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Abstract  
 
SARS-CoV-2, the coronavirus that causes COVID-19, binds to angiotensin-converting enzyme 2 
(ACE2) on human cells. Beyond the lung, COVID-19 impacts diverse tissues including the kidney. 
ACE2 is a key member of the Renin-Angiotensin-Aldosterone System (RAAS) which regulates 
blood pressure, largely through its effects on the kidney. RAAS blockers such as ACE inhibitors 
(ACEi) and Angiotensin Receptor Blockers (ARBs) are widely used therapies for hypertension, 
cardiovascular and chronic kidney diseases, and therefore, there is intense interest in their effect 
on ACE2 expression and its implications for SARS-CoV-2 pathogenicity. Here, we analyzed 
single-cell and single-nucleus RNA-seq of human kidney to interrogate the association of 
ACEi/ARB use with ACE2 expression in specific cell types. First, we performed an integrated 
analysis aggregating 176,421 cells across 49 donors, 8 studies and 8 centers, and adjusting for 
sex, age, donor and center effects, to assess the relationship of ACE2 with age and sex at 
baseline. We observed a statistically significant increase in ACE2 expression in tubular epithelial 
cells of the thin loop of Henle (tLoH) in males relative to females at younger ages, the trend 
reversing, and losing significance with older ages. ACE2 expression in tLoH increases with age 
in females, with an opposite, weak effect in males. In an independent cohort, we detected a 
statistically significant increase in ACE2 expression with ACEi/ARB use in epithelial cells of the 
proximal tubule and thick ascending limb, and endothelial cells, but the association was 
confounded in this small cohort by the underlying disease. Our study illuminates the dynamics of 
ACE2 expression in specific kidney cells, with implications for SARS-CoV-2 entry and 
pathogenicity.  
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Introduction 
 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus responsible for 
the Coronavirus Disease 2019 (COVID-19) pandemic, enters human cells through the binding of 
its spike (S) protein to the host cell surface angiotensin-converting enzyme 2 (ACE2) (1, 2). 
Subsequent cleavage by one of several accessory host proteases, including transmembrane 
protease serine 2 (TMPRSS2) and cathepsin L (CTSL), is required for successful viral entry and 
replication (3). While the nasal, lung and gut epithelia are primary targets of SARS-CoV-2 
infection, complications affecting multiple organ systems suggest the virus impacts other tissues, 
and studies have described RNA expression of ACE2 in diverse tissues including the gut, heart, 
liver, kidney, olfactory epithelium, brain and vasculature (4, 5). To date, little is known about the 
cell-type specific expression patterns of ACE2 in human kidney in a large enough cohort to allow 
us to account for factors such as age and sex that appear to be critical for susceptibility to SARS-
CoV-2 and severity of disease. 
 
ACE2 is a key component of a more recently recognized counter-regulatory arm of the Renin-
Angiotensin-Aldosterone system (RAAS (6)), critical for regulating blood pressure. ACE2 is 
located on the X chromosome, and RAAS activity has been reported to exhibit sex-specific 
differences (7, 8). ACE2 converts angiotensin II (Ang II) to the vasodilatory peptide Ang-(1-7), 
angiotensin I to Ang-(1-9) (also cleaved to Ang-(1-7) by angiotensin converting enzyme (ACE) or 
neprilysin), and angiotensin A to alamandine (9), a peptide mediating similar actions as Ang-(1-
7). Together, this non-classical arm of the RAAS counteracts the vasoconstrictive, proliferative 
and inflammatory effects of the classical RAAS, mediated by Ang II (generated from angiotensin 
I by the action of  ACE). ACE2 therefore acts as a critical regulator of the Ang II versus Ang-(1-7) 
balance to prevent deleterious high blood pressure and tissue inflammation, especially in the 
kidney, where ACE2 has been previously detected at the brush borders of tubular epithelial cells 
and at lower levels within glomeruli (10). 
 
The RAAS is frequently targeted in the treatment of hypertension and chronic kidney disease 
(CKD). Common drug modulators of RAAS include ACE inhibitors (ACEi) and Angiotensin 
Receptor Blockers (ARBs). ACEi block the conversion of Angiotensin I to Ang II by ACE, while 
ARBs block the binding of Ang II to Ang II receptor type 1 (AT1R), and inhibit its vasoconstrictive 
effects. The association between ACE2 expression and activity with ACEi/ARB use is not clearly 
defined (11); results largely depend on the model system (rodents, humans), the specific drug 
tested, and the tissue of investigation (12–15). 
 
