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Abstract 
 
To understand the physiology and pathology of disease, capturing the heterogeneity of cell 

types within their tissue environment is fundamental. In such an endeavor, the human kidney 

presents a formidable challenge because its complex organizational structure is tightly linked 

to key physiological functions. Advances in imaging-based cell classification may be limited by 

the need to incorporate specific markers that can link classification to function.  Multiplex 

imaging can mitigate these limitations, but requires cumulative incorporation of markers, which 

may lead to tissue exhaustion. Furthermore, the application of such strategies in large scale 3-

dimensional (3D) imaging is challenging. Here, we propose that 3D nuclear signatures from a 

DNA stain, DAPI, which could be incorporated in most experimental imaging, can be used for 

classifying cells in intact human kidney tissue. We developed an unsupervised approach that 

uses 3D tissue cytometry to generate a large training dataset of nuclei images (NephNuc), 

where each nucleus is associated with a cell type label. We then devised various supervised 

machine learning approaches for kidney cell classification and demonstrated that a deep 

learning approach outperforms classical machine learning or shape-based classifiers. 

Specifically, a custom 3D convolutional neural network (NephNet3D) trained on nuclei image 

volumes achieved a balanced accuracy of 80.26%. Importantly, integrating NephNet3D 

classification with tissue cytometry allowed in situ visualization of cell type classifications in 

kidney tissue. In conclusion, we present a tissue cytometry and deep learning approach for in 

situ classification of cell types in human kidney tissue using only a DNA stain. This 

methodology is generalizable to other tissues and has potential advantages on tissue economy 

and non-exhaustive classification of different cell types.   
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Introduction 
 
Tissue organs in the human body are made up of cells that are highly specialized and 

organized into functionally important architectures. Identifying the various types of cells and 

their spatial organization within the tissue is essential to understand the physiological functions 

of organs and their dysfunction during disease. For example, the organization of kidney tissue 

illustrates how distinctly heterogeneous cell types work harmoniously to achieve blood filtration 

and homeostasis and how alteration in function can induce pathological states during kidney 

disease.1-4 Although novel technologies such as single cell RNA sequencing provide a new 

development to classify cell types and subtypes based on transcriptome profiling in 

disaggregated tissues,5-7  the ability to classify various cell types in situ based on imaging data, 

particularly in the human kidney, is not yet fully developed. The development of imaging 

analytics including classification techniques is crucial, as preserving the tissue architecture and 

spatial context of each cell will enhance the ability to interpret how specific cell types are linked 

to biological function.   

 

Cell identification in tissue specimens can be performed in thin sections using histological 

stains such as Hematoxylin and Eosin (H&E), or Period acid-Schiff (PAS). These stains label 

the nuclei of cells distinctly from the cytoplasm, thereby allowing for cell visualization and 

detection. The identification of cell types in such imaged sections typically depends on the 

expert eye of a pathologist, although newer computer-aided decision support and machine 

learning tools have enabled enhanced reproducibility. 8,9 The use of such tools in cell 

classification has predominantly focused on detection of cancer or unique cell phenotypes.10,11  

Broader application of these machine learning approaches in cell classification requires large 
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training datasets, which are difficult to generate. 9  In this setting, it is also difficult to classify 

cells into multiple subtypes that could be linked to biological functions without the use of 

specific markers. Therefore, to enhance the feasibility and depth of classification, concurrent 

staining for multiple markers that are individually unique for specific cell populations is needed. 

Although such multiplexed staining is possible using immunohistochemistry, this approach is 

typically done using immunofluorescence microscopy because of the availability of established 

methods of quantitating fluorescence and the ability to multiplex spectrally distinguishable 

fluorophores for various cell markers in a single section of tissue.12-14 With optical sectioning 

microscopy, querying cell types based on specific markers could also be expanded to 3-

dimensional (3D) space, increasing the ability to assay cellular structure and tissue 

architecture.13,15,16 

 

Multiplex imaging based on cell markers may offer a path to classify cells in tissues, especially 

with the availability of tissue cytometry software tools that facilitate the analytical process. For 

example, we recently described the Volumetric Tissue Exploration and Analysis (VTEA) tool 

which enables the semi-automated classification of labeled cells in 3D image volumes.13,15,17 

However, multiplexed imaging and tissue cytometry have several challenges that may limit 

their utility for comprehensive cell classification in situ.  These challenges include a potentially 

lengthy technical workflow, a requirement for image processing expertise to optimize the 

analysis, and above all, only a finite number of cell-associated markers can be obtained from a 

single experiment.15 The scarcity of markers is the most limiting, as each time a new marker is 

discovered or needed, new experiments on additional tissue sections are required. For sparse 

tissue such as a kidney biopsy, this could lead to tissue exhaustion. Furthermore, because 
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multiplexing is performed at the experimental level, classification of cells in historical datasets 

from sparse tissue specimen using prospectively discovered new markers is not feasible using 

this standard workflow. Therefore, it is beneficial to classify cells independently of the presence 

of specific cell markers in each experimental condition. Relying on information from a common 

cell marker easily embedded in the staining process and biologically linked to different cell 

types in the tissue could substitute the need for specific cell markers.     

