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Genetic diversity provides the raw material for species to adapt and persist in

the face of climate change. Yet, the extent to which these genetic effects scale at

the level of ecological communities remains unclear. Here we experimentally

test the effect of plant genetic diversity on the persistence of an insect food web

under a current and future warming scenario. We found that plant genetic di-

versity increased food-web persistence by increasing the intrinsic growth rates

of species across multiple trophic levels. This positive effect was robust to a

3�C warming scenario and resulted from allelic variation at two genes that

control the biosynthesis of chemical defenses. Our results suggest that the on-

going loss of genetic diversity may undermine the persistence and functioning

of ecosystems in a changing world.
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One Sentence Summary: The loss of genetic diversity accelerates the extinction of inter-

connected species from an experimental food web.

Main Text: Gene-to-ecosystem processes sustain life on Earth. For example, genes encode

information that determines an organism’s phenotype and fitness in the environment (1), which5

in turn plays a fundamental role in determining its trophic interactions with other species (2,3).

Similarly, the strength and organization of trophic interactions in a food web play an impor-

tant role in maintaining species diversity across multiple trophic levels (4, 5). Predicting how

living systems will respond to ongoing climate change, therefore, requires a mechanistic un-

derstanding of linkages across biological scales (6, 7). Given that the current rate of population10

extinction, and subsequent loss of genetic diversity, is orders of magnitude higher than the rate

of species extinction (8), there is a pressing need to know to what degree this loss of genetic

diversity will undermine the persistence of food webs in a changing world.

To understand how gene-to-ecosystem processes will respond to climate change, we used an

experimental food web consisting of a plant (Arabidopsis thaliana), two species of aphids (Bre-15

vicoryne brassicae and Lipaphis erysimi), and a parasitoid wasp (Diaeretiella rapae) (Fig. 1A).

These species form a naturally occurring food web (10, 11), which contains three of the most

common interaction structures found in natural food webs, including resource competition

(aphid-plant-aphid), apparent competition (aphid-parasitoid-aphid), and a food chain (plant-

aphid-parasitoid) (12). Interactions in this food web are partly mediated by a group of spe-20

cialized metabolites called aliphatic glucosinolates (10). Extensive knowledge of genotype-to-

phenotype causality in Arabidopsis aliphatic glucosinolates (Fig. 1B) provides a system to test

how genetic change influences ecological interactions in a food web. We used 3 transgenic

lines that recreate natural null alleles in the aliphatic glucosinolate pathway (MAM1, AOP2, and

GSOH), which determine natural variation in aliphatic glucosinolates across multiple Brassi-25
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Fig. 1. Study system. (A) In our experimental food web, the parasitoid Diaeretiella rapae
(top) parasitizes the aphids Brevicoryne brassicae (left) and Lipaphis erysimi (right), and these
aphids compete for their shared resource Arabidopsis thaliana (bottom). This food-web dia-
gram represents our prior expectation of food-web structure, where solid and dashed arrows
represent positive and negative effects, respectively. (B) To manipulate genetic diversity, we
used 3 transgenic lines of Arabidopsis (gsm1, AOP2, AOP2/gsoh) that alter the biosynthesis of
aliphatic glucosinolates in a common genetic background (Col-0 accession). The chemical phe-
notype (3MSO, 4MSO, But-3-enyl, or OH-But-3-enyl) of each Arabidopsis genotype depends
on which genes (MAM1, AOP2, and GS-OH) have functional alleles (details given in note 9).
The glucosinolate pathway is adapted from Fig. 1 in ref. 1.
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cales species (13–17), in a common genetic background (Col-0 accession, Fig. 1B). Together,

the Col-0 accession and transgenic lines reproduce most of the natural variation in the chemical

phenotypes of Arabidopsis accessions that co-occur throughout Europe and determine fitness

under field conditions (1, 9, 18). We created experimental plant populations from all possi-

ble combinations of Arabidopsis genotypes (n = 11 combinations across 60 experimental food30

webs), including monocultures (n = 4), two-genotype mixtures (n = 6), and the four-genotype

mixture (n = 1). This experimental design allowed us to test both a general effect of genetic

diversity and isolate the contribution of allelic variation at specific genes.

To test the sensitivity of these genetic effects to climate change, we conducted the experi-

ment under two different, constant temperature regimes (20�C and 23�C). We chose these tem-35

peratures to reflect the warming this food web is expected to experience over the next 25–50

years (19). More generally, warming can simultaneously modify processes at different biolog-

ical scales (6). This is because temperature fundamentally determines an organism’s metabolic

rate, which can scale up to alter the strength and stability of trophic interactions with other

species (20).40

After adding the experimental food web to each plant population, we tracked the population

dynamics of each species for 17 weeks, allowing for multiple generations of aphids (⇠16 gener-

ations) and parasitoids (⇠8 generations). This allowed us to track critical transitions in the food

web over time (Fig. 2). In the context of this paper, critical transitions refer to local extinctions

that simplify the food web (21).45

Warming had an immediate effect on food-web persistence (Fig. 2, Table S1). Specifically, a

1�C increase in warming accelerated the extinction of the aphid Brevicoryne brassicae, resulting

in a simpler food chain (yellow to green in Fig. 2, S1–S3). However, warming did not alter the

risk of a critical transition in the remaining food chain (green to either blue or purple in Fig.