COVID-19 is associated with greater disease severity and mortality in older individuals, in men, 
and in those with comorbidities, including diabetes mellitus and CKD (16, 17). Since ACE2 acts 
as the receptor for SARS-CoV-2, there has been widespread debate (18, 19) if altered ACE2 
expression and RAAS regulation in patients taking ACEi/ARBs affects the pathogenicity of SARS-
CoV-2 infection. Two recent large population-based, case-control studies found no significant 
association between the use of RAAS blockers and risk or severity of COVID-19, regardless of 
sex or age (20, 21). However, disease severity was narrowly defined in these studies based on 
clinical manifestations affecting the lung. Thus, there remains an urgent need for a deeper 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.06.23.167098doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.167098
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

understanding of the dynamics and relationship between ACE2 expression and ACEi/ARB use at 
the level of individual cells, and adjusted for age, sex and other confounders in other organ 
systems, especially the kidney. 
 
To investigate whether ACE2 expression in the kidney, a key RAAS tissue, may be influenced 
by ACEi/ARB use, we examined transcriptomic data that we had collected at the level of individual 
kidney cells to answer two key questions: (1) what are the effects of age and sex on ACE2 
expression at the single cell level in the human kidney? (2) Is there a link between the use of 
ACEi/ARB and ACE2 expression in the kidney? 
 
 
Results and Discussion 
 
A cross-study integrated-analysis of kidney cells associates ACE2 expression with age 
and sex in the thin loop of Henle 
 
We investigated ACE2 expression in the kidneys of individuals on RAAS blockers, by examining 
single-cell and single-nucleus RNA-seq (sc/snRNA-seq) data, accounting for age and sex as 
covariates in the statistical analysis. We first generated a reference atlas of kidney with no known 
pathology (in the tissue sampled) for the association of ACE2 expression in individual kidney cell 
types with sex and age, aggregating 8 independent scRNA-seq or snRNA-seq studies from 8 
independent centers (Dataset S1) for a total of 176,421 cells profiled from 49 donors (20 females, 
29 males), and whose median age was 57 with an IQR of 14. We co-embedded the combined 
“integrated analysis” dataset adjusting for donor batch effect, and then performed graph-based 
clustering to derive 24 broad cell subsets (Methods, Figure S1A), which we annotated post hoc, 
including podocytes, proximal, distal and collecting duct tubular epithelial cells, immune and 
stromal cells (Methods, Figure S1B), of which 15 subsets had cells from at least 40 donors. No 
cell subset segregated by sex. 
 
Overall, the proportion of cells expressing ACE2 (ACE2+) varied by cell subset from 0% to 9.87% 
(Figure S1B). To account for technical variability, we examined the ACE2+ proportion within each 
donor per cell subset. The thin loop of Henle (tLoH) had the highest mean percentage (13.7%) of 
ACE2+ cells per donor, followed by proximal convoluted tubular cells (PCT, 7%), parietal epithelial 
cells (PEC, 4.6%) and vascular smooth muscle cells (vSMC, 3.5%) (Figure 1A).  
 
To associate ACE2 expression with donor age and sex, we fit a mixed effect Poisson regression 
model to cell subsets with at least 40 ACE2+ cells across donors, with age, sex and their 
interaction as covariates, and nested random effects for donors and center (Methods, Figure 
1B). We found a statistically significant association (FDR-adjusted p value < 0.05) between age, 
sex and ACE2 expression in the tLoH cell subset (Figure S2A, Dataset S2). ACE2 expression 
trended upwards with age in females (Figure 1C). In males, ACE2 expression trended 
downwards with age, and was not statistically significant (Figure 1D, Methods). Overall, the sex 
effect was statistically significant at younger ages, where males had higher expression relative to 
females. With older ages, the gap narrows, eventually reversing direction and is no longer 
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significant (Figure 1E, 1F, 1G).  We performed cross-validation to check for robustness of the 
results to dataset origin, using our recently developed strategy (5) (Methods, Dataset S2). The 
direction of association for age, sex and their interaction for tLoH was preserved and consistent 
in the cross-validation analysis, except that excluding the “Sanger'' dataset removed their 
statistical significance (Dataset S2). The Sanger dataset is the largest by number of donors (13 
donors; 7 females, 6 males), widest age range (2y to 72y) and second largest in number of cells 
(40,198 cells). To capture subtler effects, we fit a simpler fixed effects Poisson regression model 
with age, sex, their interaction and dataset as covariates, alongside a pseudo-bulk analysis to 
validate that single-cell effects are consistent on the donor level, and cross validation (5) 
(Methods, Dataset S2). A caveat of the integrated analysis is that aggregating cells to broader 
cell categories across various batches may lead to loss of within-class cellular heterogeneity. 
Effect sizes may differ across the subclasses, thus impacting their estimation. In conclusion, at 
baseline, ACE2 expression had a statistically significant association with both age in females and 
sex at younger ages in the tLoH cells. Because of the higher median age in our integrated analysis 
dataset, larger cohorts with wider age ranges are necessary to validate the results.  
 