 

In this work, we proposed a hypothesis that 3D nuclear staining with 4′,6-diamidino-2-

phenylindole (DAPI), a nuclear stain commonly used in most fluorescence imaging methods, 18 

contains enough information for reliable classification of human kidney cells in situ using a 

supervised learning framework. This hypothesis is supported by previous in vitro work from 

multiple investigators showing that nuclear staining can infer functional information about cells. 

9,19-21 This is not surprising because healthy cell functions (such as various stages of the cell 

cycle and gene expression) and injury states are associated with specific patterns of chromatin 

condensation. 21,22 Furthermore, different cell types may have different shapes of nuclei, which 

is also captured by nuclear staining.13 To test this hypothesis, we leveraged an enhanced 

functionality of the VTEA cytometry tool to generate large ground truth datasets from kidney 

tissue labeled with specific markers and investigated the accuracy of various classification 

methods.  

 

Our experimental results show that deep learning (DL) based classification models are able to 

perform kidney cell classification with a satisfactory accuracy, outperforming other classical 

supervised classification approaches, and that nuclear morphology can successfully classify 
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most cell types in the cortex of the kidney by DL. Furthermore, our results suggest that 3D data 

improves the predictive ability of this approach compared to 2D data. In addition, minimal 

labeled data is needed to classify new specimens, which broadens the use of this technique 

for fine tuning new experiments. The approach of combining tissue cytometry (VTEA) and DL 

to generate ground truth library datasets as well as classify and visualize cell types in situ is 

unique. We anticipate that our methodologies will have an important impact to facilitate 

comprehensive cell classification and visualization in situ within the kidney and potentially 

other tissues and may enhance the information obtained from sparsely available human 

specimens. The datasets and approaches used will be made publicly available. 

                                                                                                                              

 
 

Results 
 
Nuclear morphology and staining pattern are unique to distinct cell types found in the cortex of 

the human kidney.  

Within the kidney, nephron structures along with the surrounding blood vessels and interstitium 

are divided into specific segments based on their spatial location and physiological function 4 

(Figure 1A). These segments are comprised of unique and specialized cells that can be 

identified by specific markers,3,5,23,24 such as Megalin (LRP2) and Aquaporin 1 (AQP1) for 

proximal tubular cells (PT), Tamm-Horsfall protein (THP) for thick ascending limb cells (TAL), 

SLC12A3 for cells of distal convoluted tubules (DCT), Cytokeratin 8 (CYT8) for collecting duct 

cells (CD), CD31 for endothelial cells (subdivided into two subclasses based on association 

with glomeruli or tubules/interstitium), Nestin for podocytes (Podo), and CD45 for leukocytes. 

Based on these markers, these different cells types were visually identified using confocal 
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fluorescence 3D imaging (Figure 1C). The DAPI nuclear stain were qualitatively examined for 

specific cell types and found to have noticeable distinct signatures that are imparted by various 

patterns of chromatin condensation and unique shapes for each cell type (Figure 1B).    

 

Tissue cytometry using the Volumetric Tissue Exploration and Analysis (VTEA) software tool 

can be used to generate large amounts of training data with cell type labels 

VTEA cytometry tool was used to identify all cells based on a previously described nuclear 

segmentation and cytometry approach.13 Cell types were identified based on the fluorescence 

intensity of specific cell markers using an unsupervised machine learning clustering algorithm 

(Figure 2). Visualization of the specific clusters in the image volume was also done using 

VTEA as an additional measure to validate the identity of cell types based on the expected 

spatial distribution and morphological characteristics in the tissue (Figure 2). Image regions-of-

interest were also used to limit specific localization dependent sub-populations, such as the 

endothelial cells in glomerulus vs peritubular space. VTEA supports projections and export of 

3D volumes that can include surrounding signal or only the nuclei segmented by VTEA 

(Figure S1). Using this approach, ~230,000 cells were classified into 8 different classes 

(Table S1). The corresponding 3D volumes, 3D volumes with context (Figure S1B) and 

2D projections along the z-axis (z-projections) were sorted and exported into “ground truth” 

libraries as NephNuc3D, NephNuc3D with context and NephNuc2D_Projection (without or 

with context), respectively (entire dataset will be available through an online repository 

such as the Broad Bioimaging Benchmark Collection)25. The median z-axis slices of nuclei 

were extracted from the 3D data to generate 2D datasets (NephNuc2D, without or with 

context).  
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Using classical machine learning and shape-based descriptors for classifying cells based on 

DAPI nuclear staining   

The training dataset generated was used to test the accuracy of traditional machine learning 

tools, including Random Forest or Naïve Bayes to classify cell types based on the DAPI 3D 

nuclear staining (Figure S2, Table S2). Three distinct models were each trained using a 

different feature-sets. The first feature-set used NephNuc3D data, the second feature-set 

considered NephNuc3D with context, and the final feature-set used NephNuc2D_Projection 

without context, in which the largest pixel intensity of the z-axis was used. The balanced 

accuracies of a Random Forest classifier for the three feature-sets were 35.0%, 33.2% and 

32.7%, respectively (Figure S2B, Table S2). The performance of a Naïve Bayes classifier was 

even lower than Random Forest for all three feature-sets (Figure S2, Table S2). 

