
Diverse scientific benchmarks for implicit

membrane energy functions

Rebecca F. Alford† and Jeffrey J. Gray∗,†,‡

†Department of Chemical & Biomolecular Engineering, Johns Hopkins University,

Baltimore, Maryland

‡Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland

E-mail: jgray@jhu.edu

Abstract

Energy functions are fundamental to biomolecular modeling. Their success de-
pends on robust physical formalisms, efficient optimization, and high-resolution data
for training and validation. Over the past 20 years, progress in each area has ad-
vanced soluble protein energy functions. Yet, energy functions for membrane pro-
teins lag behind due to sparse and low-quality data, leading to overfit tools. To
overcome this challenge, we assembled a suite of 12 tests on independent datasets
varying in size, diversity, and resolution. The tests probe an energy function’s abil-
ity to capture membrane protein orientation, stability, sequence, and structure. Here,
we present the tests and use the franklin2019 energy function to demonstrate them.
We then present a vision for transforming these “small” datasets into “big data” that
can be used for more sophisticated energy function optimization. The tests are avail-
able through the Rosetta Benchmark Server (https://benchmark.graylab.jhu.edu/) and
GitHub (https://github.com/rfalford12/Implicit-Membrane-Energy-Function-
Benchmark).
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Introduction

Accurate energy functions are critical for biomolecular structure prediction and design.
Through physical, empirical, and statistical models of atomic and molecular interactions,
these functions discriminate near-native from non-native conformations and optimize se-
quences to stabilize structures. Over the past 20 years, an influx of high quality structural
data paired with new optimization tools have boosted the accuracy of soluble protein energy
functions.1 A remaining task is to improve energy functions for membrane proteins, a class
of molecules that constitutes 30% of all proteins2 and targets for over 50% of drugs.3

The heterogeneous lipid bilayer introduces several challenges for membrane protein en-
ergy function development. Biomolecular modeling tasks such as docking and design require
benchmarking with both thermodynamic data and macromolecular structures. Yet, difficul-
ties in over-expression and purification of membrane proteins have limited the quality and
quantity of experimental validation data.4 For instance, membrane proteins represent less
than 2% of structures in the Protein Data Bank5 and less than 1% of entries in ProTherm.6

Additionally, biomolecular modeling programs often accelerate calculations with implicit
membrane models that represent the solvent as a continuous medium. This choice obfus-
cates the comparison between predictions and experimental data measured in a real lipid
bilayer.

As a consequence, many membrane protein energy functions are trained for a single task
on a small dataset. This strategy has been applied to various membrane protein modeling
tools including estimating the ∆∆G of mutation,7 hydrophobic thickness,8 native structure
discrimination,9,10 refinement,11 protein design,12 symmetry,13 and protein-protein dock-
ing.14,15 These tools enabled a decade of membrane protein modeling; however, their gen-
eralizability is unclear. Small quantities of data prevent cross-validation: a technique that
ensures performance on targets that are different from the training set. Further, small
datasets may be feature-poor. For example, a set of membrane proteins may only contain
transmembrane domains and exclude juxta-membrane domains important for function.

Recent advances have enabled energy function development with up to four training and
testing sets. In the Rosetta community, this includes two new implicit membrane energy
functions. The first model, developed by Weinstein et al.,16 was fit to transfer free energies
from the dSTβL assay17 and tested on datasets describing the folding and thermodynamics
of single-span dimers. The second model is franklin2019 ,18 our biologically realistic im-
plicit membrane model that permits use of parameters for different lipid compositions. This
model was fit with the Moon & Fleming hydrophobicity scale19 and evaluated on four tests
describing α-helical and β-barrel membrane proteins with complex topologies. Interestingly,
Weinstein et al. reported excellent performance on homo-dimers of single transmembrane
segments; however, the same model underperformed on our tests. This outcome demon-
strates another important complication in this area: developers use different criteria to
evaluate membrane protein energy functions, resulting in ambiguity.

For soluble proteins, these challenges are addressed by using multiple large, qualitatively
and quantitatively diverse datasets that aim to fully describe the biomolecular system.20 For
example, in the Rosetta soluble protein energy function, inclusion of both small-molecule
thermodynamic data and macromolecule structures from X-Ray crystallography and NMR
spectroscopy resulted in significant improvements to Lennard-Jones, electrostatic, and sol-

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.23.168021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.168021


vation parameters.21 The CHARMM force field is parameterized with a large collection of
biophysical data.22 The Open Force Field project integrated multiple data sources with a
Bayesian statistical framework to improve atom typing.23 It would be ideal to apply a sim-
ilar solution for membrane proteins. The closest examples involve parameterization of an
anisotropic model for orientation prediction with free energy calculations24 and explicit lipid
force fields for molecular dynamics with a combination of quantum mechanical calculations
and experimental thermodynamic data.25 However, these examples do not yet incorporate
benchmarks on macromolecule structures. Further, for membrane proteins there are only
multiple small and non-diverse datasets that partially describe the system.

The goal of this work was to overcome this validation challenge by developing a set of
sparse and diverse scientific benchmarks for evaluating membrane protein energy functions.
We created tests that probe four areas of the membrane protein energy landscape: (1) pro-
tein orientation in the bilayer, (2) stability, (3) sequence, and (4) complete structures. The
tests rely on a mixture of datasets that range in both size and quality, resulting in over-
all feature-rich optimization targets. Importantly, the tests are fast to evaluate to enable
multiple iterations for optimization protocols. As a demonstration, we applied the scientific
benchmarks to evaluate the accuracy of the franklin2019 energy function. The tests identi-
fied energy function strengths and imperative areas for optimization. These results lay the
groundwork for future energy function development and enable use of more sophisticated
optimization tools such as deep learning.

