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Abstract

Multi-echo gradient echo (ME-GRE) magnetic resonance signal evolution in white matter has a strong dependence on the orienta-
tion of myelinated axons with respect to the main static field. Although analytical solutions have been able to predict some of the
white matter (WM) signal behaviour of the hollow cylinder model, it has been shown that realistic models of WM offer a better
description of the signal behaviour observed.

In this work, we present a pipeline to (i) generate realistic 2D WM models with their microstructure based on real axon
morphology with adjustable fiber volume fraction (FVF) and g-ratio. We (ii) simulate their interaction with the static magnetic
field to be able to simulate their MR signal. For the first time, we (iii) demonstrate that realistic 2D WM models can be used to
simulate a MR signal that provides a good approximation of the signal obtained from a real 3D WM model derived from electron
microscopy. We then (iv) demonstrate in silico that 2D WM models can be used to predict microstructural parameters in a robust
way if ME-GRE multi-orientation data is available and the main fiber orientation in each pixel is known using DTI. A deep learning
network was trained and characterized in its ability to recover the desired microstructural parameters such as FVF, g-ratio, free and
bound water transverse relaxation and magnetic susceptibility. Finally, the network was trained to recover these micro-structural
parameters from an ex vivo dataset acquired in 9 orientations with respect to the magnetic field and 12 echo times. We demonstrate
that this is an overdetermined problem and that as few as 3 orientations can already provide comparable results for some of the
decoded metrics.

[Highlights] - A pipeline to generate realistic white models of arbitrary fiber volume fraction and g-ratio is presented; - We
present a methodology to simulated the gradient echo signal from segmented 2D and 3D models of white matter, which takes into
account the interaction of the static magnetic field with the anisotropic susceptibility of the myelin phospholipids; - Deep Learning
Networks can be used to decode microstructural white matter parameters from the signal of multi-echo multi-orientation data;
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1. Introduction

White matter (WM) consists mainly of myelinated axons
and plays an important role in the transmission of information
across the brain. The myelin sheath surrounding axons acts as
an electrical insulator, thus increasing the transmission speed5

of the nerve impulses. The development of myelin played a key
role in evolution and the emergence of large vertebrates [1] and
it is still central to brain maturation [2]. The degradation of
myelin, commonly referred to as demyelination, is present in
various neurodegenerative diseases and can lead to severe mo-10

tor and mental disabilities [3]. Such neurodegenerative disor-
ders (e.g multiple sclerosis) show high variability among indi-
viduals, and it is difficult to predict and understand the course of
the disease by solely counting the number of lesions or compar-
ing the values obtained in magnetic resonance (MR) relaxom-15

etry [4]. Therefore, non-invasive imaging methods that can in-
vestigate the WM microstructure such as myelination may offer
important means to study neurodegenerative diseases, provid-
ing crucial information for diagnosis, and monitoring progress

and assessment of potential treatment effectiveness.20

Direct MR imaging of the myelin is challenging due to the
ultra-short transverse relaxation time of the phospholipid pro-
ton (T ∗2 = 0.3 ms) [5]. Nevertheless, several attempts have
been performed using zero or ultra-short echo time techniques
[5, 6]. Myelin can be probed indirectly using magnetization25

transfer techniques [7, 8]. Alternatively, myelin water imaging
is a method that attempts to measure the signal of water that is
trapped in between myelin layers and that was originally based
on multi-echo spin-echo data [9] and has more recently been
explored using multi-echo gradient-echo data [10]. However,30

the detection of myelin water remains challenging due to its
short T2 value (∼20 ms) and T ∗2 value (∼10 ms) [11]. In this pa-
per, we will focus on myelin water imaging using a multi-echo
gradient echo (ME-GRE) sequence.

WM is a complex environment composed of not only axons35

but also different types of glial cells, vessels and more. How-
ever, the biophysical models typically used in magnetic reso-
nance imaging (MRI) are reduced to 3 compartments: intra-
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axonal, myelin and extra-axonal water protons. Axons in WM
have various shapes and sizes, with a diameter ranging from40

0.1 µm to 2 µm for unmyelinated axons and from 1 µm up to
10 µm for myelinated axons [12], and are typically modelled
as cylinders. The myelin sheath, formed in the central nervous
system (CNS) by oligodendrocytes, represents approximately
80% of the brain’s dry weight and consists of tightly packed45

phospholipid bi-layers united by the hydrophobic tails, sepa-
rated by water layers [13]. These phospholipids, because of
their elongated form and their radial organisation around the
axon, have an anisotropic magnetic susceptibility [14, 15] with
diamagnetic property when compared to the surrounding wa-50

ter. These microstructural features are believed to be well ap-
proximated by a tensor with cylindrical symmetry which can
be expressed as a sum of an isotropic (χi) and anisotropic (χa)
components. Various values have been reported in the literature
of myelin for χi ranging from −0.13 to −0.06 ppm and χa rang-55

ing from −0.15 to −0.09 ppm [16, 17, 18] (with ppm considered
with respect to the magnetic susceptibility of pure water).

In the presence of a strong magnetic field, a secondary mi-
croscopic magnetic field perturbation is created by these phos-
pholipids [19]. This secondary field can be observed in both60

magnitude and phase of a ME-GRE signal [20]. One manifesta-
tion of the anisotropic magnetic susceptibility of myelin is that
the MR signal of a GRE sequence shows a dependence on the
orientation of the fibers relative to the main magnetic field. It
has been shown that simple T ∗2 maps are orientation dependent65

[21], and hence unsuitable for the estimation of myelin proper-
ties. Part of this orientation dependence can be accounted for
using a priori knowledge of fiber orientations [22].

