7.5, 0.1M EDTA pH 8.0), aliquoted into three 1155 
1.5mL tubes, and stored at -80°C. 1156 
 1157 
For experiments where additional neutral lineages and re-barcoded lineages were included, the 1158 
initial inoculation mix consisted of 90% ancestral reference strain, 9.4% barcode mutant pool, 1159 
0.2% additional neutral spike-in pool, 0.2% re-barcoded IRA1 nonsense pool, and 0.2% re-1160 
barcoded IRA1 missense pool. 1161 
 1162 
Growth conditions 1163 
In this study, we present fitness measurement data from a collection of 45 conditions that each 1164 
represent perturbations of the growth condition in which these adaptive mutants evolved. We 1165 
refer to this original evolution condition as the “EC”. In the EC, cells are grown in flasks with a 1166 
flat bottom and transferred to new flasks every 48 hours (see Conducting the barcoded fitness 1167 
measurements). Cells are grown in M3 media (Verduyn et al., 1992). This media is glucose-1168 
limited, meaning the cells run out of glucose before any other nutrient. In the EC, the starting 1169 
glucose concentration is 1.5%.  1170 
 1171 
The 45 perturbations of the EC are summarized in Table S2 and include changes to the growth 1172 
media, the flask shape, and the transfer times. For example, in the “1 Day” condition, we 1173 
change the transfer time from 48 to 24 hours. In the “1.8% glucose, baffled flask condition” we 1174 
change the starting glucose concentration from 1.5% to 1.8% and change the flask type from 1175 
one with a flat bottom to one with baffles. Several of these conditions include experiments from 1176 
previous studies (Li et al., 2018; Venkataram et al., 2016). 1177 
 1178 
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For each of these 45 conditions but three, we include between two and four replicates that were 1179 
performed simultaneously (Table S2) such that overall we performed a total of 109 fitness 1180 
measurements on our collection of adaptive mutants. Our replicate structure is nested in that 1181 
some of our 45 conditions represent replicate experiments that we performed at different times. 1182 
Variation across experiments performed at different times is often referred to as “batch effects” 1183 
and likely reflects environmental variability that we were unable to control (e.g. slight fluctuations 1184 
in incubation temperature due to limits on the precision of the instrument). In particular, we re-1185 
measured the fitness of the adaptive mutants in the EC on 9 different occasions, each time 1186 
including 3 or more replicates. We refer to these 9 experiments as ‘EC batches’ in the main text. 1187 
However, every set of experiments that was performed at the same time constitutes a separate 1188 
“batch”. There were slight differences across batches in the way we prepared barcodes for 1189 
sequencing, which we detail in the relevant Methods sections. This variation across batches can 1190 
be thought of as another parameter that varies across the 45 conditions (in addition to glucose 1191 
or salt concentration). We report which experiments were performed in the same batch in Table 1192 
S2. 1193 
 1194 
Some conditions, including some Fluconazole conditions and Geldanamycin conditions, have 1195 
unexpected orderings in the strength of perturbation (i.e. the smaller drug concentration shows 1196 
a larger difference in fitness or similar concentrations seem to have different effects). 1197 
Regardless of whether these observations reflect technical problems (e.g. degradation or poor 1198 
solubility of the drug), we include these conditions because we use the effect of the realized 1199 
perturbation on fitness to build low-dimensional phenotypic models. In other words, the identity 1200 
of the perturbation does not matter in this study.  1201 
 1202 
 1203 
DNA Extraction of each sample 1204 
After a growth competition is complete, we extracted DNA from frozen samples following either 1205 
a protocol described previously (for batches 1 – 6 and 10) (Venkataram et al., 2016) or a 1206 
modified protocol that improves the ease and yield of extraction. Our modified protocol is as 1207 
follows. For each sample, a single tube of the three that were frozen for each sample (see 1208 
Conducting the barcoded fitness measurements) was removed from the freezer and thawed at 1209 
room temperature. We extracted DNA from that sample using the following modification of the 1210 
Lucigen MasterPure yeast DNA purification kit (#MPY80200). We transferred the thawed cells 1211 
into a 15mL conical and centrifuge for 3 min at 4000 RPM. After discarding the supernatant, the 1212 
pellet was then resuspended with 1.8 mL of the MasterPure lysis buffer, and 0.5 mm glass 1213 
beads were added to help with disruption of the yeast cell wall. The mix of pellet, lysis buffer, 1214 
and beads was then vortexed for 10 seconds and incubated for 45 minutes at 65°C, with 1215 
periodic vortexing. The solution was then put on ice for 5 min and then 900 𝜇L of MPC Protein 1216 
Reagent was mixed with the solution. We then separated protein and cell debris by 1217 
centrifugation at 4000 RPM, transferring 1900𝜇L of supernatant to a 2 mL centrifuge tube. We 1218 
further separated remaining protein and cell debris by centrifuging at 13200 RPM for 5 min. The 1219 
supernatant was then divided into two 2mL centrifuge tubes, with 925 𝜇L of the supernatant into 1220 
each. Next, we added 1000𝜇L of isopropanol to each tube, mixed by inversion, centrifuged at 1221 
13200 RPM for 5 min, and discarded the supernatant. The pellet, containing the DNA was then 1222 
resuspended in 250𝜇L of Elution Buffer and 10 𝜇L of 5 ng/𝜇L RNAase A was added. This was 1223 
either left at room temperature overnight or incubated at 60°C for 15 min. Next the two tubes per 1224 
sample were combined into a single tube and 1500 𝜇L of ethanol was added. This was then 1225 
mixed by inversion, and strands of precipitating DNA appeared. This was centrifuged at 13200 1226 
RPM for 2 min, and the supernatant was discarded. We again precipitated the DNA by 1227 
resuspending with 750 𝜇L of ethanol, and collected the DNA by centrifuging 13200 RPM for 2 1228 
min. The supernatant was discarded, and the tubes were left to air dry. Finally, we resuspended 1229 
the pellet in Elution Buffer to a final concentration of 50 ng/ul for later use in PCR reactions 1230 
(approximately 3600 ng of DNA were used for the PCR reactions).  1231 
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PCR Amplification of the Barcode Locus 1232 
After extracting DNA, we PCR-amplified the barcode locus for each sample. Batches 1 – 6 and 1233 
10 were conducted with the protocols described in (Li et al., 2018; Venkataram et al., 2016). We 1234 
made some slight modifications to this protocol, including using a new set of primers to allow for 1235 
nested-unique-dual index labeling, for batches 7, 8, and 9. Our modified protocol is as follows.  1236 
 1237 
We used a two-step PCR protocol to amplify the barcodes from the DNA. The first PCR cycle 1238 
uses primers with “inline indices” to label samples (see Mitigating the effects of index hopping 1239 
section for details). These inline indices are highlighted in bold below. Attaching unique indices 1240 
to samples pertaining to different conditions or timepoints allows us to multiplex these samples 1241 
on the same sequencing lane. Each primer also contains a Unique Molecular Identifier (UMI) – 1242 
denoted by the sequence of “N” nucleotides in the primer – which is used to determine if 1243 
identical barcode sequences each represent yeast cells that were present at the time the 1244 
sample was frozen, or a PCR amplification of the a barcode from a single cell (see Levy et al., 1245 
2015; Li et al., 2018; Venkataram et al., 2016). Primers were HPLC purified to ensure they are 1246 
the correct length. 1247 
 1248 
Forward primers 1249 