Results

To evaluate implicit membrane energy functions, we developed a set of 12 scientific bench-
mark tests (Table 1) In the following sections, we present each test with its dataset and
we demonstrate the analysis with franklin2019, a current Rosetta implicit membrane energy
function.
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Test #1: Orientation of transmembrane peptides

Membrane proteins occupy precise orientations in the lipid bilayer to perform their biological
functions. Thus, a key challenge for energy functions and the focus for our first tests is to
recapitulate this position during structure prediction and design. This first test verifies that
the most stable computed orientation of a transmembrane peptide corresponds to the native
orientation. This test is the cornerstone of our benchmark because it was used for validation
of early implicit membrane models.33,34 Here, the native orientation is defined as the tilt
angle measured by solid-state NMR spectroscopy in the context of oriented lipid bilayers.35

To predict orientation, we developed a protocol to sample all possible orientations of
the peptide relative to the implicit membrane within ± 60 Å of the bilayer center and
tilt angles between ±180◦(see Supplementary Information). The global energy minimum
of all sampled positions is defined as the most stable predicted orientation for comparison
to the experimental measurements. More generally, based on our biophysical intuition and
the observation that transmembrane peptides typically prefer tilt angles between 0-45◦, we
expect those tilt angles and depths that span the membrane to be lower in energy relative
to the aqueous phase or interface.

Dataset

The test set contains seven peptides with a single transmembrane domain (Table S2). The
first four peptides are segments of biological membrane proteins from Ulmschneider et al. 26

The fifth peptide is the designed WALP23 peptide.36 Their tilt angles were measured in dif-
ferent lipid compositions including DPC micelles,37 DMPC vesicles,38 mixed DOPC:DOPG
bilayers,39 and pure DOPC bilayers.36 While the experimental uncertainty is not available
for all measurements,26 tilt angle measurements have a typical error range of ± 3-5◦. In
addition, to evaluate the preference of aromatic side chains for the membrane interface, we
added to the set two designed poly-alanine helices with flanking tryptophan and tyrosine
residues.40,41 Orientations have not been measured for these peptides, but predictions can
still be compared to biophysical intuition.

Demonstration & Assessment

Test results with franklin2019 are shown for a biological and a designed transmembrane
peptide in Fig. 1a and 1b, respectively. The remaining results are shown in Fig. S1 and S2.
We rated performance according to how many predictions fall within ± 10◦ of the measured
value, a little more than the usual experimental error since some cases do not have reported
errors.

As previously reported (Fig. 1 in Alford et al.18), franklin2019 predicts the tilt angles
of WALP and three of four biological peptides within 10◦. For the poly-alanine aromatic-
flanked peptides, the minimum energy occurs at a low energy tilt angle between 10-20◦,
which would reasonably expose the aromatic side chains to the aqueous solvent.
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Figure 1: Implicit potentials capture the orientation of membrane associated-
peptides with biological and designed sequences. A mapping between all sampled
orientations and energies for (a) nicotinic acetylcholine receptor segment (b) poly-alanine
trp-flanked peptide, (c) magainin, and (d) leucine-lysine repeat peptide. Tilt or rotation
angle is on the x-axis, and depth relative to the bilayer center is on the y-axis. Each grid
point represents a 1 Å and 1◦ and is colored by franklin2019 energy, with low (favorable)
energies in dark blue and high energies in yellow. The predicted lowest energy orientation
is shown as a white circle, and where applicable the experimentally measured orientation is
shown as an open triangle. Experimental measurements were only available for tilt angle
and not depth; thus, we chose a depth of 0Åto represent this data.
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Test #2: Orientation of membrane surface adsorbed peptides

Many proteins perform their functions by binding to the membrane surface at a specific
orientation. This test verifies that the most stable surface-adsorbed peptide orientation
corresponds to the native orientation. We define the native orientation by the rotation of
the peptide relative to the helix axis and a specific membrane depth. Similar to Test #1,
we sampled all pairs of membrane depths and rotation angles (SI Appendix).

Dataset

The dataset includes seven biological peptides26 and the designed leucine-lysine (LK) repeat
peptide42 (Table S3). The experimental reference data are rotation angles measured by
solution NMR in dodecylphosphocholine micelles or trifluoroethanol.43 In the experiments,
rotation angles are reported with an uncertainty of ± 6-12◦.26

Demonstration & Assessment

The mapping of orientations to energies for magainin and the LK repeat peptide calculated
in an assumed DLPC bilayer are shown in Fig. 1c and Fig. 1d, respectively. The remaining
targets are shown in Fig. S3. We rated performance according to how many predictions fall
within the maximum experimental uncertainty across all of the measurements, i.e., 12◦.

Fig. 1c-d and Fig. S3 show the energy landscapes with the predicted low-energy orien-
tation (white circle) overlaying the measured value (white triangle). The landscapes reveal
a repeating pattern of high energy (yellow) and low energy patches (dark blue) near the
membrane interfaces (± 18-23 Å). This pattern matches the biophysical intuition that the
non-polar side of amphipathic peptides is more compatible with the membrane surface than
aqueous solvent. Where experimentally measured values are available, the franklin2019
energy function calculated rotation angles within ± 12◦ of the native value for all of the
surface-adsorbed peptides where experimentally measured values were available.

Test #3: Orientation of multi-pass α-helical and β-barrel proteins

Accurately predicting peptide tilt angle is an important step toward predicting membrane
protein orientation; yet, most membrane proteins have multiple transmembrane segments.
Here, we examine how implicit membrane energy functions recapitulate the orientations
of α-helical and β-barrel protein domains with complex topologies. We sample protein
orientations (Fig. 2a-c) using the protocol described in Test #1. Then, because this data
set is larger, we summarize the difference between the reference and calculated values across
the set by computing the cumulative distribution of residuals.