Association of RAAS blockade with ACE2 expression in the kidney epithelial and 
endothelial cells confounded by underlying disease 
 
Next, to test the association of renal ACE2 expression with ACEi/ARB use, we surveyed ACE2 
expression in 32,239 nuclei obtained by droplet-based snRNA-seq of frozen kidney samples from 
an independent cohort of 11 patients: 9 kidney biopsies with features of various kidney diseases 
including Lupus nephritis (LN) and IgA nephropathy (IgAN) (Table 1) and 2 cortical samples from 
a tumor nephrectomy and transplant nephrectomy with rejection and recurrent Focal Segmental 
Glomerulosclerosis (FSGS). 6 of the 9 biopsied patients were either on Lisinopril (ACEi) or 
Losartan (ARB). Nuclei were isolated using one of two protocols (Methods, Table 1). Graph 
based clustering and post hoc annotation (Methods)  identified 14 broad cell classes (Figure 
S3A), including epithelial, immune and stromal cells, of which 8 classes had greater than 5 nuclei 
expressing ACE2 (Figure 2A). In contrast to the baseline analysis, PCT cells had the highest 
proportion of ACE2+ cells across this patient cohort, we did not recover tLoH nuclei, and PECs 
had fewer than 5 ACE2+ nuclei. To account for technical sampling differences, we analyzed 
ACE2+ cell proportions for each individual patient (Figure 2B).  
 
Because the number of observations per cell type was not large enough to consistently fit a 
complex model that accounts for both donor variability as a random effect and an interaction 
between age and sex, we fit a Poisson mixed effects model of ACE2 gene expression counts in 
cell classes with greater than 5 ACE2+ nuclei, with the donor as the random covariate to account 
for batch effects, while adjusting for age and sex as covariates but not their interaction or center 
effect as all samples came from the same cohort (Methods, Dataset S3, Figure 2C). In all cases, 
we sampled cells so that the distributions of the number of Unique Molecular Identifiers (UMIs) 
were matched between patients on and off ACEi/ARBs to account for sequencing depth 
differences.  
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ACEi/ARB use was associated (FDR-adjusted p value < 0.05) with increased ACE2 expression 
in select epithelial cells (PCT, Thick Ascending Limb (TAL)) and in endothelial cells (EC). There 
was also a statistically significant increase in ACE2 expression with age in the TAL-1 cells. To 
capture more subtle effects, we also fit a simpler fixed effects model, without accounting for donor 
effect, but with an interaction term between sex and age, alongside a pseudo-bulk analysis ((5), 
Methods). The direction of the effect and statistical significance for ACEi/ARB use and age were 
preserved in PCT, TAL and EC. The pseudo-bulk analysis also preserved the direction of effect 
sizes. We found no new effects with the simpler model (Dataset S3). The biopsy cohort differs 
from the baseline cohort in having a lower median age (45 vs 57), wider age range (IQR of 19.5), 
and a higher female to male ratio (8:3). Taken together, neither the baseline nor the biopsy cohort 
analysis found a robust association between ACE2 expression and sex or age in classical PCT 
cells. Importantly, the biopsy cohort showed a higher expression of ACE2 in PCTs, TAL and ECs 
in patients taking ACEi/ARBs.  
 