2, Table S2). Although counterintuitive, warming increased the odds that the food web was50
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Fig. 2. Critical transitions in the experimental food web. Each color corresponds to a dif-
ferent food-web structure, and arrows between two colors indicate a critical transition. The
thickness of an arrow is proportional to the percent change in probability of a critical transi-
tion for every one unit increase in temperature (left) or genetic diversity (right). Solid arrows
indicate positive changes, while dashed arrows indicate negative changes. Black arrows denote
statistically clear effects (P < 0.05), while grey arrows are unclear. Rare critical transitions
were not tested (labeled n.t.) for differences between treatments. Details on the statistical tests
for each critical transition are provided in Tables S1–S2.
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reduced to only the aphid Lipaphis erysimi (blue in Fig. 2), rather than completely collapsing

(purple in Fig. 2), by the end of the experiment (multinomial GLM ANOVA: F2,20 = 4.03, P =

0.034, Fig. S4).

Although warming accelerated the transition of the intial food web toward a simpler food

chain, it was genetic diversity that governed the risk of a critical transition in the remaining55

food chain (Fig. 2, Table S2). Specifically, adding another genotype to the plant population

reduced the risk of the food chain completely collapsing by 53% (green to purple in Fig. 2).

This reduced risk of a critical transition tripled the odds of the food chain persisting to the end

of the experiment (relative to complete collapse, multinomial GLM ANOVA: F2,18 = 3.61, P

= 0.048, Fig. S4). Therefore, despite the initial effect of warming, the net effect of genetic60

diversity on food-web persistence was larger than that of warming (Fig. S4). Moreover, there

was no clear evidence that temperature modified the effects of genetic diversity on any of the

possible critical transitions (all P > 0.40 for ‘temp:rich’ in Tables S1–S2), suggesting that the

positive effect of genetic diversity was robust to experimental warming.

To understand the source of this genetic diversity effect, we isolated the role of each specific65

genotype (Fig. 3). To do this, we leveraged the fact that the genetic diversity effect (adding

an additional genotype in Fig. 3A) corresponds to the average genotype-specific effect (i.e.,

average of green, blue, red, and orange points in Fig. 3B). We focused on the effect of genetic

diversity on the overall risk of a critical transition in the food chain (green in Fig. 3A), i.e.,

a transition to either an aphid only (blue in Fig. 3A) or completely collapsed state (purple in70

Fig. 3A). The rationale for this choice is that there was more certainty in this overall effect (P

= 0.015) compared to the reduced risk of a complete collapse (P = 0.044 for green to purple

transition in Fig. 2). We found that adding Col-0 or gsm1 to the plant population reduced the

overall risk of a critical transition in this food chain by 45% and 48%, respectively (Fig. 3B).

These genotypes differ in that Col-0 has a functional allele at the MAM1 gene, whereas gsm175
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Fig. 3. Identifying a keystone gene. (A) Genetic diversity reduced the overall risk of a crit-
ical transition in the food chain (green) to either an aphid only (blue) or completely collapsed
(purple) state by 35%. (B) We then isolated the contribution of each genotype to this genetic
diversity effect. Points correspond to mean estimates, while thick and thin bars correspond to
standard errors and 95% confidence intervals, respectively. Note that the effect of genetic di-
versity (-35%) corresponds to the average genotype-specific effect (i.e., average of green, blue,
red, and orange points). Both Col-0 and gsm1 have a non-functional AOP2 gene and clearly de-
crease the risk of a critical transition. In contrast, both AOP2 and AOP2/gsoh have a functional
AOP2 gene and unclear effects. This suggests that AOP2 functions as a keystone gene in this
food web.
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has a non-functional allele. The MAM1 gene controls the elongation of the glucosinolate side

chain (Fig. 1B, ref. 13, 15), and influences herbivory from aphids (10) and other insects (15).

These independent contributions suggest that these genotypes have complimentary effects on

food-chain persistence. Interestingly, Col-0 and gsm1 both lack a functional AOP2 gene, which

modifies the glucosinolate side chain (Fig. 1B, ref. 14, 16). The two genotypes that have a80

functional AOP2 gene had unclear effects on food-chain persistence (Fig. 3B). Analagous to

a keystone species that determines species diversity in a food web (22), our results indicate

that AOP2 functions as a keystone gene in this food web by shaping species diversity through

differences in food-web persistence (23).