Dataset

This test set was curated by Dutagaci and Feig 8 and includes 18 α-helical and 17 β-barrel
proteins (Table S5). In the dataset, 60% of proteins reside in the E. coli outer membrane
and 14% reside in the eukaryotic plasma membrane. The remaining 26% reside in either the
mitochondria inner membrane, archea, or the E. coli inner membrane.
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The most challenging step of this test is choosing reference data. There are various meth-
ods for identifying protein tilt angles and penetration depths in lipid bilayers or detergents
including chemical modification, spin labeling, NMR, X-Ray scattering, and electron cryo-
microscopy.44 The data vary in quality and have different assumptions and error sources.
For this reason, the current reference data source is the Orientations of Proteins in Mem-
branes database of membrane protein structures positioned in a 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC) bilayer (OPM31). OPM computes the spatial position of a mem-
brane protein using PPM; a method that combines an all-atom representation of the protein,
an implicit anisotropic model of the lipid bilayer, and a universal solvation model. The fi-
nal orientation is determined by minimizing the water-to-bilayer transfer energy, which is
computed as a sum of van der Waals, electrostatics, and hydrogen bonding energies.24 Using
uncertainties from multiple original experiments, the estimated accuracy of OPM reference
data is ±10◦ for tilt angle and ±2.5 Å for depth.44

Demonstration & Assessment

Membrane protein orientations predicted by franklin2019 in a DOPC bilayer are given in
Fig. 2d-e and the cumulative distribution of residuals is shown in Fig. 2g-h. We rated
performance by the number of predictions that fall within the maximum uncertainty ranges
of ± 10◦ for tilt angle and ± 2.5 Å for depth. For α-helical proteins, protein depth was
correctly predicted for 62.5% of targets. In contrast, predictions were correct for 4% of
β-barrel protein targets. Tilt angle prediction was more consistent, with 60% and 70% of
protein tilt angles predicted within 10◦ of the OPM value for α and β proteins, respectively.
Still, for β-barrel proteins, franklin2019 predicts several outliers. For example, the predicted
tilt angle for the alginate export protein (AlgE, 4afk) was 34◦, whereas the OPM predicted
value is 3◦. The franklin2019 prediction is likely unrealistic as it buries the pore entry.
Overall, the data reveal that franklin2019 predicts membrane depth more accurately for
α-helical proteins than β-barrel proteins.

Test #4: Membrane protein hydrophobic thickness

To overcome unfavorable exposure of non-polar side chains to water, membrane proteins
generally have a hydrophobic thickness compatible with the bilayer thickness. Thus, hy-
drophobic thickness is an important parameter for predicting orientation and stability. In
this test, we predict hydrophobic thickness by placing the protein at its OPM orientation
and then iteratively rescoring the protein at membrane thickness values ranging from 10-40 Å
(Fig. S4). The protein hydrophobic thickness is then defined as the bilayer thickness that
minimizes the energy. This test uses parameters for a phosphatidylcholine head group.

Dataset

This test uses the same proteins as Test #3. Experimentally, hydrophobic thickness is mea-
sured using various techniques that often introduce different assumptions and errors. For
instance, the experimentally measured hydrophobic thickness of OmpX (1qj8) was deter-
mined assuming that the protein does not tilt.45 For this reason, we use predicted hydropho-
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Figure 2: Protein orientation predictions of α-helical and β-barrel proteins. Com-
parison of membrane protein depth (a), tilt angle (b), and hydrophobic length (c) predicted
by franklin2019 relative to values predicted by the OPM anisotropic model.31 A y = x
line is shown in each plot, with a light gray stripe for an error range of 2.5Å, 10◦ and 5
Å respectively. Targets that are α-helical (β-barrels) are represented as red (blue) points.
Cumulative distribution for residuals of (d) membrane protein depth, (e) tilt angle, and (f)
hydrophobic thickness. A distribution for all proteins is shown in black, and the distributions
for α-helical only and β-barrel only are shown in red and blue respectively. Points at 40 Å
indicate that full burial of the protein in the bilayer minimizes the energy.
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bic thickness values from the OPM database24 as our reference. OPM reports thickness
as the bilayer thickness that minimizes the water-to-bilayer transfer energy. The estimated
uncertainty for hydrophobic thickness values from OPM is ± 2.5 Å.44

Demonstration & Assessment

A comparison of franklin2019 and OPM is shown in Fig. 2f and Fig. 2i. The hydrophobic
thickness was within 2.5 Å of OPM for only 30% of α-helical proteins and 10% of β-barrel
proteins. At 5 Å, both categories improve to 75%; however, this threshold is large relative
to the thickness differences between varied lipid compositions. For 5 targets, we observed
that the energy continued to improve up to the limit of 40 Å. These points are plotted at
T = 40 Å and indicate that franklin2019 prefers to completely bury these proteins in the
membrane. Overall, prediction of hydrophobic thickness was less reliable than orientation.

To better understand areas for improvement, we examined the outliers in Fig. 2f. The
most incorrect prediction is for the bacterial semiSweet transporter (4x5n, Fig. 2f). Here,
franklin2019 predicted a hydrophobic thickness value of 21.5 Å whereas OPM predicted a
value of 36.8 Å. This suggests error in pore estimation because franklin2019 leaves the en-
try and exit of the pore more exposed than OPM.31 The five targets for which no minimum
energy hydrophobic thickness was found are photosynthetic reaction center (1rzh), potas-
sium channel KcsA (1r3j), opioid delta receptor (4n6h), outer membrane protein A (1qjp),
and the hemoglobin binding protease autotransporter (3aeh). It is less clear why these cases
were outliers. Both the photosynthetic reaction center and opioid delta receptor have signifi-
cant juxta-membrane domains, suggesting that franklin2019 ’s implicit membrane interfacial
representation may be insufficient to differentiate transmembrane from non-transmembrane
segments. Another possibility is that pore estimation further complicates predictions.