A limitation of the study is the small sample size of the biopsy cohort which does not allow us to 
adequately model the underlying kidney pathology without confounding with RAAS blockade 
treatment. In particular, as donors had a variety of different kidney diseases, we grouped them 
into broad disease categories: IgAN (n=3), LN (n=4) and Others (n=4). Because patients in the 
“Others” category were not treated with ACEi/ARB, the disease and treatment are confounded. 
Accordingly, when we fit the Poisson model with donor as random effect, and RAAS blockade, 
age, sex as fixed effects but included an additional fixed covariate for disease category 
(Methods),  the association with RAAS no longer held (consistent with confounding), but the age 
effect in TAL-1 was preserved. In a simpler model with just the donor effect and disease status, 
LN was associated with ACE2 expression in PCT, EC and TAL (Dataset S3). Our results highlight 
the need for further investigation with disease stratification and with greater power, to verify if the 
disease (LN) and RAAS blockade effects counter each other or if there is a true disease effect. In 
addition to the impact of underlying kidney pathology, other caveats to address in larger studies 
are ACEi/ARB dose variability and duration of use (although all patients were normotensive at the 
time of tissue collection), the impact of experimental protocols (freezing, storage and nuclei 
isolation), and sampling variability in cell composition and depth of sequencing.  
 
Reported manifestations of kidney involvement in COVID-19 patients range from urinary 
abnormalities and mild functional impairment, to severe acute kidney injury necessitating renal 
replacement therapy, associated with excess mortality risk (22). In addition to potential effects of 
ischemia and the cytokine storm associated with the systemic response to SARS-CoV-2 infection, 
there are reports of a direct viral cytopathic effect mediating kidney tubular injury (23–26). 
Postmortem examination of kidney tissue from COVID-19 patients revealed evidence of SARS-
CoV/SARS-CoV-2 nucleocapsid protein in tubular epithelium and coronavirus particles in the 
cytoplasm of the proximal, and to a lesser extent distal, tubular epithelium (23, 24). Features 
suggestive of intracellular virus assembly were also observed (25). Prominent ACE2 staining has 
also been seen in the proximal tubules of COVID-19 patients, along with focal parietal epithelial 
cell staining (and occasional weaker podocyte staining) (23). In one report, tubular SARS-CoV-2 
was accompanied by tubulointerstitial macrophage infiltration and tubular C5b-9 deposition (24). 
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These data raise the possibility that viral entry into the kidney and any downstream inflammation 
may be exaggerated when ACE2 expression is upregulated. 
 
In sum, our study provides data at the single-cell level in the kidney, an organ with observed 
SARS-CoV-2 tropism. Our integrated analysis revealed a statistically significant association 
between ACE2 expression, and age and sex in the thin loop of Henle. The varying trends in ACE2 
expression with age and sex in the kidney imply a more complex relationship between gene 
expression and simple demographic variables like age and sex, which needs further investigation 
in larger cohorts with wider-ranging ages. The use of ACEi/ARBs was likely confounded with 
underlying Lupus nephritis in relation to ACE2 levels in the proximal tubular, thick ascending limb 
and endothelial cells in the kidney after adjustment for age and sex. Assessing if increased ACE2 
expression is beneficial or harmful in settings of disease or RAAS blockade, requires further 
mechanistic investigation, in addition to studies in larger patient cohorts. Whether such 
transcriptional changes also play a role in SARS-CoV-2 tropism for the kidney remains an open 
question that we may only be able to confidently answer once large clinical cohorts are analyzed 
at the end of the current pandemic. Further, all our data comes from non-COVID-19 samples, and 
the effect of virus infection on ACE2 expression is yet to be determined.  
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Materials and methods 
 
Datasets used in the baseline integrated analysis 
We included 8 datasets in the integrated analysis for a total of 176,421 cells (Dataset S1) post 
quality control filtering (see below). In addition to an internal unpublished single-cell cohort, we 
aggregated control kidney single-cell or single-nucleus RNA-seq data from 7 published studies 
for a total of 49 donors (29 males, 20 females) with a median age of 57 (min 2y, max 72y, IQR=14). 
Public datasets were obtained at the level of gene expression counts post genome alignment and 
gene-level quantification as published by each study’s authors (Dataset S1). For 2 donors (AMP 
dataset), only age ranges were available, so mean ages were computed.  
 
Single nucleus isolation from human kidney tissue 
Frozen kidney biopsy specimens or frozen samples of macroscopically normal cortex from tumor 
nephrectomies (distant from the tumor site), were obtained after appropriate patient (discarded 
tissue) consent and in accordance with Partners Healthcare IRB and institutional guidelines. One 
of two protocols (utilizing either nuclei EZ lysis buffer (Sigma-Aldrich, St. Louis, USA) or a salt 
Tris-based buffer (27, 28)) was used to isolate nuclei from these; in the case of kidney biopsy 
tissue, the surrounding OCT embedding medium was first removed using PBS. 8,000 or 10,000 
single nuclei were loaded into each channel of the Chromium single cell 3’ chip, according to use 
of the v2 or v3 kit respectively (10x Genomics, Pleasanton, USA). 
 