Similarly, we also tested the accuracy of a shape-based descriptor, using spherical harmonics 

(SPHARM), in predicting cell classes.26 SPHARM analysis was performed after surface 

extraction using the marching cube algorithm.27 Once the spherical harmonic features of the 

images were obtained, both Support Machine Vector and Random Forest classifiers were used 

as classification models (Figure S3, Table S2). The best-balanced accuracy using SPHARM 

was 15.5% with the NephNuc3D data.  

       

Convolutional neural network (CNN) based Deep Learning models increase the accuracy of 

cell classification 

Next, a deep learning approach was tested to determine if we could improve the classification 

accuracy. For this, two convolutional neural networks, NephNet2D and NephNet3D were 
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devised to test the 2D or 3D training data, respectively. The input for NephNet2D were 

NephNuc2D_Projection data or median z-axis slice 2D datasets. The input for NephNet3D 

were NephNuc3D or NephNuc3D with context. The architectures of the networks used are 

shown in Figure 2. Augmentation and hyperparameters selection settings are discussed in 

detail in the Methods section.  The inclusion or exclusion of contextual, surrounding nuclei in 

the 2D or 3D data was examined to improve the accuracy.  

 
Both the dimension and content of the images affected the predictive ability of the CNNs. For 

the 2D slice, 2D maximum projections, and 3D volumes, adding the context surrounding the 

nuclei of interest improved the balanced accuracy (Figure 4 and Table S2). The highest 

balanced accuracy was observed with NephNet3D using NephNuc3D with context (80.3%), as 

compared to 66.5% and 60.8% with NephNet2D using NephNuc2D_Projection and 

NephNuc2D with context, respectively.  Surprisingly, using an established vision-trained 

network such as the fine-tuned Resnet-31 CNN underperformed compared to NephNet2D 

(Figure S4 and Table S2).  

The network with the highest balanced accuracy, NephNet3D trained on 3D image volumes 

with context, was subjected to noise and image resolution robustness testing (Figure 5). Down 

sampling the input images led to a rapid decrease in predictive performance. For example, a 

2x down sample decreased the accuracy from 80.26% to 65.49%. The addition of noise at 

fixed levels mildly decreased the predictive performance, dropping from 80.26% to 77.45% at 

an α = 0.8 and 71.39% at an α = 0.6.  
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Improving classification in novel specimens’ accuracy by subsampling 

To improve the predictive ability of NephNet3D, multiple samples were included in the 

NephNuc datasets.  As specimens from novel patients are analyzed, we expect there will be 

specimen-to-specimen variability.  Thus, during training of NephNet3D, we tested if the ability 

to predict cell classification in a new specimen was improved by fine-tuning on fractions of that 

specimen. An early iteration of NephNet3D (trained only on specimens 1 and 2(Table S1)) was 

trained for 30 epochs on 1% of specimen 3. This finetuning improved the balanced accuracy 

on the remaining nuclei of specimen 3 from 58.3% to 74.2%. With 10% of specimen 3 used for 

fine-tuning, the network’s balanced accuracy was 79.7%-nearly the same balanced accuracy 

of the fully trained NephNet3D network.  When finetuning with more than 10% of specimen 3, 

the balanced accuracy remained at ~80%.  This suggests that, if necessary, NephNet3D can 

be adapted to novel tissue with a small fraction of labeled nuclei (Figure 6A).  

 

Improving classification by training data augmentation 

Supervised classification generally performs better if the training data has sufficient variability. 

This is particularly true for deep learning-based classification, as such models have very large 

number of parameters; unless the training data has sufficient variability, the large number of 

parameters causes the model to succumb to overfitting. To overcome this problem, data 

augmentation is used during training to increase data variability and mitigate the overfitting 

issue. The image augmentation steps we considered included transformation, rotation, flip and 

noise injection. The balanced accuracy on training without augmentation were 13%, 45%, and 

53% for 2D model, 3D model without context, and 3D model with context, respectively. In 

contrast, training using augmented training data yielded a balanced accuracy of 29%, 53%, 
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and 80% for 2D model, 3D model without context, and 3D model with context data, 

respectively.  

 

NephNet3D with VTEA tissue cytometry can classify and spatially map cell types in image 

volumes stained only with DAPI  

The ultimate goal of this methodology is to classify cell types in image volumes based only on 

the DAPI nuclear staining. To establish feasibility, a new image volume of a kidney cortical 

section stained with DAPI that was not used in previous training and from the same specimen 

cohort was tested. Image volumes of all the nuclei were generated by VTEA and then tested 

through the trained NephNet3D to predict the classes of the cells. Classified nuclei were then 

visualized on the image volume using VTEA, which allowed a “pseudo” highlighting of cells 

based on the trained NephNet3D (Figure 6B). These predictions by NephNet3D were 

compared to classification by an expert (using nuclear shape and spatial cues) on a 

subsample of the image volume. Across all eight classes, NephNet3D had a balanced 

accuracy of 67.9% as compared to an expert’s classification.  The NephNet3D and expert 

classifications showed fair agreement with a Kappa statistic of 0.35. Furthermore, upon 

examining the cell classifications mapped back to the image volume, cells classified as 

epithelial cells outlined contiguous tubular structures (Figure 6B, top panel) while cells 

classified as endothelial or immune cells were confined to either the interstitium or glomeruli 

(Figure 6B, bottom panel).  Strikingly, cells classified as podocytes were almost exclusively 

confined to the single glomerulus in the image volume (Figure 6B). 
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Discussion 