Test #5: Stability of transmembrane peptides at neutral pH

The next three tests focus on recapitulating thermodynamic properties of membrane proteins.
In cells, the translocon machinery is responsible for recognizing transmembrane segments and
integrating them into the bilayer. Once folded, membrane proteins remain in the bilayer due
to a favorable water-to-bilayer transfer free energy. To keep the protein in the membrane,
we therefore must accurately estimate the transfer energy from solvent to the bilayer. In
Test #5, we build on the calculations sampling all possible peptide orientations from Test
# 1. Then, we compute the ∆G of insertion as the energy difference between the lowest
energy orientation of the peptide in the lipid bilayer phase and in the aqueous phase (see
Supplementary Information) to compare to experimental insertion energy measurements.

Dataset

The test set includes five poly-leucine peptides designed by Ulmschneider et al. 27 There are
four peptides in the set that follow a GLXRLXG motif, where X = 5, 6, 7, 8 (Table S6). The
fifth peptide follows a different motif pattern by adding a flanking tryptophan: GWL6RL7G.
The reference transfer energies are taken from molecular dynamics simulations in POPC
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bilayers that were validated against intrinsic fluorescence measurements. The experimental
uncertainty of the measured ∆Gins values is ±1.4 kcal mol−1.

Demonstration & Assessment

The franklin2019 energy function computes the water-to-bilayer insertion energy using a
Gibbs insertion energy approximation. As in many other Rosetta based calculations, we
expect this energy function may reproduce trends but not exact values. Thus, we evaluate
the ability to reproduce trends using the Pearson correlation coefficient (R2) between the
experimentally measured and predicted values (although as accuracy improves in the future,
exact predictions can also be evaluated). In calculating R2, we use a Grubbs test to eliminate
outliers.

A comparison between the franklin2019 prediction in POPC bilayers and reference ∆G
values from molecular dynamics (MD) is shown in Fig. 3a. Encouragingly, the Pearson
correlation coefficient is high (R2 = 0.996), and no points are outliers. The slope of the best
fit line is high (2.41 REU-mol/kcal), revealing that while the relative energies are correct,
franklin2019 overestimates the overall benefit of insertion. Further, the comparison indicates
a reference state calibration issue because the ∆G of inserting the GL5 and GL6 peptides is
favorable; whereas, the MD indicates insertion is unfavorable.
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Figure 3: Comparison of predicted and experimentally measured peptide insertion
energies. (a) Prediction of the ∆∆G of insertion for five designed poly-leucine peptides
of varying length and flanking residues from Ulmschneider et al. 27 (b) Prediction of the
∆∆G of insertion upon pH shift from pH 8 to 4 for 16 variants of the pH-sensitive low
insertion peptide sequence from Weerakkody et al. 28 Experimental measurements were taken
by intrinsic fluorescence in POPC liposomes and calculations were performed for DLPC.

Test #6: Stability of transmembrane peptides at acidic pH

The water-to-bilayer transfer energy is influenced by many factors including changing condi-
tions in the intracellular and extracellular environment. Physiologically, extracellular acidity
is an important biomarker for tumor growth and development.46 To benchmark the ability
of the energy function to capture pH, we evaluated the prediction of peptide insertion energy
when there is a change in pH. The test performs two grid-style searches using the protocol
described in Test #1 with Rosetta-pH47 to find the best peptide orientation at both pH 4
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and 8 (see Supplementary Material). Then, the insertion energy difference is computed as
the difference between the peptide integrated into the bilayer at pH 4 and in the aqueous
phase at pH 8 (i.e., ∆∆GpH,ins = ∆Gins,pH4 −∆Gins,pH8, see Supplementary Material).

Dataset

The test set includes seventeen peptides designed by Weerakkody et al. 28 that insert into
membranes upon a shift from neutral to acidic pH, called pHLIP peptides (Table S7). The
reference value is the water-to-bilayer transfer energy measured using titration and fluores-
cence experiments in the context of POPC liposomes. The experimental uncertainty of the
measured ∆∆GpH,ins values is ±1.0 kcal mol−1.

Demonstration & Assessment

A comparison of the franklin2019 and experimentally measured values is given in Fig. 3b.
Similar to Test #5, we aim to maximize the Pearson correlation coefficient. In contrast to
Test #5 at neutral pH, the correlation between the experiment and calculation is poor, and
the energy function prefers the peptides in solution rather than in the bilayer. We suspect
two sources of problems. First, the underlying pKa values do not account for the membrane.
Second, the franklin2019 Coulomb term does not account for changes in the dielectric con-
stant in the membrane. This is a critical area of future energy function optimization because
the shifted pKa values in the bilayer affect the stability of membrane proteins at all pH
values.

Test #7: ∆∆G of mutation

Test #7 evaluates how changes to the sequence of a membrane protein affect its overall
thermostability. This quantity, called ∆∆Gmut, is a critical building block for membrane
protein design and evaluating the effects of genetic mutations on protein function. To predict
∆∆Gmut, we used our previously described fixed-backbone and fixed-orientation protocol48

that evaluates the difference in total energy between the mutant and wild-type (see Methods).

Dataset

We used three sets of ∆∆G measurements from the Fleming lab. All of the measurements
were taken at equilibrium in DLPC vesicles and in the context of a β-barrel protein scaffold.
The three datasets are: (1) mutations from alanine to all 19 remaining canonical amino
acids at a lipid-exposed site on OmpLA19 (2) mutations from alanine to all remaining 19
canonical amino acids at a lipid-exposed site on PagP30 and (3) mutations from alanine
to tryptophan, tyrosine, or phenaylanine at different membrane depths on OmpLA.29 The
experimental uncertainty of the measured ∆∆Gmut values is ±0.6 kcal mol−1.