Primer 
Name 

Sequence 

F201 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN  CGATGTT TAATATGGACTAAAGGAGGCTTTT 

F202 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN  ACAGTGT TAATATGGACTAAAGGAGGCTTTT 

F203 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN  TGACCAT TAATATGGACTAAAGGAGGCTTTT 

F204 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN  GCCAATT TAATATGGACTAAAGGAGGCTTTT 

F205 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN  ATCACGT TAATATGGACTAAAGGAGGCTTTT 

F206 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN  CAGATCT TAATATGGACTAAAGGAGGCTTTT 

F207 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN  GGCTACT TAATATGGACTAAAGGAGGCTTTT 

F208 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN  TAGCTTT TAATATGGACTAAAGGAGGCTTTT 

F209 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN  TTAGGCT TAATATGGACTAAAGGAGGCTTTT 

F210 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN  ACTTGAT TAATATGGACTAAAGGAGGCTTTT 

F211 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN  GATCAGT TAATATGGACTAAAGGAGGCTTTT 

F212 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN  CTTGTAT TAATATGGACTAAAGGAGGCTTTT 

 1250 
Reverse primers 1251 

Primer 
Name 

Sequence 

R301 
GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN TATATACGC 
TCGAATTCAAGCTTAGATCTGATA 

R302 
GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN CGCTCTATC 
TCGAATTCAAGCTTAGATCTGATA 

R303 
GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN GAGACGTCT 
TCGAATTCAAGCTTAGATCTGATA 

R304 
GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN ATACTGCGT 
TCGAATTCAAGCTTAGATCTGATA 

R305 
GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN ACTAGCAGA 
TCGAATTCAAGCTTAGATCTGATA 

R306 
GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN TGAGCTAGC 
TCGAATTCAAGCTTAGATCTGATA 

R307 
GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN CTGCTACTC 
TCGAATTCAAGCTTAGATCTGATA 

R308 
GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN GCGTACGCA 
TCGAATTCAAGCTTAGATCTGATA 

 1252 
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For the first step of PCR, we performed 8 reactions per sample to offset the effects of PCR 1253 
jackpotting within each reaction. For each set of 8 reactions, we used the master mix: 1254 

- 200𝜇L OneTaq Hot Start 2X Master Mix with Standard Buffer (NEB M0484L) 1255 
- 8𝜇L 10uM Forward primer 1256 
- 8𝜇L 10uM Reverse primer 1257 
- 72𝜇L sample genomic DNA (diluted to 50ng/𝜇L or all of sample if between 25-50ng/𝜇L) 1258 
- 16𝜇L 50mM MgCl2  1259 
- 96𝜇L Nuclease Free Water (Fisher Scientific #AM9937) 1260 

 1261 
We then aliquoted 50𝜇L of the master mix into each of 8 PCR tubes, and ran on the 1262 
thermocycler with the following cycle: 1263 

1. 94°C for 10 min 1264 
2. 94°C for 3 min 1265 
3. 55°C for 1 min 1266 
4. 68°C for 1 min 1267 
5. Repeat steps 2-4 2x (for a total of 3 cycles) 1268 
6. 68°C for 1 min 1269 
7. Hold at 4°C 1270 

 1271 
We then added 100𝜇L of binding buffer from the ThermoScientific GeneJET Gel Extraction Kit 1272 
(#K0692) to each PCR reaction, and performed a standard PCR purification protocol in one 1273 
column per sample. In the final step, we eluted into 80𝜇L of elution buffer. 1274 
 1275 
For the second step of PCR, we use standard Nextera XT Index v2 primers (Illumina #FC-131-1276 
2004) to further label samples representing different conditions and timepoints with unique 1277 
identifiers that allow for multiplexing on the same sequencing lane. We uniquely dual-indexed 1278 
each sample using our nested scheme (see Mitigating the effects of index hopping section for 1279 
details). We performed 3 reactions of the second step PCR per sample, using the master mix: 1280 

- 1.5𝜇L Q5 Polymerase (NEB #M0491L) 1281 
- 30𝜇L Q5 Buffer (NEB #M0491L) 1282 
- 3𝜇L 10mM dNTP (Fisher Scientific #PR-U1515) 1283 
- 6.25𝜇L i7 Nextera XT Primer (“N” primer)  1284 
- 6.25𝜇L i5 Nextera XT Primer (“S” primer) 1285 
- 78𝜇L purified step 1 PCR product 1286 
- 25𝜇L Nuclease Free Water (Fisher Scientific #AM9937) 1287 

 1288 
This master mix was then divided into 3 PCR tubes per reaction, and run with the following 1289 
protocol on a thermocycler: 1290 
 1291 

1. 98°C for 30 sec 1292 
2. 98°C for 10 sec 1293 
3. 62°C for 20 sec 1294 
4. 72°C for 30 sec 1295 
5. Repeat steps 2-4 at least 21 times and at most 27 times (for a total of 22 to 28 cycles) 1296 
6. 72°C for 3 min 1297 
7. Hold at 4°C 1298 

 1299 
We then added 100𝜇L of binding buffer from the ThermoScientific GeneJET Gel Extraction Kit 1300 
and purified the PCR product, eluting into 43𝜇L. We found that increasing the number of cycles 1301 
in the second step PCR beyond 21 did not seem to improve the amount of DNA recovered after 1302 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.25.172197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/


 
 