In this study, we set out to investigate the feasibility of WM
microstructure property quantification using realistic WM fiber70

geometries, which has the potential to measure microstructure
properties without the bias associated with simplification of the
biological environment in analytical models. Firstly, we devel-
oped a method to generate hypothetical 2D WM models based
on realistic axon shapes. ME-GRE signals with different axon75

and myelin properties were subsequently simulated using these
2D WM models. The validity of these 2D models was tested by
comparing the signal similarity between the signal simulated
from a 3D WM model (obtained by 3D electron microscopy
of a genu of a sagittal mouse corpus callosum section) to that80

of 2D models with matched microstructural parameters. Sec-
ondly, a dictionary of ME-GRE was simulated using realistic
WM models with a wide range of WM microstructure proper-
ties. This dictionary was then used to train a deep neural net-
work to recover WM microstructure properties from ME-GRE85

signal. ME-GRE signal with multiple object orientations with
respect to the main magnetic field data was used in this process
to ensure there is sufficient signal variation due to the suscepti-
bility properties of myelin. Finally, we validated and optimised
this deep neural network using in silico data and applied the90

same method on ex vivo data. This process is briefly summa-
rized in Fig. 1.

2. Methods

2.1. 2D WM model

In the presence of magnetic field, the magnetic suscepti-95

bility of myelin relative to its surrounding creates a secondary
magnetic field, which although small, affects the MRI signal
both in phase and magnitude. These phenomena have been
used in the past to study WM orientation [23, 22] and can be
studied both analytically and numerically considering various100

simplified WM models.

2.1.1. Hollow cylinder model (HCM)
The HCM, proposed by Wharton and Bowtell, is commonly

used to approximate WM microstructure [17]. The myelin sheath
is represented by an infinite hollow cylinder with an inner ra-105

dius ri and an outer radius ro. The inner part of the hollow
cylinder is the intra-axonal compartment and the external part
is referred as the extra-axonal compartment.

This 3-compartment cylindrical representation of WM al-
lows an analytical derivation of the field perturbation in each of110

those regions and characterization WM using:

• Fiber volume fraction (FVF) - the proportion of myeli-
nated axon within the model

• g-ratio - the ratio between the intra-axonal radius (ri) and
the myelinated axon radius (r0):115

g-ratio =
ri

ro
(1)

This solution, which is very convenient to model, offers, for ex-
ample, an analytical estimation of the fiber-orientation depen-
dence of R∗2 = 1/T ∗2 map[23].

However, it has been recently demonstrated that the HCM
has intrinsic biases compared to a more realistic WM model120

created from electron microscopy data [14]. The circular axon
shapes create artificially large frequency peaks, in particular
within the intra-axonal compartment, which are not present in
a realistic model. In the following section we will present the
creation of a realistic 2D WM model based on real axon shapes125

and realistic size distributions.

2.1.2. Electron microscopy based models
In this study, we used a 2D electron microscopy image of

an entire slice of a canine spinal cord from an histology open
database 1 [24] as our database of axon shapes. The sample is130

5mm width and 7.5mm long with a 0.25µm resolution which
corresponds to a 20.000 × 30.000 image. An open-source
segmentation software was used to segment the image leading
to a collection of ∼ 600.000 myelinated axon shapes [25]. The
resulting axons had an average diameters of 2.9±0.1 pixels and135

g-ratio of 0.62±0.01. The resolution is sufficient because we do
not want to segment unmyelinated axons that have been shown
to have no significant impact on the ME-GRE signal obtained

1https://osf.io/sgbm8/
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Figure 1: Diagram of the entire pipeline from the data acquisition and the creation of 2D realistic WM models to the recovery of microstructure parameter maps.

[14]. The unmyelinated axons are therefore included within the
extra-axonal space. In case of a realistic axon shape, the g-ratio140

is redefined as the square root of the ratio between the intra-
axonal surface and the outer surface (measured as the number
of myelinated pixels with at least one side in direct contact with
intra or extra-axonal space).

2.1.3. Axon packing algorithm145

A set of 400 axon shapes was randomly picked from the
the collection above to create a realistic 2D WM model with
predefined FVF and g-ratio. To do so, we developed an axon
packing algorithm based on an existing software [26] that had
been initially developed for cylindrical axon models. The pack-150

ing process is performed as follow (see Fig. 2):

Algorithm 1: Axon packing

Data: Set of N myelinated axon shapes
Initialization: N axons equally spaced on a grid
current FVF = initial FVF
while current FVF < maximum FVF do

Axons are attracted to the grid center
Axons which overlap repulse each other
current FVF = FVF within a mask

end

In the current implementation, as the axon shapes are picked
randomly, they do not necessarily fit optimally together (during
the attraction and repulsion process, the axon is not allowed to
rotate), thereby generating small gaps within the model. The155

maximum FVF parameter, corresponding to a model where the
axons are highly packed while avoiding overlap was empiri-
cally found to be 0.85. According to literature, such an FVF
value already represents a WM model with a very high axon
density [27].160

2.1.4. Obtaining an expected FVF
Once the maximum FVF for a given collection of axons

is achieved, this packed WM model was used to obtain a new
model with an a different FVF. Two different methods, illus-
trated in Fig. 2, were proposed: (i) randomly remove axons or165

(ii) spread the axons from the figure center. The first method
creates important gaps within the extra-axonal space that could
correspond to glial cells or bundles of unmyelinated axons, while
the second method creates a more uniformly distributed WM
model. Based on the EM data visually explored up to now, both170

could be valid representations. Their corresponding field per-
turbation histograms were close enough and both models were
used to enforce the diversity of our WM model dictionaries.