Demonstration & Assessment

We previously reported the performance of franklin2019 on the OmpLA and PagP datasets.18

Here, we focus on the third set which probes the contribution of aromatics to stability.40,41
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To emulate the experiment we modeled an implicit DLPC bilayer. A comparison of the
franklin2019 and experimentally measured values is shown in Fig. 4, focusing on tryptophan
and tyrosine because both demonstrate strong depth-dependence.29 Unfortunately, there
was no correlation between the predicted and experimentally measured values. The Pearson
correlation coefficient was R2 = −0.135 for tyrosine and R2 = 0.023 for tryptophan.

Interestingly, the Pearson correlation coefficient between the measured values and the
franklin2019 water-to-bilayer energy term was higher than that to the full energy function,
withR2 = 0.451 for tyrosine andR2 = 0.608 for tryptophan (Fig. S5). To explore whether the
∆∆G was driven by factors other than membrane heterogeneity, we mapped the contribution
of all component energy terms to the ∆∆G value (Fig. S6 and Fig. S7 show all values over 0.01
REU). The largest contributions were from rotamer energies, suggesting that steric clashes
between guest side chains and neighboring side chains inflated the cost of substitution.
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Figure 4: Comparison of predicted and experimentally measured depth-dependent
∆∆Gmut values. (a) Outer membrane protein phospholipase A (OmpLA, PDB 1qd6) with
each host site highlighted in blue. A comparison of predicted and experimentally measured
∆∆Gmut for mutations to tyrosine and tryptophan are shown in (b) and (c) respectively.
Each position is colored by depth relative to the membrane center plane in Å on a scale from
blue (closer to the center) to yellow (closer to the interface/water barrier). The y = x line is
shown as a bold black line. The experimentally measured values were taken from McDonald
and Fleming.29

Test #8: Sequence Recovery

The next two tests concern the ability to identify residue types in design calculations. Test
#8 probes whether the energy function can recover native membrane protein sequences.
To run the test, we perform redesign using Rosetta’s Monte Carlo fixed-backbone design
protocol.20 Each protein is initialized in the orientation from the OPM database,31 and the
orientation remains fixed. For simplicity, we use a DLPC membrane in our calculations.
We compute two metrics: (1) the fraction of amino acids recovered (sequence recovery)
and (2) the divergence of the designed amino acid distribution from the native amino acid
distribution (Kullback-Leibler divergence). To tailor this test for the membrane, we also
compute these metrics for subsets of amino acids exposed to the aqueous phase (outside of
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membrane or pore facing), lipid phase, and interfacial region. An optimal energy function
would maximize sequence recovery and minimize divergence.

Dataset

The test set includes 133 α-helical and β-barrel membrane proteins. The starting dataset
was curated by Koehler Leman et al. 49 and revised to only include proteins with known sub-
cellular localization.18 In this set, all entries have resolution of 3.0 Å or better, and no two
sequences share more than 25% sequence identity. The native and host lipid compositions
for these proteins vary widely and include compositions not yet covered by the franklin2019
lipid parameters. So here for simplicity, we perform all design calculations in a DLPC bilayer.

Demonstration & Assessment

We previously reported the performance of franklin2019 on the sequence recovery test (Fig.
4 in Alford et al.).18 Here, the recovery rate was high (31.8%) and the divergence between
designed and native residue distributions was low (KL = −2.7). Both metrics improved
relative to prior energy functions.

Test #9: Depth-dependent side-chain distribution

Test #9 evaluates whether the energy function captures bilayer depth-dependent features of
membrane protein sequences. This test has been used previously for calibrating statistical
implicit membrane potentials.16,17,50 To run the test, we first generate redesigned proteins
using the same protocol as in Test #8. We use a kernel-density estimate to compute the
depth-dependent (z-dependent) distribution of amino acids in both the native and redesigned
proteins. We then use numerical integration to compute the difference in the area under
the curve (AU∆C) between the native and redesigned distributions. An effective implicit
membrane energy function qualitatively matches the shape of the distribution and minimizes
the AU∆C difference.

Dataset

This test uses the same set of 133 protein structures as in Test #8.

Demonstration & Assessment

The depth-dependent amino acid distributions for proteins redesigned with franklin2019 are
shown in Fig. 5, and the AU∆C values are shown in Fig. S8. The profiles reveal both
native-like and non-native-like properties of franklin2019. The best predicted amino acid
distributions were for polar, non-polar, and some aromatic amino acids, namely T, Ala, Pro,
Phe, Tyr, Met, Ile, Asn, and Gly (Fig. S8; AU∆C < 0.01). In contrast, Leu and Val were
over enriched in the membrane core, resulting in larger AU∆C values of 0.018 and 0.022,
respectively. The disparities were larger for charged amino acids. Specifically, the presence
of Asp and Glu in the membrane is underestimated, whereas the presence of Arg and Lys
is overestimated. Similarly, lack of asymmetry in the distributions reveals that franklin2019
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does not capture the “positive-inside rule”, which dictates that cytosolic loops near the
bilayer contain more positively charged amino acids.17,51 Further, the distribution misses
enrichment of positively charged side chains in the inner leaflet. Both of these features have
been observed using the Elazar energy function.17
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Figure 5: Comparison of the depth-dependent side chain distribution in native
and designed protein sequences. The native amino acid distribution is shown with a
solid line and the designed amino acid distribution is shown with a dotted line. Each panel
represents the distribution for one of the twenty canonical amino acids with the membrane
depth ranging between -30 Å and 30 Å, and the AU∆C value shown is the absolute area
between the two distributions.