To understand how genetic change translates into food-web persistence, we applied theory85

on the structural stability of food webs. Structural stability quantifies the range of ecological

conditions that allow species to stably coexist (24, 25). At the boundary of this range, the food

web undergoes a critical transition to a simpler community (21). The geometry of intra- and in-

terspecific interactions define the location of critical boundaries, while species’ intrinsic growth

rates determine the proximity of the food web to a critical boundary. The distance, or to be90

precise the normalized angle, from a critical boundary measures the vulnerability of a food web

to a critical transition. We used our time series data to quantify the effect of genetic diversity on

interactions and species’ intrinsic growth rates, and thus the risk of a critical transition (details

in Supplementary Material and Table S3).

We found that genetic diversity buffered the remaining food chain from a critical transition95

in a specific way (Fig. 4). This buffering effect was not because genetic diversity altered the

location of the critical boundary (border of grey area in Fig. 4). Rather it was because genetic

diversity moved the vector of intrinsic growth rates (solid arrows) upward and into the region

where the parasitoid and aphid coexist (grey area in Fig. 4; Bayesian multivariate autoregressive

(MAR(1)) model: 98% of posterior estimates > 0, Fig. S5). This buffering effect was primarily100
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Fig. 4. Genetic diversity buffers the remaining food chain from its critical boundary. The
grey area represents the range of intrinsic growth rates (normalized to length 1) where the aphid
and parasitoid coexist. The white area represents the range of intrinsic growth rates where the
parasitoid goes extinct. Increasing genetic diversity moves the vector of intrinsic growth rates
(solid arrows) upward and into the region of parameter space where the aphid and parasitoid
coexist (grey area). Note that normalizing the vector of intrinsic growth rates to length 1 is
necessary for accurately visualizing and calculating the proximity of the food chain to its critical
boundary.
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due to a concordant increase in the aphid’s intrinsic growth rate (Bayesian MAR(1) model: 97%

of posterior estimates > 0), and to a lesser extent the parasitoid’s growth rate (Bayesian MAR(1)

model: 87% of posterior estimates > 0). Although this analysis assumes that this food chain is

at a stable equilibrium, our results hold under non-equilibrium conditions (i.e., persistence from

different initial conditions, Fig. S6).105

The buffering effect of genetic diversity was underlied by Col-0 and gsm1’s positive effect

on aphid and parasitoid intrinsic growth rates (Fig. S7). This positive relationship was likely

due to the faster relative growth rate of Col-0 and gsm1 genotypes compared to genotypes

with a functional AOP2 gene (Fig. S8; note that genetic diversity did not affect plant growth,

ANOVA: F1,9 = 0.10, P = 0.759, Table S4). Work in similar environmental conditions has110

shown that natural accessions of Arabidopsis with a functional AOP2 gene produce more total

aliphatic glucosinolates and have slower growth rates (10), which has been shown to reduce

the intrinsic growth rate of other aphid species (26). Note that the AOP2 gene also has known

pleiotropic effects on phenology, jasmonic acid signaling, and circadian rhythms (27,28), which

may ultimately mediate the dynamics of plant growth and aphid herbivory we observed. The115

direct plant genetic effect on the aphid’s growth rate is also the likely cause of the positive

indirect effect on the parasitoid’s growth rate. For example, different plant genotypes of a

closely related crucifer species alter the intrinsic growth rates of aphids and parasitoids in a

coordinated manner (29). This positive correspondence in intrinsic growth rates is likely quite

general among insect herbivores and their parasitoids (30).120

These results hint at a general mechanism that may underlie a common pattern —plant

populations with higher genetic diversity harbor more species-rich food webs (31, 32). Our

work suggests that this pattern may be caused by an increased probability of having plants

with chemical phenotypes that promote reproduction in herbivores and their natural enemies.

While we have shown that this mechanism prevents critical transitions in a simple food chain,125
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it is possible that this mechanism operates as well in more diverse food webs. Given that

food chains of plants, insect herbivores, and their parasitoids comprise ⇠40% of all described

Eukaryotes (33), this mechanism may have far reaching consequences on the persistence and

functioning of terrestrial ecosystems.

Taken together, our results show that genetic diversity in plant defense metabolism can in-130

crease the persistence of food webs in the face of climate warming. Although climate warming

had a strong initial effect on food-web persistence, genetic diversity served as biological in-

surance against subsequent collapse. This suggests that the loss of genetic diversity we are

witnessing (34) may accelerate the local extinction of species across multiple trophic levels.

Yet, these results also present an opportunity for conservation and ecosystem restoration. For135

example, assisted migration of pre-adapted plant genotypes is becoming a well recognized strat-

egy for restoring and preserving forest ecosystems into the future (35). Our results suggest that

maximizing genetic diversity within pre-adapted populations may foster the structural integrity

of terrestrial food webs in an uncertain and changing world.
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