 
In this work, we devised an approach to classify cells in situ within intact kidney tissue, using 

an imaging-based approach that relies on nuclear staining. To accomplish this goal, we used 

tissue cytometry to efficiently generate a large amount of training data, consisting of image 

volumes of nuclei classified based on their association with specific cell markers within the 

human kidney. This dataset was used to determine the optimal machine learning approach 

that could provide the highest classification accuracy based on this nuclear staining. Our 

results show that a deep learning approach outperforms traditional supervised classification 

methods, and that a CNN trained on 3D image volumes with context (other nuclei in vicinity) 

provides the highest balanced accuracy. This classification pipeline was then demonstrated on 

an unexplored kidney tissue whereby cells were successfully classified into 8 subtypes and 

visualized based only on 3D nuclear staining.  

 

Image-based classification of cells has several applications in biology and medicine.9 Some 

commonly recognized applications are in drug screening and discovery,19,28  genetic 

screening, 29 cell biology,30 and digital pathology. 10 These last two application are commonly 

used in the context of cell classification in intact tissue. Cell biology applications include cell 

classification based on nuclear and other specific markers or spatial analyses, similar to what 

we and other described as tissue cytometry using fluorescence or histochemical markers. 

12,13,16,31,32 Many efforts are also focused on cell segmentation, automated detection and 

counting.33 Digital pathology relies on histology staining and has experienced exciting 

development in cell segmentation and classification. 8,34-36 Several approaches have been 

described to classify cells based only on nuclear staining in digital pathology images, such as 
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standard machine learning classifiers, numerical feature engineering, neural networks and 

transport-based morphometry. 9,10,20 However, many of these approaches are focused on 

cancer detection or identification of unique cell phenotypes. 10,11 An approach that can allow 

non-exhaustive cell classification based only on 3D nuclear signature has not been previously 

described.     

 

A strength of our approach is that it uniquely combines tissue cytometry and deep learning to 

classify cells based on their 3D nuclear staining in intact tissues. Tissue cytometry using VTEA 

is essential to generate the training dataset and visualize the classified cell in situ. Generating 

training data is arguably one of the most arduous tasks in any machine learning approach.  

VTEA allowed us to generate 230,000 labeled nuclei quickly-in a matter of weeks.  

Furthermore, VTEA will keep track of the nuclei and map them to the tissue for visualization 

after classification, allowing their classification to be interpreted in the setting of their spatial 

distribution and relationship to other cells and structures. In the kidney, this is critical in 

interpreting how specific cell types are linked to biological function or dysfunction, and we 

envision that this will also be important when applied to other organs. 

 

The approach proposed in this work will likely have important applications in the setting of 

sparse tissue. The described workflow enables continued re-evaluation of existing imaging 

data, thereby reducing the need for additional tissue. Indeed, as new cell markers emerge, the 

deep learning approach can be trained to recognize these new nuclear signatures in ground 

truth datasets generated in an abundant source of tissue, such as the specimen used in this 

study. New classifications or sub-classifications can then be imputed on existing datasets from 
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sparse tissue without the need for additional sectioning and depletion of the tissue. This is 

especially useful in the setting of a kidney biopsy, which is a needle biopsy with a small 

amount of tissue.17,37 DAPI staining can be easily incorporated with other technologies. For 

example, our approach can be extended to specimen prepared for RNA exploration, and cell 

classification can become highly integrated by incorporating signatures from various levels of 

gene expression. 38  Although this overall approach has been tailored to the complexity of 

kidney tissue, it can be applied to other organs. Furthermore, the model of continuous data 

extraction from a single archived dataset may facilitate data sharing and collaboration.  

 

Comparing the different approaches and networks support the conclusion that a 3D CNN 

architecture was best at predicting cell class based on nuclear staining and showed marked 

improvement over a 2D architecture tested with various types of data. The 3D CNN, with 3D 

data, was particularly important for improving the classification accuracy of cells within the 

glomerulus and proximal tubules. Furthermore, NephNet3D showed increased accuracy for the 

podocyte, proximal tubule, thick ascending limb, collecting duct, and glomerular endothelium 

cell classes. This improvement supports the idea that important features are contained within 

the three-dimensional structure of the nucleus for each cell type. Importantly, NephNet3D did 

have trouble classifying or discriminating between tubular epithelium of adjacent segments, 

such as the collecting duct and distal tubule.  This could be due to the biological reliability of 

the cell markers, the variability in expression of the markers (e.g. Sample 3, Table S1) or 

overlap in transition areas between tubular segments 23.  In fact, the poor predictive capacity in 

these transitional regions (e.g. DCT to CD) could be used as a method to identify transitional 

cells or possibly novel subtypes of the tubular epithelium. 
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The wide availability of 2D imaging modalities, clinically and in research, argues for developing 

2D approaches for cellular classification.  We demonstrate fair performance (~60% balanced 

accuracy) of a 2D architecture.  We also demonstrate poor performance (~30% balanced 

accuracy), worse than our 2D approach, of a pretrained network, Resnet-3139.  Thus, our 2D 

network could be a better starting point for additional refinement of a 2D approach.  

Furthermore, our work demonstrates the importance of data collection at an appropriate 

resolution and signal/noise for the predictive ability of deep learning using nuclear information.  