2.1.5. Change the g-ratio

Figure 2: Top row: 400 axons are placed on a grid (a) and packed following
an attraction/repulsion method (b) until high FVF is reached (c). Bottom row:
Zoom on the mask delineated by the red square. A desired FVF is reached by
spreading the axons from the center (d) or randomly removing some axons (e).
Keeping the same axons and thus the same FVF, the myelin thickness can be
modified to obtain an expected g-ratio (f)

Finally, the mean g-ratio of the model was modified, while175

keeping the FVF constant. This operation was performed on
an axon-by-axon basis by dilating or eroding the inner myelin
sheath by one pixel, to ensure a smooth modification of the g-
ratio, depending on whether the g-ratio was to be decreased or
increased. Each axon has a given probability to be randomly180

picked, this probability is linked to its diameter. As the dilata-
tion/erosion is fixed to one pixel, larger axons need to be picked
more frequently to respect the original proportion of FVF. It

3
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should be noted that one axon can be selected multiple times
for erosion. The modification of the g-ratio is illustrated in Fig.185

2 and a video of the entire 2D WM model creation is available
as supplementary material , where it can be seen that a given
axon can be selected multiple times. Eventually, different mod-
els with similar FVF and g-ratio can be created using our large
axon shapes database and the code made available in the tool-190

box.

2.2. Signal creation

With a view to using these 2D models to simulate the ME-
GRE signal, we need to define the susceptibility of pixel el-
ement, compute the induced magnetic field perturbation and195

eventually simulate the signal evolution in this inhomogeneous
environment.

2.2.1. Magnetic susceptibilities
For the sake of simplicity, we consider the intra-axonal and

extra-axonal compartments to have equal magnetic susceptibil-200

ity, for it to be isotropic and to have value zero. As a result, the
susceptibility attributed to myelin is the difference between the
myelin susceptibility and the susceptibility of the surrounding
compartments. In the myelin compartment the magnetic sus-
ceptibility is described by a tensor that results from the sum of205

an isotropic (Xi) and an anisotropic (Xa) component:

X = Xi + Xa = χi

1 0 0
0 1 0
0 0 1

 + χa

1 0 0
0 −1/2 0
0 0 −1/2

 (2)

where χi and χa are scalar isotropic and anisotropic suscepti-
bility multiplicative constants, respectively. The susceptibility
tensor XR within the myelin sheath in a 2D model is determined
by the phospholipid orientations φ with respect to the magnetic210

field on that plane [17]:

XR = Rz(φ) · X · Rz(φ) = Xi + Rz(φ) · Xa · Rz(φ) (3)

with Rz(φ) the 3D rotation matrix around the z axis.

Rz(φ) =

cos(φ) −sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 (4)

it should be noted that the tensor map only depends on the phos-
pholipid orientation (see Fig. 3) and is not related to the main
magnetic field. In simple cases, as for the HCM, the compu-215

tation of φ is trivial. For more complex axon shapes, there
is no straightforward definition of the orientation of the phos-
pholipids throughout the whole myelin sheath. Its orientation
should be perpendicular to the tangent of the myelin surface,
but the inner and the external boundaries are neither smooth nor220

necessarily parallel to each other in our segmented models. The
orientation of the phospholipids is estimated on an axon-by-
axon basis. First, the selected axon is placed in a small matrix

(including 10 pixels of each side of the axon edges for compu-
tational time considerations), then the extra-axonal, myelin and225

intra-axonal compartments are given the values of 0, 1 and 2
respectively. The resulting map is smoothed with a 2D Gaus-
sian filter with a width of 5 × 5 to create a smoothed pyrami-
dal structure. If the myelin sheath is too large and still con-
tains piecewise constant part after smoothing, the process is re-230

peated. Finally a 2D gradient is computed from the smoothed
map. As the map is smoothly varying from 0 to 2 within the
myelin compartment, the gradient at each point will define the
steepest direction from the extra- to the intra-axonal space, the
phospholipid orientation is assumed to correspond to the gradi-235

ent direction (see Fig. 3b).

2.2.2. Field perturbation
From the phospholipid orientation map, the susceptibility

tensor map can be calculated using Eq. 3. The susceptibility
tensor map is used to compute the field perturbation in the fre-240

quency domain as described in [28]. An illustration of the field
perturbation generated by a single axon for several B0 orien-
tations, with and without the Lorentzian correction (see Sec-
tion 2.2.3), is shown in Fig. 3. The induced field perturbation
strongly depends on the B0 orientation. A magnetic field paral-245

lel to the axon orientation has a small negative field shift or no
field shift at all within the myelin sheath while a perpendicular
magnetic field creates much stronger perturbations within the
3 compartments. The overlapping frequency spectra of the 3
compartments make them hard to disentangle.250

2.2.3. ME-GRE signal
In previous studies the ME-GRE signals was computed as

[16]:

S (t) =

3∑
n=1

wn exp

 −t

T̂ ∗2,n

∑
r

exp (−itγ∆Bn(r))