32 

gel extraction. For some samples, we experimented with a touch down procedure for the 1303 
second step PCR where we started with a hotter annealing temperature and slowly decreased it 1304 
over the course of 27 cycles. This also did not seem to increase the yield of DNA recovered 1305 
from the PCR.  1306 
 1307 
Removal of the Reference Strain via Digestion and Gel Purification 1308 
To avoid the vast majority of our sequencing reads mapping only to the reference strain (and 1309 
thus not being informative to relative fitness of the mutants), we use restriction digest to cut the 1310 
ApaLI restriction site in the middle of the reference strain’s barcode region. We mixed 43𝜇L of 1311 
the second step PCR product with 2𝜇L of ApaLI (NEB #R0507L) and 5𝜇L of 10X Cutsmart and 1312 
incubated at 37°C for at least 2 hours (up to overnight). After digestion, we conducted size 1313 
selection by running the digested sample on a gel, removing all product less than 300bp, and 1314 
isolating the DNA using a standard ThermoScientific GeneJET Gel Extraction protocol. Our 1315 
expected product is 350bp. We did not remove longer sequences via gel extraction because of 1316 
the possibility that some barcode sequences may selectively form complexes with themselves 1317 
or other barcodes. 1318 
 1319 
Note that for some samples, we also digested the reference strain before PCR, in addition to 1320 
after PCR, to decrease the amount of reference strain barcode. For these samples, we mixed 1321 
80ul of genomic DNA (at concentration 50ng/𝜇L) with 10𝜇L of 10X Cutsmart and 2𝜇L of ApaLI 1322 
and incubated 37°C for at least 2 hours (up to overnight). This product was then used as the 1323 
template for PCR step 1 (with appropriate water volume adjustments to ensure 50𝜇L reactions).  1324 
 1325 
Sample pooling and Amplicon Sequencing 1326 
We used the Qubit High Sensitivity (ThermoFisher #Q32854) method to quantify the 1327 
concentration of the final product for each sample, then pooled samples with different dual 1328 
indices in equal frequency for sequencing. Our samples were then sent to either Novogene 1329 
(https://en.novogene.com/) or Admera Health (https://www.admerahealth.com/) for quality 1330 
control (qPCR and either Bioanalyzer or TapeStation) and sequencing. We used 2x150 paired-1331 
end sequencing along with index sequencing reads on Illumina HiSeq machines using patterned 1332 
flow cells (either HiSeq 4000 or HiSeq X). We also used Illumina Nextseq machines with 1333 
unpatterned flow cells. We found that the former was more subject to index hopping errors, 1334 
please see Mitigating the effects of index hopping for a discussion of how our dual indexing 1335 
reduces effects of index hopping. All amplicon samples were sequenced with at least 20% 1336 
genomic DNA spiked in (either whole genomes from an unrelated project or phi-X) to ensure 1337 
adequate diversity on the flow cell.  1338 
 1339 
Mitigating the effects of index hopping 1340 
To reduce the effects of index hopping observed on Illumina patterned flow cell technology 1341 
(including HiSeq 4000, HiSeq X, and Novaseq machines) (Illumina, 2017; Sinha et al., 2017), 1342 
we devise a nested unique-dual-indexing approach. This approach uses a combination of inline 1343 
indices attached during the first step of PCR, as well as Nextera indices attached during the 1344 
second step of PCR. The latter indices are not part of the sequencing read (they are read in a 1345 
separate Index Read). This process uniquely labels both ends of all DNA strands such that DNA 1346 
strands from multiple samples can be multiplexed on the same flow cell. Had we only labeled 1347 
one end of each DNA strand, index hopping could have caused us to incorrectly identify some 1348 
reads as coming from the wrong sample. 1349 
 1350 
One approach to label samples with unique-dual-indices is to use 96 forward primers, each of 1351 
which is paired to one of 96 reverse primers, instead our nested approach allows us to uniquely 1352 
dual-index samples with only 40 total primers (12 forward inline, 8 reverse inline, 12 Nextera i7, 1353 
8 Nextera i5). Specifically, we can use combinations of the Nextera and inline primers. One way 1354 
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to think of this is that there are 96 possible ways to combine the forward inline and Nextera i5 1355 
primers that are on the same side of the read, effectively creating 96 unique labels for that end 1356 
of the read. 1357 
 1358 
To reduce the effect of index hopping contamination on our results, we included only samples 1359 
that were sequenced on non-patterned flow cell technology (HiSeq 2000 and 2500 for samples 1360 
in batches 1-6, 10, NextSeq for samples in batch 9) or were sequenced on patterned flow cell 1361 
technology (patterned flow cell HiSeq) with nested unique-dual indexing. 1362 
 1363 
Processing of Amplicon Sequencing Data 1364 
We processed the amplicon sequencing data by first using the index tags to de-multiplex reads 1365 
representing different conditions and timepoints. Then, using Bowtie2 (Langmead and Salzberg, 1366 
2012), we mapped reads to a known list of barcodes generated by Venkataram et al. (2016), 1367 
removed PCR duplicates using the UMIs from the first-step primers, and counted the number of 1368 
reads for each barcode in each sample. The source code for this step can be found at 1369 
https://github.com/sandeepvenkataram/BarcodeCounter2. We processed all raw data for this 1370 
study using this pipeline, including re-processing the raw sequencing files for data from previous 1371 
studies (Li et al., 2018; Venkataram et al., 2016) so that all data was processed together using 1372 
the most recent version of the code. 1373 
 1374 
Several samples included technical replicates where the sample was split at various times in the 1375 
process, including before DNA extraction, before PCR, and prior to sequencing. Read counts 1376 
across these technical replicates were merged in order to calculate the best estimate of barcode 1377 
frequencies. Counts were merged after appropriately accounting for PCR duplicates as 1378 
identified from Unique Molecular Identifiers. 1379 
 1380 
QUANTIFICATION AND STATISTICAL ANALYSIS 1381 
 1382 
Fitness Estimate Inference 1383 
The amplicon sequencing data shows the relative frequency of each barcode in each time-point 1384 
of every one of our 109 fitness measurement experiments. To estimate the fitness of each 1385 
barcoded mutant in each experiment, we calculate how barcode frequencies change over time. 1386 
We do this using previously described methods (Venkataram et al., 2016).  1387 
 1388 
Briefly, we first calculated the log-frequency change of each barcoded adaptive mutant for each 1389 
subsequent pair of time-points. This log-frequency change must be corrected by the mean 1390 
fitness of the population, such that it represents the relative fitness of each mutant relative to the 1391 
reference strain, which makes up the bulk of the population. Since we destroyed barcodes 1392 
pertaining to the reference strain by digesting them, we infer how the mean fitness of the 1393 
population changes at each time-point using barcoded lineages that are known to be neutral 1394 
(see Identification of neutral lineages). Once we calculated the change in the relative fitness of 1395 
each barcoded mutant across each pair of consecutive time-points, we took a weighted average 1396 
across all pairs as our final estimate of each adaptive mutant’s relative fitness for a given 1397 
experiment. We weighted each pairwise fitness estimate using an uncertainty measure 1398 
generated from a noise model (see Noise model section below).  1399 
 1400 
This results in 109 fitness measurements per each barcoded mutant, with some of the 45 1401 
conditions having more representation than others due to having more replicates. In cases 1402 
where we have replicates, we averaged the fitness values across the replicates, weighted by 1403 
the measurement uncertainty, resulting in our final 45 fitness estimates per each adaptive 1404 
mutant lineage. 1405 
 1406 
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We included only timepoints with at least 1,000 reads for which at least 400 mutants were 1407 
detected to have at least 1 read. Furthermore, we required that fitness measurement 1408 
experiments must include at least three timepoints to be included in our analysis. 1409 
 1410 
Identification of Neutral Lineages 1411 
Previous work using this fitness measurement method focused on a larger collection of 4800 1412 
barcoded yeast lineages, where the vast majority of these lineages were neutral (Li et al., 2018; 1413 
Venkataram et al., 2016). In order to increase the number of reads per adaptive lineage, we 1414 
used a smaller pool of 500 lineages for most experiments. However, this prevents us from 1415 
identifying neutral lineages as was done in previous studies, by rejecting outlier lineages with 1416 
higher than typical fitness values. Instead, we used a set of 35 high-confidence neutral lineages 1417 
to infer mean fitness (see Experimental model and subject details). These lineages showed no 1418 
fitness differences from the neutral expectation in previous studies and were shown to possess 1419 
no mutations detectable via whole genome sequencing. These high-confidence neutral lineages 1420 
were present in all experiments, and were spiked into experiments from batch 9 to increase their 1421 
frequency. We used these neutrals to perform the fitness inference in two steps. First, we 1422 
inferred fitness using this collection of high-confidence neutrals to make a first pass at inferring 1423 
the fitness values. Next, we included lineages with similar behavior to the high-confidence 1424 
neutrals to improve our estimate of mean fitness.  1425 
 1426 
Noise model 1427 
To quantify the uncertainty for each fitness measurement, we used the noise model as outlined 1428 
in Venkataram et al., 2016.  1429 
 1430 
Briefly, this noise model accounts for the uncertainty coming from several sources of noise. The 1431 
first type of noise scales with the number of reads for a given lineage. This noise stems from 1432 
stochasticity in population dynamics (coming from the inherent stochasticity in growth and noise 1433 
associated with dilution), from counting noise associated with a finite coverage, and technical 1434 
noise from DNA extraction and PCR. We fit this noise by quantifying the variation in the 1435 
frequency of neutral lineages (see Identification of neutral lineages). There is additional variation 1436 
in fitness observed for high-frequency lineages between replicate experiments (here we refer to 1437 
variation across replicates that were performed simultaneously, not variation across batches). 1438 
We also accounted for this uncertainty following previous studies. Specifically, we fit an 1439 
additional frequency-independent source of noise using between-replicate variation. 1440 
 1441 
Checks on noise model 1442 
Because our ability to count the phenotypes that matter to fitness hinges upon measurement 1443 
error, we further assessed the accuracy of our noise model. We did so by using barcoded 1444 
lineages that should have the same fitness because they are genetically identical. Since our 1445 
fitness estimates are imperfect (i.e. they contain some noise), we estimated each of these 1446 
lineages as having slightly different fitness. We then asked if the variation in fitness across 1447 
these lineages is explained by our noise model, or if there is more variation than our noise 1448 
model can account for. We did this explicitly by calculating, for each lineage, how far our fitness 1449 
estimate is from the best guess for the true underlying fitness value (the group’s mean) in units 1450 
of the estimate’s measurement precision. We then calculated the percent of lineages that are a 1451 
given distance from the group’s average to understand the accuracy of the model. For instance, 1452 
if the noise model perfectly captures the uncertainty of each measurement, then 10% of the 1453 
diploid lineages should have a difference from the weighted diploid mean in the 10th percentile, 1454 
20% in the 20th percentile, etc. Because 188 of our 292 barcode mutants are diploids without 1455 
additional mutations, diploids are an ideal group to use to assess the accuracy of the noise 1456 
model. This procedure shows that, for the vast majority of replicates, the noise model is 1457 
conservative. That is, diploid lineages tend to have less variation in fitness than expected by the 1458 
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noise model (Fig S1).  1459 
 1460 
Classifying mutants by mutation type 1461 
Some types of mutants are present more than others. For example, 188 of our 292 mutants are 1462 
diploids and 30 mutants are in the IRA1 gene. If not properly accounted for, this imbalance can 1463 
lead to some unfairness in predictions for our model. For example, if we use mostly diploid 1464 
lineages to train our model, we will be very good at predicting the fitness of diploids but poor at 1465 
predicting other types of mutants. This means that we must classify our mutants by mutation 1466 
type in order to properly balance them. We classified mutants following previous work 1467 
(Venkataram et al., 2016) that classified mutants as either diploids, or if haploid, by the gene 1468 
possessing the putative causal mutation. Because previous work finds differences in fitness 1469 
between missense and nonsense/frameshift/indel mutations in IRA1, here we classified these 1470 
mutants into “missense” and “nonsense” classes, where mutants with frameshift and indel 1471 
mutations were classified as “nonsense”. We also classified diploid mutants with additional 1472 
mutations in nutrient-response genes or chromosomal amplifications as separate groups. 1473 
Additionally, we created a separate class for “high-fitness diploid” mutants that possess no 1474 
additional detected mutations (other than being diploid) but have very high fitness in the EC. To 1475 
be classified as a high-fitness diploid, a diploid mutant must have an average fitness across all 9 1476 
EC batches that is greater than 2 standard deviations above the average of all diploids.  1477 
 1478 
Calculation of Weighted Average Z Score 1479 
To partition environments into subtle and strong perturbations of the EC, we relied on the 9 1480 
experiments performed in the EC. Since each of these experiments was performed at a different 1481 
time, variation in fitness across these experiments represents batch effects, and we therefore 1482 
refer to these 9 experiments as “EC batches”. Environmental differences between batches are 1483 
as subtle as possible, as they represent the limit of our ability to minimize environmental 1484 
variation. Thus, variation in fitness across the EC batches serves as a natural benchmark for the 1485 
strength of environmental perturbations. If the deviations in fitness caused by an environmental 1486 
perturbation are substantially stronger than those observed across the EC batches, we call that 1487 
perturbation “strong”. 1488 
 1489 
More explicitly, to determine whether a given environmental perturbation is subtle or strong, we 1490 
first quantified the typical variation in fitness for each mutant, across the EC batches: 1491 