This may provide a guide for future data collection on additional imaging modalities more 

common in 2D imaging, including slide-scanners and other high-content platforms. Importantly, 

we expect both our 2D and 3D architectures will be refined through additional data collection to 

establish more classes of nuclei, more depth within classes and to cover other imaging 

platforms and modalities.  Our network and data are publicly available to the community for 

such development.   

 

Our study has several limitations. The approach used is specialized and may not be broadly 

applicable because of the need for expertise in imaging and computer science as well as the 

need for high performance computing hardware. Despite having a training dataset of 

thousands of curated nuclear volumes, we anticipate that the training dataset will need to 

expand significantly for the accuracy to improve. Since the dataset has been generated from 

just three tissue samples, expanding the dataset with additional specimens will further improve 

the generalizability of this approach. Also, the resolution at which the data was collected, and 

subsequent quality of segmentation, may place SPHARM or numerical feature-based 
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approaches at a disadvantage a priori, because these approaches may require a higher 

resolution image to be most effective.  However, balancing feasibility and the economy of 

time/resource constraints, the current data acquisition settings are commonly used.15 

Therefore, it is reasonable to assert that for standard large scale 3D image acquisition, 

NephNet3D is likely the most optimal approach for cell classification based on nuclear staining.   

 

The current work was done on reference tissue from donor nephrectomy specimens. Kidney 

disease will likely alter the nuclear staining signature of cells because of metabolic stress or 

cellular injury, 40 thereby potentially changing the classification of some cells or presenting a 

new subclass for a particular cell type.21 Investigating these changes and distribution at the 

tissue level will likely aid in understanding the pathophysiology of the disease, especially in 

early stages where such subtle cellular changes may precede obvious structural abnormalities. 

We propose that the cytometry approach will facilitate this process. The visualization feature of 

VTEA can map all cell types, including diseased cell populations.  By comparing localization 

and changes to reference tissue, diseased cells can be re-classified, and could serve as 

ground truth for a disease subclassification. Such iterative learning models are subject of 

ongoing and future investigations in our lab. In addition, since we showed that only a small 

fraction of appropriately classified nuclei from a tissue is enough to maximize the accuracy of 

cell class prediction for that particular tissue, expanding our training dataset to new subclasses 

of cells may conform with our goals of tissue economy, even when only sparse tissue is 

available for ground truth generation. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.167726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.167726


17 
 

Our work here does not address which specific features in the nuclei are key determinants of 

their classification. The explainability and human readability of the deep learning approaches 

are still at an early stage.41 However, since the signatures of nuclear staining are linked to 

chromatin condensation and cellular activity,18,21 it is possible that our work could present an 

opportunity to recognize the salient features in nuclei that dictate their classification. For this, 

we plan to use class saliency map and attribution-based approaches to understand the specific 

image features which impacted the classification decision made by the deep learning models. 

This is a subject of ongoing research.  

 

In conclusion, by combining tissue cytometry and a deep learning CNN, we present an 

approach for in situ classification of cell types in the human kidney using 3D nuclear staining. 

This classification methodology allows the preservation of tissue architecture and spatial 

context of each cell and has potential advantages on tissue economy and non-exhaustive 

analysis of existing data.    
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Methods 
 

Kidney Tissue Specimens 

Three deceased donor kidney nephrectomy tissue were used based on a protocol approved by 

the Institutional Review Board at Indiana University. 50 µm section from OCT frozen kidney 

cortical specimen were fixed overnight with 4% paraformaldehyde or 50 µm sections were cut 

by vibratome from 4% paraformaldehyde fixed cortical tissue fragments underwent staining 

with DAPI and antibodies for the specified markers including: Megalin, LRP2 (cat#ab76969 

,abcam), Aquaporin-1 (AQP1,clone 1/22, cat# sc-32737, Santa Cruz Biotechnology), Slc12A3 

(cat#HPA028748, Sigma), Uromodulin, Tamm-Horsfall protein (cat# AF5144, R&D Systems), 

CD45 (clone HI30,cat# 304002,), CD31 (clone JC/70A cat# NB600-562-R, Novus), Nestin 

(clone 10C2, cat# 656810, Biolegend) and Cytokeratin-8 (cat# NBP-34267, Novus).  All 

staining was performed in 1X Phosphate buffer saline with 10% normal goat serum and 0.1% 

Triton X-100 with overnight incubations.  All secondaries were raised in goat highly cross-

adsorbed, and were labeled with Alexa488, Alexa546, Alexa555 or Alexa568, Alexa647.  The 

CD31, CD45 and Nestin antibodies were directly conjugated with Dylight 550, Alexa488 and 

Alexa 647, respectively.  Stained tissue was mounted under #1.5 coverslips in Prolong Glass 

allowed to cure for 24-48 hours before sealing with nail-polish.  Mounted and sealed tissue 

was stored at 4C before imaging. 

 

Imaging  

Image acquisition was performed in four separate consecutive channels using an upright Leica 

SP8 Confocal Microscope controlled by LAS X software (Germany). Volume stacks spanning 

the whole thickness of the tissue were taken using a multi-immersion 20× NA 0.75 objective 
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with Leica immersion oil with 1.0-μm spacing and 0.5 x 0.5 µm voxels.  Large scale imaging 

was performed using and automated stage with volumes overlapping by ~10%.  Typical 

imaging times were 4-6 hours.  Image volumes were stitched using FIJI42. 