 (5)

where T̂ ∗2,n is the compartment specific apparent transverse re-
laxation rate that is not originated by myelin induced field in-255

homogeneities and wn is the water weight (reflecting the water
signal per pixel in our 2D model, which includes proton den-
sity and T1 saturation effects). The field perturbation ∆Bn(r)
at each pixel (computed considering the sphere of Lorentz as-
sumption) is therefore responsible for the signal decay asso-260

ciated with myelin induced field inhomogeneities, 1/T
′

2, con-
tributing to the each compartments’ apparent transverse relax-
ation rate R∗2,n = 1/T ∗2,n = 1/T̂ ∗2,n + 1/T

′

2,n.
In our implementation a correction has been introduced in

the frequency shift of the myelin water compartment to ac-265

count for the compartmentalization of water. Instead of using
the standard Lorentzian sphere approximation used for the field
computation, we have used the cylindrical Lorentzian approxi-
mation [29] similar to the initially proposed by He and Yablon-
skiy. This correction was done separately for each pixel within270

the myelin compartments and taking into account the suscepti-
bility tensor, such that:

4
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Figure 3: First row represents the phospholipid orientation estimation per-
formed for each axon. (a): the extra-axonal, myelin and intra-axonal com-
partments being assigned values 0, 1 and 2 respectively. (b): the model is
smoothed with a Gaussian filter (c) Gradient orientation is computed on the
smoothed map. Second row: Field perturbation for one axon with 3 different
magnetic field orientations. Third row: Corresponding histograms computed
within the red square to keep a reasonable FVF. The myelin histogram is pre-
sented with Lorentzian correction (solid blue line) and without Lorentzian cor-
rection (dashed blue line). A magnetic field parallel to the axon orientation can
be characterized by Dirac delta functions with a value of 0 for the intra and
extra axonal compartments and a negative or null value for the myelin compart-
ment. A perpendicular magnetic field creates much stronger perturbations and
present broad distributions within the 3 compartments.

Table 1: Table describing our 8 dimension dictionary of signal models. First
and third column describe the parameters varied and their expected mean values
as found in literature. Middle column: Parameter range used in our dictionary,
minimum : step : maximum. *The relative water weight in the axon and in the
intra and extra-axonal space depends in our case on the acquisition parameters,
flip angle and TR. The value presented was the one used for the typical WM
deep learning experiment.

Model
parameters Dictionary

Typical WM
values

FVF 0.1:0.1:0.8 0.7 a

g-ratio 0.5:0.05:0.85 0.65 b

χi (ppm) -0.2:0.1:0.2 -0.1 c

χa (ppm) -0.1 (fixed) -0.1 a

T̂ ∗2,Intra−Extra (ms) 20:20:100 60 d

T̂ ∗2,Myelin (ms) 4:4:20 16 d

wMyelin/wIntra−Extra 0.5:0.5:3 2*
Number of fiber

orientations 20 /

a (Choy et al., 2020) [31]
b (Mohammadi et al., 2015) [32]
c (Wharton et al., 2012) [17]
d (Xu et al., 2018) [14]

∆̂BM(r) = ∆BM(r) − PZ(X(r))

cos(θ)2 − 1
3

2

 (6)

PZ = B̂T
0 X(r)B̂0 (7)

where ∆̂BM is the Lorentzian corrected myelin field perturba-
tion and PZ is the projection of the susceptibility tensor along
the B0 orientation. An illustration of the ME-GRE signals sim-275

ulated with the Lorentzian correction is shown with two exam-
ples of WM geometry in Fig. 4. Intuitively, in this formalism,
the myelin sheath is broken into various infinite cylinders run-
ning parallel to the axon. For a closer inspection to the impact
of this correction on the frequency of the myelin water com-280

partment as a function of axon orientation for the more tractable
case of a cylinder, refer to Appendix A. There, we also com-
pare the current correction to the more advanced layered mod-
els [15, 30] and discuss the pros and cons of the different ap-
proaches.285

MRI data amplitude depends not only on the magnetization
amplitude, but also on the RF coil sensitivity and receiver gain.
The phase depends on the RF transceiver and on the quality of
the B0 shimming and presence of fields due to the susceptibility
of neighbouring pixels. To be able to compare our simulations290

to real data, both the simulated and measured signals were nor-
malized as follows :

|Ŝ (t)| = |S (t)|/|S (1)| (8)

arg(Ŝ (t)) = arg(S (t)) − φ0 − ∆ω × t (9)

where arg(Ŝ (t)) is the phase of the signal, φ0 and ∆ω are the

5
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Figure 4: Variations of signal decay as function of FVF, g-ratio and susceptibility: (a,e) Two examples of realistic WM models with different FVF and g-ratio (b,
f) corresponding field perturbation when axons perpendicular to the magnetic field; Simulated ME-GRE signal with the Lorentzian correction (c, g) magnitude and
phase (d, e) for the two models with different isotropic susceptibility. Remaining model and relaxation parameters are fixed according to literature values (see Table
1).

phase and frequency offsets estimated by performing a simple
linear regression on arg(Ŝ (t)). Note that it is relevant to also per-295

form such a normalisation in the simulated data as its amplitude
and frequency would depend on the myelin volume fraction. At
a later stage, when training a network to decode microstructural
parameters, it is important to ensure the network is trained on
signal features that are experimentally relevant, such as non-300

exponential behaviour of the signal decay and non-linear phase
evolution.