𝜎! =
1

𝑛"#$%&'(
& '𝑓!) − 	𝑓*+'

"#$%&'(

)

 1492 

where 𝜎!+ represents the variance in fitness across the EC batches for mutant i, and 1493 
𝑓*+	represents the average fitness of mutant i across the EC batches.  1494 
 1495 
To ensure that each mutation type contributes equally to our classification of how different each 1496 
environment is from the evolution condition, we weighed each mutant’s contribution to this 1497 
difference. We did so based on the number of mutants with the same mutation type, such that 1498 
the mutation-type-weighted average Z-score for a given environment j is given by: 1499 
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 1500 

where 𝑛$%&'(")represents the number of mutants that are the same mutation type as mutant i.  1501 
 1502 
We then classified the environmental perturbations based on this Z-score. Sixteen environments 1503 
provoked fitness differences resulting in a Z-score of less than two, and we classified these 1504 
environmental perturbations as “subtle”. The remaining 20 environments had Z-scores greater 1505 
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than 2, which we classified as “strong” environmental perturbations. 1506 
 1507 
Model of phenotypes that contribute to fitness 1508 
In order to count the phenotypes that affect fitness in our collection of mutants, we explored a 1509 
low-dimensional phenotypic model. We explicitly used a model of fitness-relevant phenotypes 1510 
such that each mutant is represented as having a fixed effect on each phenotype, represented 1511 
by a vector of k phenotypes, e.g. mutant i  is represented by the vector (𝑝"*, 𝑝"+, 𝑝",, … , 𝑝"!). In 1512 
addition, each environment is represented by a vector of phenotypic weights, representing the 1513 
importance of each of the k phenotypes to fitness in that environment, e.g. environment j 1514 
represented by the column vector (𝑒*# , 𝑒+# , 𝑒,# , … , 𝑒!#). The fitness effect of mutant i in a given 1515 
environment j is the linear combination of that mutant’s phenotypes, each weighted by its 1516 
importance in environment j: 1517 