Single cell isolation from human kidney tissue 
Samples of macroscopically normal cortex were obtained from tumor nephrectomy specimens, 
distant from the tumor site, after appropriate patient consent and in accordance with IRB and 
institutional guidelines as above. Following transfer in 2% heat-inactivated FBS RPMI, tissue was 
cut into 1mm x 1mm cubes and placed in 0.25mg/ml liberase TH dissociation medium (Roche 
Diagnostics, Indianapolis, USA). Following further dissection, the tissue was incubated at 37°C 
for 1 hour at 600rpm. Samples were regularly triturated during the incubation period using a 1ml 
pipette, after which the digestion was stopped by the addition of 10% heat-inactivated FBS RPMI. 
The addition of ACK lysing buffer (ThermoFisher Scientific, Waltham, USA) following 
centrifugation at 500g for 5 minutes at room temperature, was performed twice in light of the lack 
of perfusion prior to nephrectomy. After centrifugation, the cell pellet was incubated with Accumax 
at 37°C for 3 minutes (Innovative Cell Technologies Inc, San Diego, USA), with 10% FBS RPMI 
again used for its subsequent neutralization. The resulting cell pellet was resuspended in 0.4% 
BSA/PBS and filtered using a 30um CellTrics filter (Sysmex America Inc, Lincolnshire, USA). Cell 
viability and concentration were determined using trypan blue, with 10,000 cells loaded into the 
10x Genomics microfluidic system according to the manufacturer’s guidelines (10x Genomics, 
Pleasanton, USA). 
 
Droplet-based sn/scRNA-seq 
Single nuclei or cells were partitioned into gel bead-in-emulsions (GEMs) and incubated to 
generate barcoded cDNA by reverse transcription. Barcoded cDNA was then amplified by PCR 
prior to library construction. Fragmentation, sample index and adaptor ligation, and PCR were 
used to generate libraries of paired-end constructs according to the manufacturer’s 
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recommendations (10x Genomics, Pleasanton, USA). Libraries were pooled and sequenced 
using the Illumina HiSeq X system (San Diego, USA). Whenever feasible, we pooled 10x libraries 
on sequencing lanes to ensure that any individual sample was not confounded by batch (kidney 
section, day of sample collection, condition, timepoint) and were randomly distributed across 
lanes. 
  
Preprocessing of 10x droplet-based sequencing outputs 
We used the Cellranger toolkit (v2.1.1, v3, 10X Genomics 
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-
cell-ranger) to de-multiplex (cellranger mkfastq) the sequencing outputs, and for alignment 
(cellranger count) to the reference transcriptome (GRCh38 for human cells, GRCh38 pre-mRNA 
for human nuclei), and quantification of gene expression.  
 
Cell type identification and annotation  
 
Quality control and normalization 
All sc/snRNA-seq data analysis except co-embedding was done using the package Seurat (v2.3 
(29) and v3.1 (30)). For the integrated analysis, we used the merge function to merge the 
expression count matrices. We used the FilterCells or subset function to retain cells that had read 
mapping to a minimum of 200 genes and raised the maximal mitochondrial threshold for cell 
inclusion to 40% mitochondrial gene reads as the kidney is a highly metabolically active organ. 
We normalized the data using total sum scaling followed by multiplication by a factor of 105(TPX), 
and log-transformation using a pseudocount of 1 by the NormalizeData function to obtain 
log(TPX+1) values. Next, we identified high varying expression features using the 
FindVariableGenes function using default parameters for the biopsy cohort, and the 
FindVariableFeatures function with variance stabilization for the baseline integrated analysis. We 
computed the top 20 principal components (PCs) using the RunPCA function on the expression 
matrix composed of only the 2,000 most highly variable genes after mean centering and scaling 
using the ScaleData function. 
 
Joint analyses of human cells from multiple donors 
Batch effects are often detected by segregation of clusters by technical factors (e.g., donor origin, 
replicate, day of sequencing etc.) rather than expected biological identity. The single nuclei profile 
initially separated by donor. We used the Harmony v1 (31) R package to co-embed human single-
cell and single-nucleus RNA-seq data prior to clustering and visualization. Each donor was used 
as a separate batch. 
 