2.2.4. Model validation
While the realistic 2D WM models have been shown to bet-

ter represent the ME-GRE signal of WM than the simple HCM,305

they assume the replication of the same structure along the third
dimension resulting in bundles that are unrealistically aligned
and cannot represent the natural dispersion present in a real
axon bundle. Dispersion can occur not only in regions of fiber
crossing, fiber kissing, but also in regions traditionally expected310

to be unidirectional such as the corpus callosum [33]. However,
3D models are hard to construct, not only because of the lack of
3D EM data (that could represent a ground truth), but also be-
cause of the complexity of 3D axon packing [34]. Also, the 2D
axon shapes used in our realistic WM modeling can possibly be315

elongated as they are obtained from cutting through axons that
were not perpendicular to the surface. Furthermore, the estima-
tion of the susceptibility tensor map and the field perturbation
in 3D models would make the process even more time consum-
ing. We have designed a small study, presented in the Appendix320

B to assess the ability of our 2D models to represent a real 3D
model with comparable microstructural properties.

2.3. Dictionary creation

A dictionary of signal evolution can be created using the
simulated ME-GRE signals in the presence of different WM325

models. Such dictionary can be used to derive the microstruc-
tural tissue properties from the ME-GRE signal by using root-
mean-square minimization between the dictionary elements and
measured signal, as previously done in, for example, finger-
printing [35]. Alternatively, a deep learning network can be330

trained to learn the tissue properties from the dictionary as will
be demonstrated later.

The WM model and the magnetic field distributions present
on each of its compartments depend on 5 microstructure related
parameters: FVF, g-ratio, χi, χa, as well as the fiber orientation.335

For the purpose of training a deep learning network, we con-
sidered repeating simulations with various axon packing using
the aforementioned properties. The ME-GRE signal from each
WM model depends on the specific NMR properties of each
compartment (wn, T̂ ∗2,n). This would result in 6 supplementary340

parameters. To reduce the dictionary size, the T̂ ∗2 and the water
density from the intra- and extra-axonal pixels were defined to
be the same. This reduced the number of parameters from 6 to
3: T̂ ∗2,Myelin the T̂ ∗2 of myelin water; T̂ ∗2,Intra−Extra the T̂ ∗2 of the
intra and extra-axonal compartment and a relative water weight345

given by w = S 0,Intra−Extra/S 0,Myelin. The parameter ranges used
to construct the dictionary are presented in Table 1 along with
typical WM values. The dictionary has 8 dimensions, with 5 to
20 entries per dimension leading to 7.680.000 vectors. In the
following in silico and ex vivo experiments, all the dictionaries350

have the same parameter ranges.
Each entry of the dictionary is composed of the normalized

signal magnitude and phase (or real and imaginary components,
2 x nTE with nTE the number of echo times in the simulation)
and an additional entry encoding the fiber orientation informa-355

6
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tion characterized by the angle between the fiber and the static
magnetic field. When deriving the microstructural properties
from measurements with multiple orientations with respect to
the magnetic field, the signal is concatenated along the n ori-
entations which leads to a vector size of n · (2TE + 1). An il-360

lustration of such simulated normalized signals magnitude and
phase with different orientations is presented in Fig. 5. Unlike
a single orientation dictionary, this multi-orientation dictionary
is only valid for a specific set of rotations used in a specific
acquisition.365

Figure 5: The ME-GRE signal with the Lorentzian correction is simulated with
6 magnetic field orientations, separated by dashed line on the figure, θ = 0−π/2
equally space (see arrows), for WM models with different FVF from 0.1 to 0.8
(4 models for each FVF). The top and bottom rows represent respectively the
signals real and imaginary part for each of the 6 orientations separated by a
vertical black line.

2.4. Deep Learning

The ME-GRE signal dictionary was used to train a deep
learning network using Keras with TensorFlow GPU backend
[36]. For all the following experiments, the dictionaries were
trained on 7 entire sets of WM models and assessed by the loss370

function on another set of WM models, which correspond to
a validation split of 0.125. This network is composed with 3
hidden layers of size 2 ∗ li ∗ lo, 1.5 ∗ li ∗ lo, 1.25 ∗ li ∗ lo, li
and lo being the concatenate signal length and the number of
parameters, with a respective dropout of 0.4, 0.2, 0.1 using a375

tanh activation function and an additional linear layer, see Fig.
6. Both inputs and outputs were normalized, a stochastic gradi-
ent descent optimizer was used and the loss function is a mean
absolute error.

To gain experience on our network ability and limitations380

to derive microstructure properties, its performance was first
tested on numerical simulations. Particularly we wanted to as-
sess what the optimum echo time range and the number of
echoes were, as well as study the gains associated with differ-
ent numbers of sample rotations needed to successfully recover385

WM properties (which will affect our data acquisition proto-
col). The design and training of the network were also subjects
of careful attention. The deep learning hyperparameters were
tuned following an empirical approach, with the selected ones
giving results that are both accurate and robust to the change of390

signal parameters.
The validation loss function (mean absolute error of the pa-

rameters estimated on a validation data set - one set of WM

Figure 6: Illustration of the architecture of the deep learning network used in
this manuscript. The input is the measured signal (real and imaginary values)
together with the main fiber orientation obtained from DTI. The network has 3
hidden layers. FC stands for fully connected layer, Li and Lo are respectively
225 and 6. The output of the network is a vector containing the 6 microstructure
parameters. The inputs signals have a vector size of 225 which correspond
to the concatenation of 9 orientations. Each orientation includes the θ angle
between the fiber and the magnetic field orientation, the normalized signal real
and imaginary part along 12 TE.

models which is not used for training) was used as a metric
to assess the convergence of the network. All the parameters,395

within their range, were re-scaled between 0 and 1, to make val-
idation loss a less arbitrary number. This metric is an average
of the mean absolute error for each parameter, thus, it does not
allow performing fine comparisons. Despite this remark, the
validation loss is a classic and robust way to assess the training400

process with an unique number.