𝑓"# = 𝑝"1𝑒1# + 𝑝"2𝑒2# + 𝑝"3𝑒3#+. . . +𝑝"!𝑒!# 1518 
Our fitness measurements reflect mutant fitness relative to a reference strain, therefore, our 1519 
model places the reference strain (which has fitness 0 by definition) at the origin of this multi-1520 
dimensional space. Our model only includes phenotypes that differ between the reference strain 1521 
and least one mutant. This is sensible given that our reference strain is a modified version of the 1522 
ancestor of all of these mutant lineages. Thus, if there exists a phenotype that contributes to 1523 
fitness, but none of the adaptive mutants altered that phenotype, our model will not detect it. 1524 
More explicitly, a phenotype that contributes to fitness would have a non-zero value of e, but if 1525 
no mutant alters that phenotype from the reference, all mutants would have a zero value of p for 1526 
that phenotype. Thus, the non-zero value of e would always be multiplied by a zero value for p  1527 
and this phenotypic dimension would not be represented in our model. This is not to say that if 1528 
only a single mutant of the 292 alters a particular phenotype we would include it as a phenotypic 1529 
dimension. Our power to add dimensions to our model is limited by measurement noise. We 1530 
only include dimensions that capture more variation in fitness than do dimensions that capture 1531 
measurement noise (see Estimating the detection threshold using measurement error).  1532 
 1533 
Similarly, because we measure fitness, and not phenotype, our model is blind to any phenotypic 1534 
effect that does not contribute to fitness in at least one of the 45 environments we studied. If a 1535 
mutant has large phenotypic effects, but they do not cause that mutant’s fitness to differ from 1536 
the reference strain in any of these 45 environments, this phenotypic effect will not be 1537 
represented in our low-dimensional phenotypic model. More explicitly, mutants may have non-1538 
zero phenotypic effects p, but if these do not influence their fitness in any environment we study, 1539 
e will be zero for all 45 environments. Thus, p times e will also be zero and we will not include 1540 
this phenotypic dimension in our model.  1541 
 1542 
Importantly, the phenotypic dimensions that we infer from our fitness measurements are 1543 
abstract entities. They represent causal effects on fitness, rather than measurable features of 1544 
cells. For this reason, they might be called “fitnotypes” (a mash of the terms “fitness” and 1545 
“phenotype”). Even though the fitnotypes are independent with respect to their contribution of 1546 
fitness, and contribute to fitness linearly, the mapping of commonly measured features of cells 1547 
(e.g. growth rate, the expression levels of growth supporting proteins like ribosomes) onto 1548 
fitnotypes may be more complicated. For instance, a commonly measured cellular feature that 1549 
has a complicated nonlinear mapping to fitness could be detected as many, linearly-contributing 1550 
fitnotypes. This is another reason that our phenotypic dimensions are not necessarily 1551 
comparable to what people traditionally think of as a “phenotype”. 1552 
 1553 
Using Singular Value Decomposition to decompose the fitness matrix 1554 
Our goal is to use fitness measurements to learn about the phenotypic effects of mutations as 1555 
well as the contribution of these phenotypes to fitness in different environments. We conducted 1556 
fitness measurements for 292 mutants in each of 45 environments and organized these data 1557 
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into a fitness matrix, F, where every row corresponds to a mutant, every column corresponds to 1558 
an environment, and every entry is a fitness measurement. Because our model (see Model of 1559 
phenotypes that contribute to fitness) represents fitness in a given environment as the sum of 1560 
multiple phenotypes, each scaled by their contribution to fitness in that environment, we can use 1561 
Singular Value Decomposition (SVD) to decompose the fitness matrix 𝐹as: 1562 

𝑃Σ𝐸- = 𝐹 1563 
The left hand side of this equation consists of three matrices:𝑃, which represents the positions 1564 
of the mutants in our low-dimensional model of phenotypic space, 𝐸-, which represents the 1565 
contribution of a phenotype to fitness in a given environment, and 𝛴, a diagonal matrix 1566 
representing the singular values of the fitness matrix 𝐹. Though the singular values are 1567 
informative in this separation of three matrices, particularly for the amount of variation captured 1568 
by each of the inferred components, we can also think of this as a decomposition into two 1569 
matrices, where we fold the singular values into either the mutant phenotypes or the 1570 
environment weights, as described in the main text. Either way, this decomposition captures the 1571 
data represented in the fitness matrix 𝐹, including measurement error as well as the underlying 1572 
biological signals.  1573 
 1574 
Importantly, the dimensions in the phenotypic model we built using SVD are detected in the 1575 
order of their explanatory power. Moreover, the first dimension is the best, linear 1-component 1576 
model that explains the data (if evaluated by mean squared error). This is true for any set of the 1577 
first k components. This means, for example, that the model with the first eight components is 1578 
the best possible 8-component linear model for the observed data (Eckart and Young, 1936).  1579 
 1580 
One issue in this type of analysis is that adding more components always improves the 1581 
explanatory power of the model, even when those components capture variation that is primarily 1582 
due to measurement noise. This type of overfitting problem is common in statistics, and several 1583 
methods have been devised to select the appropriate number of components to include. We use 1584 
two such methods here. 1585 
 1586 
Estimating the detection threshold using measurement error 1587 
One method to select the appropriate number of components to include in the model and 1588 
prevent overfitting (i.e. prevent fitting a component that primarily represents noise) is to use 1589 
measurement error as a type of control. This is only possible if the amount of measurement 1590 
error is known. We estimated the amount of noise in our fitness measurements using a 1591 
previously described noise model (see Noise Model) (Venkataram et al., 2016). Since this noise 1592 
model includes counting noise, every fitness measurement may have a different amount of 1593 
noise. For example, mutants present at low frequency will be subject to more stochasticity 1594 
resulting from counting noise. We used this noise model to simulate fitness tables (F) where 1595 
mutant fitnesses vary exclusively due to measurement noise. We simulated 1000 noise-only 1596 
matrices, where each entry is pulled from a normal distribution centered at zero and with 1597 
variance equal to the estimated measurement noise of the corresponding entry in the true 1598 
fitness matrix F. We then applied SVD to each noise-only matrix, which gave us a set of singular 1599 
values generated only by noise. From many such simulations, we took the average size of the 1600 
largest component, which reveals how much variation can be explained by a component that 1601 
captures only noise. We found that the largest noise-components are of the size that they would 1602 
capture 0.07% of variation in our true fitness matrix. Thus, we set this as our limit of detection. 1603 
In other words, in order for us to include 8 components in our low-dimensional model, all of 1604 
them must explain more than 0.07%% of the variation in fitness. This approach is analogous to 1605 
identifying a threshold when measurement noise is known but not identical for all entries in the 1606 
matrix (Josse and Sardy, 2014).  1607 
 1608 
 1609 
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Estimating detection threshold using bi-cross-validation 1610 
Another method for identifying the appropriate number of components is to use their predictive 1611 
power. This method relies on the intuition that measurement error is uncorrelated across 1612 
different mutants and different environments. Therefore, a component that represents 1613 
measurement error should not contain information that can help predict the fitnesses of these 1614 
mutants in new environments. It should also not contain information that can help predict the 1615 
fitness of unstudied mutants. We used a bi-cross-validation scheme of the SVD devised by 1616 
Owen and Perry (2009) which divides the mutants and environments into distinct groups of 1617 
training and testing sets. This subsequently divided our matrix of fitness measurements into 4 1618 
submatrices: the fitness of the training mutants in the training environments (D), the fitness of 1619 
the training mutants in the testing environments (C), the fitness of the testing mutants in the 1620 
training environments (B), and the fitness of the testing mutants in the testing environments (A).  1621 