Test #10: Native decoy discrimination

A key task for membrane protein energy functions is to distinguish near-native from non-
native backbone structures. So, the last three tests involve discriminating between alternate
structures. In previous work, there were two molecular dynamics discrimination studies with
implicit membrane models.9,10 Recently, we also reported structure discrimination results for
franklin2019 .18 Here, we expand the test by increasing the number and structural diversity of
decoy models. The native discrimination test is performed by refining a set of decoy models
in the context of the candidate energy function. Then, we quantify discrimination using the
Boltzmann-weighted average root-mean-squared-deviation (RMSD) over all models (D). We
also qualitatively examine the ranking of decoys by score and RMSD. An optimal energy
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function would exhibit a low D and funnel-like arrangement of decoys, with non-native
decoys assigned high energies and near-native decoys assigned low energies.

Dataset

The dataset includes five targets: bacteriorhodopsin (brd7), fumarate reductase (fmr5),
lactose permease (ltpa), rhodopsin (rhod), and V-ATPase (vatp). The resolution of each
crystal structure is 1.8 Å for brd7, 1.78 Å for fmr5, 3.5 Å for ltpa, 2.2 Å for rhod, and 2.1
Å for vatp. Each target is represented by decoys from two datasets: (1) the Dutagaci et al.
set9 includes decoys between 4–14 Å RMSD from the native crystal structure, and (2) the
Yarov-Yarovoy et al. set52 includes decoys between 5–40 Å RMSD.

To increase the number and diversity of decoys for each target, we used RosettaM-
PRelax48 to generate five models from each decoy structure to provide 0.5–1.5 Å RMSD
of additional variation. Since all of the X-Ray crystal structures were determined in deter-
gents, we performed the calculations in a default lipid composition of DLPC. This bilayer is
appropriate because all of the targets were expressed in E. coli.

Demonstration & Assessment

Fig. 6 summarizes the franklin2019 native structure discrimination results for all five targets,
and Table 2 lists the discrimination score for all decoys (Dall), Dutagaci decoys (DDut), and
Yarov-Yarovoy decoys (DYY). Consistent with previous results,18 discrimination of Dutagaci
decoys for each target is high and the models form a funnel. Interestingly, structure discrimi-
nation worsens with the addition of low-resolution decoys for two targets: bacteriorhodopsin
and fumarate reductase. In both cases, there are models near 15 Å that score the same or
better than models near 4 Å, suggesting that the energy function requires improvements to
recognize native-like helix-helix contacts when there are large differences between possible
conformations.

Table 2: Native structure discrimination by franklin2019. D is the Boltzman-weighted aver-
age RMSD over all models, with lower values indicating better identification of near-native
models.

Target Dall (Å) DDut (Å) DYY (Å)
brd7 7.8 4.6 7.8
fmr5 14.2 5.5 14.2
ltpa 4.8 4.8 13.7
rhod 4.3 4.3 12.7
vatp 4.0 4.3 4.0

Test #11: Helix kinks

A unique feature of membrane proteins is the distortion of α-helices into kinked and curved
conformations.53 Upon first look, kinked transmembrane helices seem counterintuitive be-
cause backbone hydrogen bonds are more stable in the membrane and kinks will break
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Figure 6: Decoy discrimination of five targets by the franklin2019 implicit mem-
brane potential. Each panel shows the decoys for each target ranked by energy (in REU)
and RMSD (Å) of the Cα atoms to the native (x-ray) structure. The high resolution (Dut)
decoys (1–11 Å) are shown in red, the low resolution (YY) decoys (5–40 Å) are shown in
blue, and the refined native structures are shown in green.

hydrogen bonds. In reality, there are multiple biochemical possibilities to resolve the hy-
drogen bonds, including using a proline,54 a vestigial proline,55 and non-canonical backbone
hydrogen bonding patterns.56,57 To evaluate the energy function’s capacity to identify na-
tive non-canonical helical conformations, we scored conformational ensembles of membrane
proteins with at least two conformational states with known structures where one structure
exhibited a kinked helix that straightens in the second structure. First, assuming the system
is stabilized by harmonic potentials,58 we generated conformational ensembles using normal
mode analysis. We used KinkFinder55 to compute the kink angle, and then, to test whether
the energy function can discriminate the native conformation, we calculated the energy of
each model in the conformational ensemble.

Dataset

The dataset includes three targets: (1) potassium channel KcsA, (2) adiponectin receptor
1, and (3) platelet activating receptor (Table S8). The experimental kink measurements are
derived from the crystal structure. For these cases, the native bilayer was ambiguous, so for
all calculations we chose a DLPC system.

Demonstration & Assessment

A comparison of energies and kink angles for each state are shown in Fig. 7. As an ex-
ample, we discuss the conformation of transmembrane helix 2 (TM2) in the the potassium
channel KcsA (Fig. 7a). In the channel’s closed state, TM2 is kinked (red), whereas in the
open state, TM2 is slightly curved (blue). However, Fig. 7a shows that the conformations
generated from the open state where the native angle is 40◦ cluster closer to 20◦ and these
conformations have a significantly higher score than the straight helix conformations. indi-
cating that Rosetta prefers to straighten TM2 in the open state, even though both states
are realistic. This error also occurs for the second target, adiponectin receptor 1 (Fig. 7b).
These results suggest that improvements are needed to accurately capture helix conforma-
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Figure 7: Kinked and straight conformations of α helices are not distinguished
correctly. A structure discrimination experiment for kinked and straight helix conforma-
tions is shown for three targets: the open (3f7v) and closed (1r3j) conformation of the
potassium channel KcsA (left), the active (3wxv) and inactive (5lxg) conformation of the
adiponectin receptor, and (c) the active (5zkp) and inactive (5zkq) conformation of the
platelet activating receptor. The top row shows the lowest energy conformation for both
states and the bottom row ranks the energy of each conformation by kink angle relative to
the native (denoted by a dotted line).