2.4.1. Deep Learning performance evaluation on simulated data
The robustness of the parameter recovery was tested by adding

a complex white noise (0%, 0.5%, 1%, 2% and 4%) to a ME-
GRE signal on a dictionary used in the training and validation405

processes. The noise levels mentioned above are relative to the
signal amplitude at the first echo, TE = 2.15 ms. The first 3
columns of Table 2 summarize the parameters used in the cre-
ation of the dictionary and training of the network. The ro-
tations used were chosen to mimic the experimental protocol410

used on an ex vivo acquisition described later in this section.
The ME-GRE signal of a given WM model depends on the

magnetic field orientation with respect to its structure (see Fig.
5), this leads us to adopt a multi-orientations approach when
trying to decode WM microstructure properties. However, as415

an increased number of orientations means a longer acquisition
time, we performed a theoretical comparison study to estimate
the benefit of using a large number of orientations vs a reduced
number of orientations with data that has higher SNR. A dic-
tionary with 16 optimal orientations was created for 3 different420

noise levels (0, 1 and 2%). In order to maximize information,
each fiber should have the largest possible range of θ from 0 to
π/2. To do so, the 16 3D rotations had evenly spread axis on the
sphere with a common π/2 angle. Then, for a range of number
of orientations from 1 to 16, a subset of this dictionary was used425

to train a deep learning network.
The influence of the number of echoes on the deep learn-

ing parameter recovery performance was tested. To do so, sev-
eral networks were trained with a fixed echo spacing (3.05 ms
- mimicking our experimental protocol), a various number of430
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Table 2: Table describing the parameters used in the training of each of the experiments described in the Methods section. This include parameters associated with
the dictionary (echo times, number of rotations, noise level, number of independent WM models) and a deep learning parameters (number of epochs). The four first
columns refer to the in silico experiments and the last column corresponds to the real ex vivo experiment. It should be noted that in the case of the entries with 9
orientations, these were same 9 orientations and were derived from the rotations obtained from the co-registration of the ex-vivo sample

Parameter
Experiment Epochs

dependence TEs dependence
Rotation

dependence Typical WM Ex vivo data

TEs 2.15-3.05-35.7 1.8-3.2-14.6/94.6 2.4-4.4-50.7 2.15-3.05-35.7 2.15-3.05-35.7
Rotations 9 6 1 to 16 9 9

Noise level 0, 0.5, 1, 2, 4% 0, 1, 2% 0, 1, 2% 0, 0.5, 1, 2, 4% 4%
Number of models 8 8 8 8 8

Epochs 40 20 40 40 40

TEs (5, 10, 15, 20, 25 and 30) and noise levels. At this stage
no considerations of the impact on T1 weighting were factored
into the analysis.

Finally, we tested the deep learning for one set of realistic
parameter values of WM (see Table 2), that allows to detail the435

behavior of each parameter individually. The signal was simu-
lated 125 times for 8 independent WM models leading to 1000
signal simulations with each different noise level. We tested
two methods to recover the parameters: (i) using a deep learn-
ing network trained with a noise matching the simulated noise;440

(ii) using a deep learning trained with a maximum noise level
regardless of the simulated signal noise.

2.5. Ex vivo data acquisition

A formalin fixed post-mortem brain (female, 88 years old,
26 hours of post-mortem interval and 7-month fixation period)445

was scanned in a 3T scanner (Prismafit, Siemens, Germany).
The brain was scanned in 9 orientations relative to the static
magnetic field. To avoid brain deformation between different
rotations, a customised 3D brain holder was built and used through-
out the scanning session [37]. Prior to scanning, formalin was450

washed out using distilled water and prepared in low pressure
environment, using a vacuum pump at 20 mbar during 12h to
remove all air bubbles trapped in the various cortical sulci. Dur-
ing this period the brain was occasionally rotated to ensure re-
moval of air trapped inside the ventricles.455

For each head position the following protocol was repeated:
- (a) 3D monopolar ME-GRE with 12 echos (TE = 1.7 : 3.05
: 35.25ms, TR = 38 ms), with a 1.8mm isotropic resolution
and matrix size (128x128x128), acquisition time 8.21 mins.
This protocol was repeated 6 times with 6 different flip angles460

(α = 5° / 10° / 15° / 20° / 35° / 65°);
- (b) an MP2RAGE [38] with 1mm isotropic resolution was ac-
quired for co-registration purposes. The MP2RAGE parameters
were adapted to be able to map the short T1 values present in
fixed tissue (TR / TI1 / TI2 = 3s / 0.311s / 1.6s; α1/α2 = 4°/6°);465

Finally, for the last sample position, DWI protocol was ac-
quired to provide fiber orientation information (TR / TE = 3.78s
/ 71.2ms, 256 diffusion-encoding gradient directions, b = 2500
s/mm2). Because the formalin fixation process and the reduced
temperature of the sample compared to in vivo (Room Temper-470

ature ' 23°) significantly reduces water diffusivity, the protocol
was repeated 20 times to achieve robust fiber orientation infor-
mation.