 1622 

𝐹 = .
𝐴		3'($	526!7820'2$(3'($	91$#2$( 	 𝐵		37#!2	526!7820'2$(3'($	91$#2$(

𝐶		3'($	526!7820'2$(37#!2	91$#2$( 𝐷		37#!2	526!7820'2$(37#!2	91$#2$( 3 1623 

 1624 
We carried out SVD on the training data (submatrix D), which returned a set of singular values 1625 
and corresponding components that captured the fitness data in D. We then used these 1626 
components to predict the fitness of the testing mutants in the testing environments (submatrix 1627 
A). First, we tried to predict these fitness values by only using the first component. That is, we 1628 
fixed this first component and the first singular value for the training mutants. We then found the 1629 
best first component for the testing environments based on the fitness values of the training 1630 
mutants in these environments (i.e. using the information in submatrix D), given the constraint 1631 
that the training mutants can only be represented by the one component. We then conducted an 1632 
analogous procedure to find the first component of the testing mutants by fixing the first 1633 
component of the training environments by using the information in submatrix B. Then, we tried 1634 
to predict the fitness of the testing mutants in the testing environments using the first component 1635 
independently fit for each. We subsequently repeated this procedure, giving the testing mutants 1636 
access to more of the training components each time. If the components detected by the 1637 
training components represent biological signal, then this should improve the ability to predict 1638 
the fitness of the testing mutants in the testing environments. However, once the components 1639 
primarily represent measurement error, their inclusion should harm predictive power. Therefore, 1640 
we use the number of components with the best ability to predict the held-out data (submatrix A) 1641 
as the number of components that represent biological signal in our data.  1642 
 1643 
For computational efficiency, we explicitly used the formulation proposed by Owen and Perry 1644 
(2009) for the prediction of the held-out submatrix A: 1645 

𝐴5 = 𝐵7𝐷9(!):
.
𝐶 1646 

where 7𝐷9(!):.denotes the Moore-Penrose inverse of the rank k approximation of sub-matrix D. 1647 
This prediction is equivalent to the procedure outlined above, provided that least-squares 1648 
regression is used to identify the components of the testing mutants and testing conditions, 1649 
conditional upon the training components (Owen and Perry, 2009). 1650 
 1651 
We divided our mutants into fixed training and testing sets (see Division of Mutants into Training 1652 
and Testing Sets) and used these sets throughout our study. As for training versus testing 1653 
environments, these changed depending on our goal. For validating the number of components 1654 
to include in our phenotypic model, we held out each of the 25 subtle environmental 1655 
perturbations, using it as the testing environment and the other 24 for training. For making 1656 
predictions of the fitness of the testing mutants in the strong environmental perturbations, we 1657 
used all 25 subtle environmental perturbations as the training set, though we also show how 1658 
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these predictions vary when each of the 25 subtle environmental perturbations is held out from 1659 
the training set. 1660 
 1661 
Division of Mutants into Training and Testing Sets 1662 
In order to perform bi-cross-validation on our data, we need to divide our data into training and 1663 
testing sets. Because some mutation types, in particular diploids and Ras/PKA mutants, are 1664 
present more than others in our collection of mutants, we sampled the training set such that 1665 
each mutation type is represented roughly equally (see Classifying mutants by mutation type). 1666 
Specifically, we designated half of each mutation type, with a maximum of 20 representatives of 1667 
each type, as belonging to the training set. The remaining mutants comprise the test set. For 1668 
example, there are 188 diploids included in the 292 adaptive mutants. We included 20 in the 1669 
training set and 168 in the test set. There are 20 IRA1-nonsense mutants included in the 292, 1670 
and we included 10 in the training and 10 in the test set. Additionally, genes that are 1671 
represented only once in the set of mutations are placed in the test set. This results in a training 1672 
set of 60 mutants and a testing set of 232 mutants (see Table S1).  1673 
 1674 
Clustering mutants in phenotype space 1675 
After inferring the low-dimensional model of phenotype space using SVD, we used Uniform 1676 
Manifold Approximation and Projection (UMAP) to visualize how the mutants cluster in that 1677 
space. For this analysis, we used the 8-component phenotypic model that we built from the 60 1678 
training mutants and the 25 subtle perturbations. We did this to avoid the model being 1679 
dominated by variation in very common mutations, specifically the diploids, which make up 1680 
188/292 of our adaptive mutants. We added more mutants in the visualization by finding the 1681 
location of each of the testing mutants (except diploids) by least sum of squares optimization. 1682 
To do so we fixed the coordinates for the 25 environments and found the coordinates for each 1683 
mutant that best estimated its fitness in all environments. To further avoid our visualization 1684 
being dominated by the diploids, we included only the diploids present in the training set in our 1685 
visualization. For UMAP, we specified that 20 neighbors are used. 1686 
 1687 
Though UMAP tends to preserve both local and global structure (McInnes et al., 2018) it is not 1688 
necessarily representative of the distance between objects in high-dimensional space. Thus, to 1689 
quantify more precisely the clustering by gene observed, we explicitly compared the median 1690 
pairwise distance between these apparent clusters to 10000 randomly chosen sets of the same 1691 
size and calculated empirical p-values. Because there are many diploids such that they will be 1692 
the most prevalent type of mutant drawn in these randomly chosen sets, we only drew from 1693 
strains that have other mutations besides or in addition to diploidy. 1694 
 1695 
Calculation of Weighted Coefficient of Determination 1696 
Because mutants are present in unequal numbers in the test set, standard measures of 1697 
variance explained are likely to be representative of our ability to predict mutants that have 1698 
many barcoded lineages present in the data, for instance diploid and IRA1-nonsense mutations. 1699 
These measures would be less representative of mutants with few lineages present, i.e. 1700 
TOR/Sch9 pathway mutants. Thus, we use a measure of predictability (𝑅(") that weights the 1701 
contribution of each mutant to overall variance explained based on the number of lineages that 1702 
share its mutation type (diploids, IRA1 nonsense, IRA1 missense, GPB2, etc.). This effectively 1703 
measures our ability to predict the fitness of each mutation type, rather than each mutant. For 1704 
overall predictive power across all mutants and conditions, we used the measure: 1705 