Cell type identification 
We performed clustering using the FindClusters function on  the top 20 Harmony dimensions at 
a resolution of 1. FindClusters builds a shared k-nearest neighbor (k-NN, k=20) graph followed 
by community detection to determine clusters. We first used a resolution of 1, followed by merging 
of subsets in case of overclustering to retain major cell types after computing marker genes by 
differential expression (below). For 2-D visualization of the data by way of Uniform Manifold 
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Approximation and Projection for Dimension Reduction (UMAP), we ran the RunUMAP function 
on the 20 Harmony dimensions, and with default parameters. 
 
Cell type annotation and signatures  
We used the FindAllMarkers function with default parameters to compute highly differentially 
expressed (DE) genes distinguishing each cluster from all other cells using the Wilcoxon Rank-
Sum text with Benjamini-Hochberg FDR adjustment (32). We generated a database of literature-
derived genes for kidney parenchymal, stromal and immune cell types. We annotated clusters by 
checking the presence of literature-derived, cell type-specific genes among the top DE genes 
when possible. Cells were annotated at the level of broad cell types. 
 
Modeling age and sex effects on ACE2 expression 
We first fit a mixed effect model (Eq 1) that explicitly models donor and dataset or center 
variability. Because of its complexity for the current dataset, it likely captures the most prominent 
effects. So we also fit a less complex fixed effects model (Eq 2) without modeling donor variability. 
A pseudo-bulk analysis at the donor level was used to validate the direction of effect sizes. For 
both models, datasets were held out to determine robustness of the model results to dataset 
variability.  
 
To test the effect of age and sex on ACE2 expression, we fit a Poisson mixed effects model to 
the integrated analysis dataset: 
 
ACE2k,s ~ Ages + Sexs + Age*Sex + (1|donors) + (1|centerk)                                              (Eq 1) 
 
where ACE2 is the gene expression of ACE2 in cell k and donor s in units of UMI counts. The 
total number of UMIs was added as an offset after scaling to have mean 1 and log-transformed. 
Age and Sex denote the age and sex of the donors in numerical years and binary “Female 
(reference)/Male”, respectively. The donor and dataset were modeled as nested random effects 
to account for batch effects. An interaction term was added to model the relationship between 
age and sex. We used the glmer function in the lme4 (33) package to fit the model and compute 
p-values for individual coefficients.  
 
The combined effect of sex and age can be summarized as: βage + βsex +  sex*age*βage:sex where 
βage:sex is the interaction term and age is the numeric age, and sex is a binary variable (0 for 
females, 1 for male). 
 
The sex effect can be summarized as: βsex +  age*βage:sex  
 
The age effect can be summarized as: βage +  sex*βage:sex  
 
For females (sex=0), the effect size is  βage  
For males (sex=1) the effect size is  βage +  sex*βage:sex 
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glmer only computes uncertainty for and tests the individual coefficients. We computed 
uncertainties for the combined coefficients for age and sex effects by computing CT*𝝨*C where C 
is the vector of independent variables of interest, and 𝝨 is the variance-covariance matrix of the 
fitted model. The combined effects and computed standard errors were subjected to a Wald test 
of statistical significance. Multiple hypothesis test correction was performed using the method of 
Benjamini-Hochberg (32) (FDR=5%). We performed leave one out cross validation (LOOCV) at 
the level of datasets to validate effect size direction and statistical significance. 
 
To validate the direction of effects, pseudo-bulk analysis was performed by computing the mean 
ACE2 expression count and mean UMI count across cells per cell type per donor. Using donors 
as observations, and the dataset as a random covariate, we fit the following Poisson mixed effect 
model to each cell type with the log-transformed mean UMI count as offset: 
mean_ACE2s ~ Ages + Sexs + Age*Sex + (1|centers) + offset(log(mean_nUMI)) 
 
For capturing less complex effects, we fit the following Poisson regression model (5) with fixed 
effects and log-transformed UMI counts as offset: 
ACE2k,s ~ Ages + Sexs + Ages*Sexs  + datasetk                                                                  (Eq 2) 
We used the glm function in R to fit the model. Pseudo-bulk analysis was performed by taking the 
mean counts as described above.  
 