2.6. Ex vivo data processing

The MP2RAGE contrast is insensitive to transmit and re-475

ceive B1 fields that vary significantly when rotations as large
as 90 degrees were applied to the sample. Therefore, each of
the 9 MP2RAGE images from the 9 brain rotations were co-
registered to a reference position using FLIRT from FSL [39].
Corresponding transformations were then applied to the ME-480

GRE data (phase unwrapped using a three-dimensional best
path algorithm [40]). Finally, the registered data were normal-
ized following Eq. 9. A DTI was estimated for each DWI and
the 20 DTIs were averaged using a log-Euclidean framework
[41]. Eventually, the fiber orientation was defined as the main485

orientation of the average tensor.
A ME-GRE dictionary was simulated for this particular ac-

quisition, and the corresponding deep learning network was
trained using the parameter ranges described in Tables 1 and
2. Finally, the microstructure parameter maps (FVF, g-ratio, χi,490

T̂ ∗2,Myelin . T̂ ∗2,Intra−Extra, and the relative water weight) were es-
timated individually for each set of flip angles. This resulted
in 6 independent sets of parameter maps, where only the rela-
tive water weight term is expected to vary across acquisitions.
It was thus possible to compute the mean and standard devia-495

tion of the microstructure parameter maps that were expected
to remain constant across flip angles to estimate the precision
of those measurements.

Finally, the last experiment was performed by using a re-
stricted number of rotations that can be achieved during an in500

vivo experiment. Among the 84 possible combinations of 3 ro-
tations chosen within the original 9 rotations, the 10 that insured
the largest fiber orientations ranges were picked. The subsets of
ex vivo data for the 10 combinations of 3 rotations with a flip
angle of 20°, the corresponding dictionaries, and deep learning505

networks were created, leading to 10 entire sets of brain param-
eter maps. This was used to compute the mean and standard
deviation across different combinations of 3 rotations. Finally,
the absolute difference maps between the mean parameter maps
with 3 rotations and the original ones with 9 rotations, both with510

a flip angle of 20°, were estimated.
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3. Results

3.1. Deep learning performance on simulated data

3.1.1. Noise level
Fig. 7(a) shows the dependence of the loss function of the515

deep learning network for 5 different noise levels as a function
of the number of epochs used. After a fast drop during the
first 3-5 epochs, the loss function shows a slow decay, reaching
a plateau for the noisier signals. Interestingly, the loss func-
tions on the test data (solid lines) have slightly lower values520

than those on the validation data (dashed line). This difference
is attributable to the fact that the validation loss function is av-
eraged along the entire epoch, whereas the test loss function is
computed at the end of each epoch. From this analysis we con-
cluded that 20 epochs should be a good compromise between525

training efficiency and parameter recovery.

3.1.2. Echo times
Fig. 7(b) presents the dependence of the loss function on the

number of echo times used. It shows that the wider the range
of the echo times, the lower the loss function is. The loss func-530

tion clearly improves between 5 to 15 echoes (corresponding to
49ms), but this improvement becomes smaller once this thresh-
old is passed, even if a plateau has never been totally reached
for a signal with noise even after 30 echos. Our simulations did
not include any echo time dependent noise, arising from physi-535

ological noise or scanner drifts, which are common in gradient
echo acquisitions, and would make subsequent echo times less
useful for decoding. We postulated that 20 echos would be suf-
ficient for an experimental protocol.

3.1.3. Number of magnetic field orientations540

Fig. 7(c) shows that, as expected, the loss functions de-
crease when the number of rotations for all noise levels in-
creases and it is true for all noise levels. Note that, in the interest
of computation time, the subset of rotations might not be opti-
mal for all number of rotations tested (as a subset of the initial545

16 orientations was used). Furthermore the specific number/set
of rotations depends on the orientation of the fiber of interest.
The deep learning benefits from the first 3-6 distinct rotations,
similar to what has been demonstrated for susceptibility ten-
sor imaging [42] and for fiber orientation mapping [17], and550

plateaus after this. In a given acquisition time we can either
decide to have an improved SNR per orientation or increased
number of rotations. When moving from 1 to 2% SNR levels,
this corresponds to a decrease in the acquisition time or num-
ber of rotations by a factor 4. Thus, 16 orientations at 2% noise555

could be acquired in the same time as 4 orientations at 1% noise
level. It can therefore be concluded that there is a limited benefit
in maximizing the number of orientations beyond 5 as the loss
function for 16 rotations at 2% noise was the same as that of 6
orientations at 1% noise. In our acquisitions, we used 10 orien-560

tations, to avoid excessive acceleration of each orientation, as
this could bring parallel imaging artifacts into play when trying
to further reduce the acquisition per orientation.