𝑅=+ = 1 −
∑ ∑ 1

𝑛$%&'(")
7𝑓"# − 	𝑓/0B:

+1234"$"235
#

67$83$5
"

∑ ∑ 1
𝑛$%&'(")

7𝑓"# − 	𝑓̅:
+1234"$"235

#
67$83$5
"

 1706 

where	𝑓	̅denotes the average fitness for all evaluated mutants and evaluated conditions.  1707 
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We used a similar measure to quantify the ability to predict fitness for each environment j. This 1708 
is given by: 1709 

𝑅0D
+ = 1 −

∑ 1
𝑛$%&'(")

7𝑓"# − 	𝑓/0B:
+67$83$5

"

∑ 1
𝑛$%&'(")

7𝑓"# − 	𝑓0E:
+67$83$5

"

 1710 

where	𝑓0E	denotes the average fitness across all evaluated mutants in condition j.  1711 
 1712 
Note that this measure explicitly compares a model’s fitness prediction in each environment to 1713 
predictions made using the average fitness in that environment, such that if the model’s fitness 1714 
prediction is the same as the average fitness, 𝑅=+ is zero. It is possible that a given model’s 1715 
fitness prediction is worse than that of the average fitness in that environment, resulting in 1716 
negative values of 𝑅=+. In our work, negative 𝑅=+ values occur for the 1-component model when 1717 
predicting the fitness of mutants in some of the strong environmental perturbations. In particular, 1718 
this occurs when fitness in that environment is uncorrelated with EC fitness, which is captured 1719 
by the first component, such that the EC fitness is unable to make reasonable predictions of 1720 
fitness in this environment. 1721 
 1722 
Note that we observe qualitatively similar results to this measure when we use a standard 1723 
variance explained measure and exclude diploids, which dominate the test set (see Fig S5).  1724 
 1725 
Calculating mutant-specific improvement 1726 
It is possible that all 292 of our adaptive mutants each affect all 8 of the phenotypic components 1727 
in our low-dimensional model, however, it is also possible that some mutants influence some 1728 
phenotypes more strongly than others. In order to quantify how much a specific component 1729 
lends to the ability to predict the fitness of each mutant in each environment, we need a metric 1730 
to calculate the difference in predictive accuracy for the model with and without this component. 1731 
Specifically, to assess the impact of the inclusion of the kth component, we compared the 1732 
prediction accuracy of the k-component model to the model that includes the first k-1 1733 
components.  1734 
 1735 
Because fitness estimates vary in their reliability due to finite coverage and other sources (see 1736 
Noise model section), we should factor this uncertainty in our measure of prediction 1737 
improvement. For example, a small improvement in prediction accuracy for a very uncertain 1738 
fitness estimate is less meaningful than the same improvement in prediction accuracy for a 1739 
fitness estimate that we are quite confident in. Thus, we scale the difference in prediction 1740 
accuracy by the amount of uncertainty in the underlying fitness estimate.  1741 
 1742 
This gives us the measure of improvement in the estimate of the fitness of mutant i in condition j 1743 
due to the inclusion of the nth component as: 1744 

𝐼"#! =
G	𝑓/0B

!9*
− 𝑓"#H − G	𝑓/0B

!
− 𝑓"#H

𝜖"#
 1745 

where 𝑓/0B
! and 𝑓/0B

!9* represent the estimate of the fitness of mutant i in condition j for the model 1746 
with k and k-1 components, respectively. 𝑓"# and 𝜖"# represent the measured fitness value and 1747 
measurement uncertainty for the fitness of mutant i in condition j, respectively. 1748 
 1749 
 1750 
 1751 
 1752 
 1753 
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DATA AND CODE AVAILABILITY 1754 
 1755 
Data Resource  1756 
The raw Illumina sequencing data for the fitness measurement assays conducted in this study 1757 
can be found under NIH BioProject: PRJNA641718. Sequencing data previously published in 1758 
Venkataram et al., 2016 can be found under NIH BioProject: PRJNA310010. Sequencing data 1759 
previously published in Li et al., 2018 can be found under NIH BioProject: PRJNA388215. 1760 
 1761 
Code 1762 
The software repository for the barcode counting code can be found at 1763 
https://github.com/sandeepvenkataram/BarcodeCounter2. 1764 
The software repository for the fitness estimate inference can be found at 1765 
https://github.com/barcoding-bfa/fitness-assay-python. 1766 
The code for all downstream analysis, including figure generation can be found at 1767 
https://github.com/grantkinsler/1BigBatch.  1768 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.25.172197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/


 
 

42 

SUPPLEMENTARY FIGURES 1769 

 1770 
Fig S1. Noise model is a conservative measure of uncertainty. Fitness differences among strains that 1771 
are genetically identical and have very similar fitness effects tell us about the amount of measurement 1772 
noise. Our strain collection includes 188 diploids that have similar fitnesses and possess no mutations 1773 
other than diploidy. For each diploid fitness estimate, we calculated the percentile of deviation from the 1774 
weighted average of all diploid fitness estimates in a particular environment. This is shown on the 1775 
horizontal axis. The vertical axis shows the cumulative percent of diploids with deviations listed on the 1776 
horizontal axis. If the noise model perfectly captures the uncertainty of each measurement, then it should 1777 
be represented by the black dashed line, as, for instance, 20% of the diploids should have a difference 1778 
from the mean in the 20th percentile. Each line represents a single experiment (we have 45 environments 1779 
each with several replicates for a total of 109 experiments, see Methods). For the vast majority of 1780 
experiments, the diploids are closer to the mean than predicted by our noise model, as indicated by each 1781 
line’s sigmoidal shape. This indicates that the noise model is conservative. 1782 
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 1783 
Figure S2. The first component represents the mean fitness of each mutant in the 25 subtle 1784 
perturbations, as well as the mean impact of each perturbation on fitness. (A) The horizontal axis 1785 
shows the average fitness of each mutant across all 25 environments that represent subtle perturbations. 1786 
The vertical axis shows the value of the first phenotypic component for each mutant. Mutants are colored 1787 
as in Figure 2. (B) The horizontal axis shows the average fitness of all 292 mutants in each environment. 1788 
The vertical axis shows the value of the first phenotypic component in the environment weight space E.  1789 
 1790 