 

VTEA Cytometry 

Tissue cytometry was performed using a prerelease version of the FIJI plugin Volumetric 

Tissue Exploration and Analysis(VTEA)13 available on github (https://github.com/icbm-

iupui/volumetric-tissue-exploration-analysis, that incorporates unsupervised learning 

approaches into a 3D tissue cytometry workflow (manuscript in preparation).  Segmentation: 

Entire image volumes were imported in VTEA and the nuclei channel was pre-processed to 

facilitate segmentation by performing denoising, rolling-ball background subtraction and 

contrast stretching to compensate for attenuation of signal at depth.  A modified form of 

connected components built into VTEA (LSConnect3D), that combines Otsu intensity 

thresholding, watershed splitting and connected component merging in 3D was used for 

segmentation.  To facilitate segmentation of mesoscale images LSConnect3D subdivides the 

image into user defined volumes to facilitate parallelization during processing.  Both a 

minimum and maximum size restriction was placed on nuclei to mitigate segmentation errors.  

Following segmentation of the nuclei a second segmented volume, grow-volume, was defined 

around each nucleus that extend ~2 pixels for assessing stains associated with a 

nucleus13.The pixel values, including mean, upper-quartile mean, standard deviation and/or 

maximum within the segmented nuclei and/or the grow-volume were used as features for 

clustering by X-means implemented in SMILE (http://haifengl.github.io/).Validation of clusters 

was performed by an expert using VTEA’s mapping of gated cells to the original image volume 

to demonstrate correct localization of the selected nuclei.   Nuclei from gated cells were 
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exported by VTEA as user defined image volumes (segmented nuclei only, with surrounding 

nuclei or with context, image size, etc.) using a duplicate image volume of the DAPI channel 

that had not been subjected to the image preprocessing necessary for segmentation.  

Datasets exported names and a brief description are given in table S2 and class 

representation are given in table S1.  A small subset (<1.7%) of nuclei without context were 

excluded from NephNuc3D when the segmented nucleus extended outside of the sampling 

volume. 

Image analysis was performed on a dedicated workstation with a Xeon 2245 (8 cores) with 256 

GB RAM, 2x2 TB NVMe SSDs, a 24TB RAID, 2x 2080Ti (not linked, 11 GB RAM each, Nvidia) 

running Windows 10.  

 

Expert review of classification 

Using the pre-release version of VTEA mentioned above, a manual classification was 

performed on 177 nuclei.  VTEA randomly picked segmented nuclei and presented a cropped 

image with a highlighted nucleus for an expert to place in predefined classes.  VTEA provided 

an interface to tally these nuclei and import these expert classifications as a feature for 

comparison with other classification approaches.  Balanced accuracy was calculated as given 

below and the kappa statistic was calculated with the package psych in R. 

 
Data organization 

 
Training data for this research consisted of approximately 230,000 3D images of nuclei, 

segmented as described above from three reference tissue specimens. Each grayscale image 

was 32x32x7 pixels representing in situ dimension of 17.3x17.3x3.9 µm. Each pixel value was 

between 0 and 255 denoting the light intensity of the pixel. Eleven kidney cell classes were 
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identified and the ground truth class-label of each cell was obtained using VTEA cytometry 

tools. However, the performance of each learning model was reported by using a condensed 

set of eight classes; for example, while two separate proximal tubule classes are identified in 

the labels, classifying a nucleus into either class is recorded as a correct classification. 15% of 

image instances of each class were used to build a test dataset.  

 

Preprocessing of nuclei prior to classification 

Before feeding an image to the classification algorithm, each image was pre-processed as 

below. First, each pixel value was normalized using Z-score normalization; if I was the intensity 

of the original pixel, I’ was the intensity of normalized pixel, 𝜇 was the mean intensity and 𝜎 

was the standard deviation of that pixel across the training images, then 𝐼 𝐼 𝜇 /𝜎. This 

transformation made the mean intensity of the dataset to be 0 and the variance to be 1.   

 

Classical supervised classification models 
 
 
Two classical supervised classification models were used, Random Forest, and Naïve Bayes. 

Random Forest classifier was implemented using Scikit-learn43 (version 0.22.2) in Python with 

a maximum number of trees equal to 450. The maximum depth was expanded until all leaves 

were pure or all leaves contained 2 or fewer samples.  A Gaussian Naïve Bayesian classifier 

was used with no prior probabilities and variance smoothing factor of 1e-9.  

 

Classification with spherical harmonics 

The method is based on the work of Medyukhina et al.27  Using the NephNuc3D datasets, the 

surface of nuclei surface was reconstructed in the form of a mesh of triangles using the 
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marching cubes algorithm (scikit-image v. 0.18.dev0). Next, the x, y and z coordinates of 

unique vertices were extracted and converted to polar co-ordinates. These polar co-ordinates 

were used to expand a set of irregularly sampled data points into spherical harmonics using a 

least squares inversion (SHTOOLS 4.6), adapted from 

'https://shtools.oca.eu/shtools/public/pyshexpandlsq.html'. The maximum spherical harmonic 

degree of the output coefficients was set to 3. These spherical harmonic coefficients were 

used to compute rotation- invariant frequency spectrum to be used as static features for 

classification. These static features of each of the nuclei were used in a Support Vector 

Machine or Random-Forest classifier. 