Test #12: Membrane protein-protein interactions

A final challenging task for implicit membrane models is to distinguish near-native from
non-native membrane protein-protein interface structures. A range of studies hint toward
key interface features, including the GxxG motif,59 bifurcated Cα hydrogen bonds,60 and
apolar side chain packing.61 However, there have only been a few general efforts to dock
membrane proteins.14,15,48,62

Toward this goal, the final test is membrane protein-protein docking. We use RosettaM-
PDock48 to generate low-energy orientation of the protein partners by performing rigid-body
rotations and translations with cycles of side-chain repacking and torsion minimization (see
Methods). For each target, we generated 5,000 candidate models and then used CAPRI
metrics63 to evaluate the distance to crystal structures. We also computed two additional
scoring metrics: (1) the number of near-native decoys in the 5 top-scoring decoys, 〈N5〉, and
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(2) the enrichment of high quality models in the 1% and 10% top-scoring models,64 〈E1%〉
and 〈E10%〉.65 Angle brackets denote bootstrapped averages over resampled decoy sets.

Dataset

This test uses three existing benchmark sets. The first dataset comprises 18 homodimers
formed by single transmembrane helices.14 The second dataset comprises 48 homo- and
hetero-dimers formed by multi-pass α helical proteins.15 The third dataset is a subset of
the second consisting of nine targets with the starting backbone generated by homology
modeling66 to simulate an unbound docking scenario where the starting conformations of
the partner are not pre-configured in the bound state. All calculations were performed in a
DLPC bilayer.

Demonstration & Assessment

Fig. 8 summarizes results for protein-protein docking with franklin2019. First, we examined
the efficacy of docking structures from the crystalized bound state. We found that the
membrane protein docking routine identifies high quality models for 90% of single-helix
homodimer targets and 45% of multi-pass heterodimer targets, as indicated by two-fold
enrichment in the top-scoring 1% of models (Fig. 8a-b). These targets are easy because the
binding partners are already in the right conformation for binding. To evaluate interface
recognition in more detail, we need to dock unbound targets.

Fig. 8c shows the performance of the nine homology-model docking targets. Each panel
plots all 5,000 models by interface RMSD and interface score, with each model colored by
CAPRI criteria. In four of the nine cases (1E12, 1M56, 1ZOY, and 3RVY), the energy
landscape has a funnel pattern, with incorrect models scoring high and near-native models
receiving the lowest score. Thus, franklin2019 recognized near-native interfaces. Further,
scores for the refined native structures (purple) are near the bottom of the funnel of sampled
docked structures. The five best-scoring models are shown in Fig. S9 and S10.

For the five remaining homology-modeled targets, RosettaMPDock fails to recognize the
correct interface. For two cases (3CHX and 3OE0), the docking program did not sample any
near-native models. Amongst the remaining cases (1M0L, 2QJY, and 3KLY), the energy
function prefers acceptable or incorrect models over near-native models. One example of a
challenging case is the CXCR chemokine receptor (Fig. 8d-e, 3OE0), where the low-scoring
models have an incorrect bilayer orientation.

Summary of franklin2019 successes and challenges

Above, we described and demonstrated protocols for twelve scientific benchmark tests. To
integrate the test results, we established a threshold or optimization goal for the summary
metrics (Table 3).

Together, the benchmark results reveal strengths and pitfalls of a current energy function.
For instance, test #1 (Fig. 1) showed effective prediction of single-transmembrane helix tilt
angles. In addition, test #9 (Fig. 5) showed the energy function can predict many bilayer
depth-dependent amino acid preferences. In contrast, test #5 (Fig. 3) illuminated the need
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Figure 8: Implicit potentials identified native-like membrane protein-protein in-
terfaces for nearly half of homology modeled targets. A summary of docking perfor-
mance on bound (easy) targets is shown on the left hand side. (a) Cumulative distribution
for the enrichment of high-quality models in the 1% and 10% top-scoring models, given
as 〈E1%〉 (solid line) and 〈E10%〉 (dashed line), respectively. The distribution for single-
transmembrane homodimers is shown in gray (n = 18) and the distribution for multi-pass
homo- and heterodimers is shown in black (n = 48). (b) Cumulative distribution for the
number of near-native decoys among the five top-scoring decoys, called 〈N5〉. Again, the
distribution for single-transmembrane homodimers is shown in gray and the distribution for
multi-pass targets is shown in black. The success cutoff of three models is shown in red.
(c) Performance of docking nine homology-modeled targets. Each panel ranks models with
an interface RMSD in Å between 0 Å and 10 Å. Each model is colored by CAPRI rank,63

with incorrect models in gray, acceptable models in blue, medium-quality models in orange,
and high-quality models in red. The bound refined native models are shown in purple. The
CXCR4 chemokine receptor (3OE0) which was docked unsuccessfully is shown in (d) as
a membrane view and (e) as a top view. The crystal structure is shown in gray and the
best-scoring docked model is shown in blue.

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.23.168021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.168021


Table 3: Summary of current benchmark test performance criteria

# Test Metrics Exp. Error Threshold/Goal
1 Tilt angle tilt 5◦ 10◦

2 Rotation angle rotation 12◦ 12◦

3 Protein orientation tilt/depth 10◦/2.5Å 10◦/2.5Å
4 Hydrophobic thickness thickness 2.5 Å 2.5 Å
5 ∆Gw,l at constant pH ∆Gins 1.4 kcal/mol max R2

6 ∆∆Gw,l with pH shift ∆∆GpH-ins 0.1 kcal/mol max R2

7 ∆∆Gmut ∆∆Gmut 0.6 kcal/mol max R2

8 Sequence recovery Rs/KL NA max Rs/min KL
9 Side chain distribution AU∆C NA min AU∆C
10 Decoy discrimination NA D 5 Å
11 Helix kinks kink NA 10◦

12 Docking 〈N5〉/〈E1%〉 NA 3/2

to capture shifts in proton avidity for titratable sites in the low dielectric bilayer, and test
#4 (Fig. 2) suggested the need for better implicit membrane interfacial representations
to accurately predict hydrophobic thickness. Test #11 (Fig. 2) highlighted pitfalls in the
hydrogen bonding model. Further, tests #4 and #5 probed the balance of forces in the overall
energy function. Together, the results suggest areas for future energy function optimization.