Testing association between RAAS blockade and ACE2 expression 
To test the association between ACEi/ARB use and ACE2 transcription, we fit the following 
Poisson mixed effects model to each cell type in the biopsy cohort: 
 
ACE2k,s ~ ACEi/ARBs + Ages + Sexs + (1|donors)                                                               (Eq 3) 
 
where ACE2 is the gene expression of ACE2 in cell k and donor s in units of UMI counts. The 
total number of UMIs was added as an offset after scaling to have mean 1 and log-transformed. 
ACEi/ARB is the binary status “Yes/No” of whether the donor s was on the drug or not. Age and 
Sex denote the age and sex of the donor s in numerical years and binary “Female 
(reference)/Male”, respectively. The donor was modeled as a random covariate to account for 
batch effects. We used the glmer function in the lme4 (33) package to fit the model and compute 
p-values. Multiple hypothesis test correction was performed using the method of Benjamini-
Hochberg (32) (FDR=5%). 
 
For the fixed effects model, we used the glm function in R to fit the following Poisson regression 
model: 
ACE2k,s ~ ACEi/ARBs + Ages + Sexs + Ages*Sexs                                                                     (Eq 4) 
Pseudo-bulk analysis was performed as described above. 
 
To model pathology, we fit the following two models:  
ACE2k,s ~ ACEi/ARBs + Diseases + Ages + Sexs + (1|donors)                                                  (Eq 5) 
Because of its complexity, we could only fit (Eq 5) to 5 cell types.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.06.23.167098doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.167098
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

Next, we fit a simpler model to determine disease-specific effects to all cell types with at least 5 
ACE2+ nuclei. 
ACE2k,s ~ Diseases + (1|donors)           (Eq 6) 
 
Plotting and visualization  
All analysis was performed in the R statistical computing environment (v3.6). We used the R 
visualization packages ggplot2 v3.2.1 (34), cowplot v0.9.4 (35), ggpubr v0.2.5 (36) and patchwork 
v1.0.0.9 (36, 37) for generation of boxplots, violin plots, proportional bar plots, UMAP visualization 
and dotplots. Data was wrangled using the tidyverse (38) framework (dplyr v0.8.3, tidyr v1.0).  
 
Availability of datasets and code 
The “integrated analysis” baseline dataset will be available as a resource on the Single-Cell Portal 
(SCP937)). Raw expression counts for ACE2 for the unpublished nephrectomy and biopsy 
cohorts will also be available in the same study. Code used in the analysis will be made available 
at https://github.com/ayshwaryas/kidney_scmetaanalysis_c19  
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Figure 1. Integrated analysis of 8 reference kidney single-cell datasets shows ACE2 
expression is associated with age, sex and their interaction in the thin loop of Henle 
tubular epithelial cells of the kidney 
(A) ACE2+ cells across kidney cell subsets. Distribution of proportion of cells expressing ACE2 
(count of at least 1) in each individual (dot, y axis) in each cell subset (x axis).  Two outliers were 
removed, each having only 1 cell of the cell class. Cell proportions were computed as the ratio of 
the number of cells in a certain cell type expressing ACE2 divided by the total number of cells in 
the cell type. (B) Statistical model fitted to the data to assess sex, and age associations with gene 
expression of ACE2. (C) Age effect in females in the tLoH (D) Age effect in males in the tLoH (E) 
Sex effect in tLoH, varies with age (F) Scatter plot of sex effect (y-axis) with age (x-axis) from 10y 
to 70y in increments of 5y. Standard error bars are shown. (G) Sex effect computation for younger 
ages (25, 40 years), first quartile (49y), median age (57y) and second quartile (63y). Asterix (*) 
indicates statistical significance at FDR of 5%. 
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Figure 2. Association of ACE2 expression with ACEi/ARB use in kidney proximal tubular, 
thick ascending limb and endothelial cells. 
(A) ACE2 expression across kidney cell subsets in tissue biopsies.  Mean ACE2 expression in 
ACE2+ cells (log (TPX+1), dot color) and proportion of expressing cells (dot size) across cell types 
(columns) with at least 5 ACE2+ nuclei, stratified by ACEi/ARB use (rows). (B) Proximal tubular 
cells have the highest proportion of ACE2+ cells across patients. Proportion of ACE2+ cells (y 
axis) in each cell type (color) in each donor (x axis). Donors on RAAS blockade are in bold and 
underlined (C) Association between ACE2 expression and ACEi/ARB while controlling for age, 
and sex. The x-axis is the effect size of the association in log-fold change (sex), or slope of log 
expression with age. Error bars represent standard errors around coefficient estimates. 
Statistically significant associations (FDR 5%) are outlined in black, others are in gray and colors 
are shaded lighter.  
 