 

Deep learning 
 
A custom-made 3D deep convolution neural network (CNN) based model was used for the 

kidney cell classification. Besides preprocessing, which was performed prior to the training, 

some augmentation steps were performed during training, mainly to prevent overfitting. Each 

augmentation step had a 30% chance of being applied to an image on every epoch. The 

augmentation steps were mix of transformation, rotation, flip, and noise injection; the 

transformations were translation up to 8 pixels in X and Y axes and 3 pixels in Z axis, random 

rotation up to 35˚, random 90˚ rotation, random horizontal or vertical flip, random Poisson 

noise using the equation I’ = I0 +  (where I0 is the original pixel intensity, I’ was the 

transformed pixel intensity,  is the Poisson noise, and  is a mixing factor randomly chosen 

between 0.8 and 1.0), random down-sample up to a factor of 2x, and random contrast by 

multiplying the image by a random contrast factor between 0.8 and 1.2. 
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Three different image data formats, 2D slice, 2D maximum projection, and 3D, were 

considered. 2D slice (or in-short 2D) was obtained by only using the median slice of each 

volume. 2D maximum project was obtained by considering the maximum pixel value over the 

z-axis of that pixel. Each image format can include the surrounding nuclei (“with context”) or 

only the segmented nuclei of interest (“without context”). NephNuc3D data, the second feature-

set considered NephNuc3D with context, and the final feature-set used 

NephNuc2D_Projection without context, 

For convolutional neural networks, three different architectures were considered. First, a 

Resnet-31 architecture was fine-tuned on the 2D or 2D maximum image data format.44 No 

weights were frozen during the fine-tuning process. Second, a CNN in which each block 

consists of batch normalization, 3x3x3 convolution with a stride of 2 and padding of 1, leaky 

ReLu, a second 3x3x3 convolution and leaky Relu, and a final maximum pooling layer with a 

stride of 2. These blocks were repeated until the feature size was 4x4x1 pixels. The classifier 

block consisted of two sets of a linear layer, batch normalization, and dropout layer (p=0.5). 

The initial number of features was 76 and double after each convolutional block.  This 

architecture is referred to as NephNet3D throughout the text and received 3D images with or 

without context as inputs (NephNuc3D and NephNuc3D with context). Third, a similar CNN 

with 2D convolutions was designed such that the convolutional blocks are repeated until the 

feature size is 8x8 pixels. The initial number of features was 32 and doubled after each 

convolutional block. This architecture is referred to as NephNet2D and received 2D slices or 

maximum projections with or without context as input (NephNuc2D, NephNuc2D_Projection 

with/without context).  
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Optimization of network parameters 
 
The Hyperband optimization technique45was used to determine optimal values for learning 

rate, initial number of features, batch size, learning rate step, and learning rate decay. The 

Hyperband algorithm begins by selecting a predetermined number of configurations (600), and 

training each for 1 epoch. The top 50% determined by validation loss are trained for 2 epochs. 

The top 50% are selected and trained for 4 epochs. This process is repeated until only 1 

network remains. Then the entire process is repeated 5 times but begins with less 

configurations trained for more epochs. For example, the third iteration will train 150 

configurations for 4 epochs. This altered repetition strategy acts to reduce bias towards 

networks whose performance improves rapidly but does not achieve high performance with 

many additional epochs (e.g. high learning rates).  The final parameters for training 

NephNet3D were a learning rate of 0.016, batch size of 64, momentum of 0.8, weight decay of 

0.006, and 76 initial features. The learning rate schedule was optimized such that the learning 

rate was reduced by a factor of 0.29 after 8 epochs without an improvement in validation loss.  

For the NephNet2D, the learning rate was 0.000414, batch size of 16, momentum of 0.9, 

weight decay of 0.0058, and 32 initial features. The learning rate scheduler used a factor of 

0.489 and a step size of 15 epochs without validation loss improvement.  

 
Training 
 
All networks were trained at their optimized parameters for 500 epochs and tested using the 

network weights that achieved the lowest validation loss using PyTorch v1.546. Networks were 

trained either on a 2080Ti (11 GB RAM, Nvidia) installed on a computer with 126 GB RAM, 6 

TB of SSD space and a Core i9 9900k running Windows 10 or a workstation with two Titan 
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RTX graphics card (24 GB RAM each) with NVLink (Nvidia), 128 GB RAM, 4 TB of SSD space 

and a Core i9 9900k running RedHat Linux. 

Metrics 

Due to the relatively unbalanced nature of cell types in the human kidney, a direct accuracy 

score would bias towards machine learning models whose majority prediction matches with the 

most common cell types. However, due to the importance of less common cell types, such as 

immune cells, a balanced accuracy was used to report the model performance. Balanced 

accuracy is the average of the percentage of true cells in a class correctly identified as 

belonging to that class, calculated as 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  
1
𝑛

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

 

 

where n is the number of classes. This represents the average of the recall for each class and 

is commonly used in assessing performance on multiclass problems.  