Discussion

We developed 12 scientific benchmarks to evaluate energy functions for membrane protein
modeling and design. Our approach addresses the challenge of limited experimental data
by bundling many small sets to achieve a large and feature-rich dataset. The tests account
for effects of the heterogeneous lipid bilayer on protein orientation, stability, sequence, and
structure. The tests encompass wide-ranging modeling tasks from ∆∆G calculations to
protein-protein docking and design. As a step forward from single-test validation7–9,12 or
four-test validation,16,18 we anticipate that these benchmarks will accelerate development of
the next generation of membrane protein energy functions.

An interesting consequence of the membrane is the type of data that can be used for
benchmarking. For soluble proteins, energy functions for molecular modeling and force
fields for molecular dynamics rely on a combination of small molecule thermodynamic data
and known macromolecular structures. For membrane proteins, all-atom force fields also use
physical chemistry data to derive parameters for different lipid types. However, the analogous
small molecule data are difficult to obtain for implicit membrane simulations because organic
solvents do not sufficiently mimic the properties of heterogeneous biological membranes.67

Further, it is challenging to rigorously measure thermodynamic properties in lipid bilayers.
Hydrophobic length and membrane protein re-orientation can be observed on short

timescales so it is accessible via molecular dynamics.9 However, molecular dynamics is
computationally expensive for modeling long-timescale biological phenomena such as some
conformational changes and protein binding. By using a Monte Carlo approach with an
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implicit biologically-realistic membrane, we enabled a faster calculation of both thermody-
namic and structural properties. For a single run, the tests require no more than 10,000
CPU hours. As a result, it is practical to iteratively run the tests to maintain repro-
ducibility and for continuous optimization. For this purpose, the tests run continuously on
the Rosetta Benchmark Server (https://benchmark.graylab.jhu.edu/) and the source code
is publicly distributed through GitHub (https://github.com/rfalford12/Implicit-Membrane-
Energy-Function-Benchmark) to make the tests accessible to all membrane protein modeling
developers. We hope these resources will help the community share standardized metrics for
evaluating membrane protein energy functions.

This first multi-faceted benchmark is a base upon which the quantity and quality of test
data can be extended. For quantity, improvements in structure determination will increase
the number and diversity of known structures to benefit both sequence and structure tests.
In contrast, the data are still sparse for stability and orientation since these values are not
revealed when structures are determined in detergents. The paucity of data limits splitting
the data into a training and a testing set, a key practice for demonstrating generalizability of
models. On the other hand, quality is determined by various factors including the resolution
of crystal and NMR structures, the uncertainty of stability measurements, and the rigor of
assumptions made to obtain and analyze the data. The challenge of quality and quantity
is well illustrated by considering the datasets of ∆∆G of mutation measurements. Kroncke
et al.7 compiled a large dataset of ∆∆G of mutation measurements. However, the reference
state for each measurement varied (e.g., lipid composition, ion concentration in aqueous
phase), making it challenging to compare. As a result, we used a smaller set of ∆∆G
measurements to improve quality. Comparing measurements is a consistent challenge of
resolving the complexity of membrane proteins performed in different lipid compositions
and environments.

As much as possible, our tests evaluate energy functions with experimental reference data.
By transitivity, the energy function can only be as accurate as these reference data. For sol-
uble proteins, the wealth of biophysical and structural information compensates. As of April
2020, there are more than 160,000 structures deposited in the Protein Databank.68 Conse-
quently, soluble protein energy functions can be validated on large and diverse datasets.21,69

In contrast, only 1̃,000 membrane protein structures are deposited in the Protein Data
Bank.5 A central challenge is that many membrane proteins are not naturally abundant
and cannot be reconstituted into a membrane mimetic. Thus, substantial improvements
to the energy function will require both reliable benchmarks and significant advances in
experimental methods.

Important future work includes developing a framework to perform a global optimization
of the energy function. A possible approach is to develop a series of objective functions that
define the relationship between the threshold and performance for all targets in the dataset.
For example, an objective function to define the performance of the tilt angle test (Test #1)
could be formulated as

f(x) = |xcalc − xexp| (1)
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FT1 =

ntargets∑
i

1

θ2

{
0 f(xi) ≤ θ

(f(xi)− θ)2 f(xi) > θ
(2)

where xcalc is the predicted tilt angle, xexp is the experimentally measured tilt angle, i is
an iterator over all targets in the dataset, and θ = 10◦ is an allowable amount of error.
Objective functions for the other 11 tests could be similarly constructed, and a weighted
sum could serve as a loss function to train on the whole benchmark set. Deep learning has
recently piqued the interest of the structural biology community.70 Currently, deep learn-
ing approaches require large, high-quality datasets. Recently, Wang et al.71 used transfer
learning to develop a transmembrane protein structure prediction algorithm that relies on a
soluble protein contact prediction algorithm72 and the Deep CNF transmembrane topology
prediction algorithm.73 Our benchmark data can be used with approaches like these, partic-
ularly toward incorporating the all-important lipid composition and specificity features to
move toward more accurate and biologically realistic implicit energy functions.
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