 
 
. 
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Table 1. Demographic patient data and nuclei isolation method 
 

Patient Tissue source Sex Age Diagnosis ACEi/ARB Antihypertensive 
medication 

Creatinine 
(mg/dl) 

Proteinuria Nuclei 
isolation 

buffer 
1 Biopsy Female 26 Class V 

(membranous) lupus 
nephritis, 

hypertension 

Yes Losartan 0.80 2+ EZ lysis 

2 Biopsy Female 48 IgA nephropathy, 
hypertension 

No Labetalol, nifedipine 1.65 2+ Salt Tris-
based 

3 Biopsy Female 32 Class II (mesangial 
proliferative) lupus 

nephritis, 
hypertension 

Yes Lisinopril 1.60 1+ Salt Tris-
based 

4 Biopsy Female 49 Class III (A/C) and V 
lupus nephritis, 
hypertension 

Yes Losartan, amlodipine, 
carvedilol 

1.28 2+ Salt Tris-
based 

5 Biopsy Male 33 IgA-dominant immune 
complex-mediated 

glomerulopathy 

Yes Lisinopril 0.94 2+ Salt Tris-
based 

6 Biopsy Male 23 IgA 
nephropathy/Henoch 

Schönlein purpura 

Yes Lisinopril 1.06 2+ Salt Tris-
based 

7 Biopsy Male 64 Monoclonal 
immunoglobulin 

deposition disease 

No N/A 1.49 Negative EZ lysis 

8 Biopsy Female 54 Lung transplant (for 
alpha-1 antitrypsin 
deficiency), acute 
tubular injury with 

focal tubular necrosis 

No N/A 2.20 2+ Salt Tris-
based 

9 Biopsy Female 24 Class II and V lupus 
nephritis 

Yes Lisinopril 0.60 2+ Salt Tris-
based 

10 Transplant 
nephrectomy 

Female 48 Recurrent focal 
segmental 

glomerulosclerosis, 
active antibody and 

cell mediated 
rejection 

No N/A Hemodialy
sis-

dependent 

N/A Salt Tris-
based 

11 Tumor 
nephrectomy 

Female 45 Hypertension, 
hyperlipidemia, Adult 

Wilms tumor 

No Amlodipine 0.80 1+ EZ lysis 

N/A – not applicable 
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Supplementary materials for this manuscript include the following: 
 
Datasets S1 to S3 
Supplementary figures S1 to S3 
Supplementary text  
 
 
Dataset legends 
 
Dataset S1: Table of datasets used in the integrated analysis with information on study center, 
data accession links, study citation, dataset characteristics (number of donors), and sc- or snRNA-
seq technology.  
 
Dataset S2: Results of integrated analysis to test the effects of age and sex on ACE2 expression. 
Statistics of estimated fixed and random effects for the (1) mixed effect Poisson regression model, 
(2) Fixed effect Poisson regression model, (3) pseudo-bulk analysis and (4) cross validation are 
shown in separate sheets. Cross-validation results are shown for the significant effects 
ascertained from the full data. 
 
Dataset S3: Results of association test between RAAS blocker use and ACE2 expression. 
Statistics of estimated fixed and random effects for the (1) mixed effect Poisson regression model, 
(2) Fixed effect Poisson regression model and (3) pseudo-bulk analysis are shown in separate 
sheets.  
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Supplementary Figure 1: Integrated analysis dataset spans 24 broad kidney cell subsets 
(A) Co-embedding. UMAP of cell profiles (dots) colored by annotated cell subset defined by 
clustering (Methods). (B) Cell subset annotations. Mean expression (log(TPX+1), dot color) of 
each marker (columns) in expressing cells and proportion of expressing cells (dot size) across 
cell types (rows).  
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Supplementary Figure 2: Association of ACE2 with age, sex and their interaction 
The x-axis shows the effect size of the association in log-fold change (sex), or slope of log 
expression with age. Error bars represent standard errors around coefficient estimates. 
Statistically significant associations (FDR 5%) are outlined in black, others are in gray and colors 
are shaded lighter.  
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Supplementary Figure 3: Cell subsets in the biopsy cohort 
Mean expression (log(TPX+1), dot color) of each marker (columns) in expressing cells and 
proportion of expressing cells (dot size) across cell types (rows). 
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