GitHub 
 
The entire code base for the classical supervised classification, convolutional neural network 

architecture, optimization, training, and testing can be found on GitHub at 

https://github.com/awoloshuk/NephNet.  
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Figure 1.  Uniqueness of nuclear morphology and staining signature of cell types found 
in the human kidney.  A. Unique tubules and structures found in the nephron unit of the 
kidney.   B.  DAPI nuclear staining signature of various cell types identified manually based on 
specific markers (from C), location and morphology. C.  50 µm sections from human 
nephrectomy specimens were stained with three sets of markers all including DAPI in three 
different experiments.  Tissue was imaged by tile scanning confocal microscopy and the 
images stitched together. D.  Subregions from indicated red boxes in C.  Bottom panels 
showing the DAPI channel only, indicate the number and variety of nuclear morphology 
present in the cortex of the human kidney.  Scale bars = 200 µm. 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.167726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.167726


30 
 

 
Figure 2. Training set generation and validation of cell type images.  50 µm sections from 
human nephrectomy specimens were stained with three sets of markers all including DAPI in 
three different experiments.  Tissue was imaged by tile scanning confocal microscopy and 
images stitched together and processed for tissue cytometry by VTEA. Cells were classified by 
X-means clustering based on their associated marker intensity by unsupervised machine 
learning as outlined in the methods.  Classified cells were mapped by cluster color on violin 
plots.  Mapping of identified clusters is displayed on the left of each panel and original volumes 
at shown at the right.  Tissue sections were stained with CD45, CD31 and Nestin (A), AQP1, 
LRP2 and THP(B) and SLC12A3 and KRT8 (C).   
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Figure 3. CNN Architectures for NephNet2D and NephNet3D. CNNs were developed and 
implemented in PyTorch. A.  2D CNN architecture, where each layer is separated by one 3x3 
convolution, batch normalization, leaky ReLU, and max pooling with a stride of 2x2x2. Linear 
layers are separated by Dropout normalization (p=0.5).  B. 3D architecture where each layer 
consisted of two 3x3x3 convolutions, batch normalization, leaky ReLU, and max pooling with a 
stride of 2x2x2. Linear layers are separated by dropout normalization (p=0.5).  
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Figure 4. Cell classification based on nuclear staining using NephNet2D or NephNet3D and the 
NephNuc datasets. The NephNuc datasets were split into training and testing. The eight classes used 
for training are epithelial cells from the proximal tubules (PT), thick ascending limbs (TAL), distal 
convoluted tubules (DCT), and collecting duct (CD), and other cells such as leukocytes (Leuk), podocytes 
(Podo) and endothelial cells (Endo) in glomeruli (G) or in the peritubular (P) space. The testing datasets 
were classified, and accuracy and confusion matrices were generated.  A. The balanced accuracies of 
networks trained on 2D sections (left) or 3D volumes (right) containing a single nucleus.  B. The balanced 
accuracies of networks trained on 2D sections (left) or 3D (right) containing a nucleus and surrounding 
nuclei.  Asterisks indicate specific weaknesses in either the 2D or 3D classifications and the influence of 
surrounding nuclei on the classification.  In all configurations except 3D nuclei with surrounding nuclei, 
there were errors in classifying podocytes as leukocytes and glomerular endothelium (blue and green 
asterisks) and between epithelial cells (red asterisks). Surrounding nuclei, context, improved 
classification of DCT (magenta asterisks, compare A to B).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.167726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.167726


33 
 

 
 
 

Figure 5. NephNet3D performance on noisy and lower resolution images.  Increasing 
amounts of noise or decreasing resolution was used to generate testing datasets of 3D nuclei 
from the NephNuc3D with context data and classified with NephNet3D.  A nearest neighbor 
approach was used for reducing the resolution of the image and noise was added by 
incorporating an α-factor described in the methods.  A. Example of augmentation of training 
data with increasing noise or decreasing resolution for one nucleus. B. NephNet3D 
performance on testing data augmented by adding noise (left) or reducing the number of pixels 
to simulate less resolution (right).   
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Figure 6. NephNet3D classification of cells in 
new image volumes.  A.  Finetuning of 
NephNet3D with nuclei from specimen 3 labeled 
for the eight cell types.  10 percent of specimen 
3 for fine tuning of NephNet3D trained on 
specimens 1 and 2 is sufficient for near-peak 
balanced accuracy on the entire specimen. The 
CNN was fine-tuned on varying amounts of data 
from a new specimen (nephrectomy) prior to 
being tested on the nuclei from the new 
specimen.   B.  An image volume of DAPI stained 
nuclei not previously used, from specimen 1, was 
segmented by VTEA and classified with 
NephNet3D.  Overlay of predicted labels from 
NephNet3D on the DAPI stained nuclei.  The 
overlays in the top panel are for cells classified 
as: proximal tubules (red), TAL (blue), DCT 
(yellow-green) and CD (blue-green); in the 
middle panel, leukocytes (CD45, yellow), 
podocytes (Nestin, purple) and endothelium 
(CD31, magenta and pink). Bottom panel shows 
DAPI stained nuclei with all predicted labels. G 
indicates a glomerulus.  177 segmented 
object/nuclei were manually classified by an 
expert. NephNet3D had an agreement of 67.9% 
(balanced accuracy as compared to expert 
classified nuclei). Maximum Z-projections are 
shown, scale bar = 100 µm.  
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