 1791 
Fig S3. Low-dimensional phenotypic models, and subsets of such models, cluster mutants by 1792 
gene and mutation type. (A) UMAP clusters mutants visually by gene when using the full 8-component 1793 
phenotype space. (B) UMAP also shows some clustering when using only the three components that 1794 
explain the least variation in mutant fitness. Though the clustering is clear for PDE2 and GPB2, it less 1795 
clearly delineates IRA1-nonsense and diploid mutants. This suggests these mutants do not have 1796 
substantial effects on these phenotypic components. 1797 
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 1798 
Fig S4. Improved fitness predictions when including the three smallest phenotypic components is 1799 
not specific to choice of training mutants. This plot is similar to the lower panel of figure 4A, except 1800 
here, black dots indicate the average improvement across 100 choices of the training and test sets. Error 1801 
bars indicate two standard deviations from the mean.  1802 
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 1803 
Fig S5. Prediction ability using unweighted coefficient of determination. These plots are similar to 1804 
figure 4A except here the vertical axis displays prediction power using a standard, rather than a weighted, 1805 
coefficient of determination measure. Because diploids dominate the number of mutants in the collection, 1806 
there are large differences between panel A (which shows all mutants) and panel B (which omits 1807 
diploids).   1808 
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SUPPLEMENTARY TABLES 1809 

Mutation Type Total Number Number in Training Set Number in Test Set 

Diploid 188 20 168 

High-Fitness Diploid    

        Diploid + Chr11Amp 3 1 2 

        Diploid + Chr12Amp 1 0 1 

        Diploid + IRA1 1 0 1 

        Diploid + IRA2 3 1 2 

        No known add’l mutations 11 5 6 

IRA1    

        IRA1 nonsense 20 10 10 

        IRA1 missense 9 4 5 

        IRA1 other 1 0 1 

IRA2 8 4 4 

GPB1 4 2 2 

GPB2 14 7 7 

PDE2 11 5 6 

Other Ras/PKA pathway    

        CYR1 3 1 2 

        TFS1 1 0 1 

        RAS2 1 0 1 

TOR/Sch9 pathway    

        KOG1 1 0 1 

        SCH9 1 0 1 

        TOR1 1 0 1 

Other Adaptive 7 0 7 

Neutral 3 0 3 

TOTAL 292 60 232 
Table S1. List of all mutants included in this study.  1810 
  1811 
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 1812 

# Shortname Source 
Number of 

barcoded clones Batch Number 
Number of 
replicates Description of Manipulation 

1 EC This study 500 10 3 No preculture 

2 EC This study 4800 4 3 No barcodeless ancestor 

3 EC Li et al (2018) 4800 4 3  

4 EC This study 500 5 3 No preculture 

5 EC Venkataram et al (2016) 4800 1 3  

6 EC Li et al (2018) 4800 3 3  

7 EC Venkataram et al (2016) 4800 2 3  

8 EC This study 500 9 4  

9 EC This study 500 5 3  

10 1.4% Gluc This study 500 9 2 1.4% glucose concentration 

11 12hr Ferm Li et al (2018) 4800 3 3 
44 hours of growth, 2*10^8 cells transferred, 
resulting in ~12 hours of fermentation phase 

12 1% Gly This study 500 9 2 Added 1% glycerol 

13 1.8% Gluc This study 500 9 2 1.8% glucose concentration 

14 0.5% Raf This study 500 9 2 Added 0.5% raffinose 

15 
8.5uM GdA (B1) This study 4800 1 3 Added 8.5uM Geldanamycin 

16 8hr Ferm Li et al (2018) 4800 3 3 
40 hours of growth, 8*10^8 cells transferred, 
resulting in ~8 hours of fermentation phase 

17 Baffle (B9) This study 500 9 2 Used baffled flask 

18 Baffle (B8) This study 4800 8 2 Used baffled flask 

19 0.5% DMSO This study 4800 1 3 Included 0.5% DMSO 

20 1% Raf This study 500 9 2 Added 1% raffinose 

21 Baffle, 1.7% Gluc This study 4800 8 2 1.7% glucose concentration, used baffled flask 

22 Baffle, 1.6% Gluc This study 4800 8 2 1.6% glucose concentration, used baffled flask 

23 18hr Ferm Li et al (2018) 4800 4 3 
50 hours of growth, 2.5*10^7 cells transferred, 
resulting in ~18 hours of fermentation phase 

24 Baffle, 1.4% Gluc This study 4800 8 2 1.4% glucose concentration, used baffled flask 

25 2ug Flu This study 500 9 2 Added 2ug Fluconazole 

26 22hr Ferm Li et al (2018) 4800 4 3 
54 hours of growth, 6.25*10^6 cells transferred, 
resulting in ~22 hours of fermentation phase 

27 3 Day Li et al (2018) 4800 2 3 3 days of growth 

28 17uM GdA This study 500 9 2 Added 17uM Geldanamycin 

29 Baffle, 1.8% Gluc This study 4800 8 2 1.8% glucose concentration, used baffled flask 

30 1 Day Li et al (2018) 4800 2 3 24 hours of growth 

31 1% EtOH This study 500 9 2 Added 1% ethanol 

32 8.5uM GdA (B9) This study 500 9 2 Added 8.5uM Geldanamycin 

33 1.5% Suc, 1% Raf This study 500 9 2 No glucose, 1.5% Sucrose, 1% Raffinose 

34 
Baffle, 2.5% Gluc This study 4800 8 2 2.5% glucose concentration, used baffled flask 

35 4 Day Li et al (2018) 4800 2 3 4 days of growth 

36 5 Day Li et al (2018) 4800 6 3 5 days of growth 

37 0.2M NaCl This study 500 9 2 Added 0.2M NaCl 

38 0.2M KCl This study 500 9 1 Added 0.2M KCl 

39 0.5ug Flu This study 500 9 2 Added 0.5ug Fluconazole 

40 Baffle, 0.4ug/ml Ben This study 4800 7 2 Added 0.4ug/mL Benomyl, used baffled flask 

41 Baffle, 2ug/ml Ben This study 4800 7 2 Added 2ug/mL Benomyl, used baffled flask 

42 6 Day Li et al (2018) 4800 6 3 6 days of growth 

43 7 Day Li et al (2018) 4800 6 3 7 days of growth 

44 0.5M KCl This study 500 9 1 Added 0.5M KCl 

45 0.5M NaCl This study 500 9 1* Added 0.5M NaCl 

Table S2. List of all conditions used in this study, ordered by deviation from the EC batch as in the main 1813 
text figures.  1814 
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