3.1.4. Selective set of parameters
Fig. 8 shows the performance of the deep learning networks565

in recovering the various microstructural parameters of what
could be considered a typical WM model. Although the aver-
age recovered parameters are close to the original ones regard-
less of the signal noise level, many of the differences would be
significant. Particularly, the relative water weight suffers a con-570

stant positive bias for all networks and simulated signals. Sur-
prisingly, the standard deviation for all parameters (excluding
χi and T̂ ∗2,Myelin ) is considerably lower when the deep learning
was trained with a 4% noise level rather than the matched noise
level. Thus, a dictionary with a high noise level was used in our575

ex vivo experiment presented in the following. When compar-
ing the width of the various distributions, compared to the range
used for the training the network (see Table 1), the values of χi,
g-ratio and relative water weight are likely to have the largest
biases and noise.580

3.2. Ex vivo experiment

Using the deep learning network described on Tables 1 and
2 it was possible to derive 6 microstructural parameters (FVF, g-
ratio, χi, T̂ ∗2,Myelin, T̂ ∗2,Intra−Extra, and the relative water weight).
For the sake of better visualization, we choose to present the585

R̂∗2s = 1/T̂ ∗2 s maps instead of the T̂ ∗2 s maps. The 6 microstruc-
ture parameter maps obtained from the ex vivo brain data ac-
quired with a flip angle of 35° estimated with and without the
Lorenzian correction are presented in the left and right pan-
els of Fig. 9. WM is clearly discernible from GM and deep590

gray matter on the FVF, and relative water weight maps. The
R̂∗2,Intra−Extra and χi maps have weak contrast between GM and
WM, while g-ratio is decreased in WM (more myelin surround-
ing axons and creating dephasing in free water compartment).
This observation is particularly interesting because it suggests595

that, with our modelling, we were able to remove myelin contri-
butions from typically observed R̂∗2 contrast. The sagittal maps
show that a higher FVF, lower R̂∗2,Myelin and lower g-ratio in the
corpus callosum compared to the rest of the brain.

In WM there are significant variation of contrast in the mi-600

crostructural maps in the coronal slice. Some follow the same
pattern seen on the T1 maps, very elevated values on the right
temporal lobe and above, see blue arrows Fig. 9, that could
result from elevated g-ratio and reduced FVF. This suggest its
origin to be a fixation artifact or tissue damage that also impacts605

the observed T1 values. Note that the long fixation time of the
brain sample has resulted in an inversion of the T1 contrast of
white and gray matter (WM having a longer T1 than GM) with
respect to in vivo as well as significant decrease in T1 values,
particularly in deep gray matter, which supports a dramatic tis-610

sue changes resulting from the fixation. On the left temporal
lobe (see green arrows Fig. 9), this pattern is not reflected in
the T1 maps, but is seen the magnitude image and could either
be real or suggestive the breaking down of the decoding pro-
cess. Red arrow highlights a structure that appears as bright in615

R̂∗2,Intra−Extra and g-ratio, and dark on FVF maps. This contrast
which is thin within most of the slices (as seen on the sagittal
cut) is not directly visible on the raw images and is particularly
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(a) (b) (c)

Figure 7: Deep learning training evolution for different noise levels relative to several acquisition parameters. The solid line is the loss function whilst the dashed
line is the validation loss function, that represents the same mean absolute error respectively computed on the train and on the test data set. (a) Training along the
number of epochs. (b) Training along the number of echoes. (c): Training along the number of rotations.

Figure 8: Each box represents the estimation of one parameter recovery for 5 different signal noise levels (0%, 0.5%, 1%, 2%, 4%), the dashed lines represent the
correct values. Within a box, the left side use a single deep learning trained with 4% noise regardless of the noise level while the right side use 5 deep learning, each
one trained with a noise equal to the signal level.
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evident when the Lorentzian Correction is used in our signal
dictionaries. This suggests that the Lorentzian correction is less620

appropriate than the standard HCM to characterize this data, it
should be noted that this conclusion cannot be extrapolated to
fresh tissue and in vivo imaging.

Interestingly, CSF presents an almost null FVF along with
a high R̂∗2,Intra−Extra, which is to be expected as there are no625

structures generating an anisotropic signal evolution in this re-
gion. The χi map estimated with the Lorentzian correction has
a very weak contrast with a mean value close to 0 while the
map estimated without the Lorentzian correction have mostly
positive values within WM with a significant contrast between630

WM and CSF. Despite the common belief that myelin is dia-
magnetic, both positive [29] and negative values [17, 13] have
actually been reported in the literature. Assuming that phos-
pholipids are diamagnetic, the value of isotropic susceptibility
should then be attributed to one or a combination of the fol-635

lowing aspects: (i) fixation process that could render the in-
tra and extra axonal spaces more strongly diamagnetic than the
myelin sheath; (ii) The not fully understood orientation depen-
dence of the frequency shift of the myelin water compartment.
Appendix A presents three different white matter models: the640

classic HCM, the HCM with a Lorentzian correction, and a lay-
ered model. These models have a very different myelin water
frequency shift along the B0 orientation that impacts the χi esti-
mation (see the maps with and without Lorentzian correction).
Thus, the layered model which inverts the angular dependence645

of the myelin water frequency shift could estimate a positive
susceptibility.

One region where the deep learning approach gave unsat-
isfactory results was in the globus pallidus and the dentate nu-
cleus. These regions are known to be amongst the most iron650

rich regions in the brain [43, 44], and have therefore very short-
apparent transverse relaxation rates in the free water compart-
ment. This was correctly mapped by the R̂∗2 of the intra-axonal
compartment, but appears mismapped on the FVF maps. In the
latter, the globus pallidus appears as having a large FVF (which655

is known not to be the case), although the neighbouring puta-
men appears to be correctly mapped. Surprisingly, the globus
pallidus appears as having a similar isotropic magnetic suscep-
tibility to neighbouring WM. It is know that deep gray matter
structures are rich in iron, and assuming that this is equally dis-660

tributed in the intra and extra-axonal spaces, the equivalent field
distribution to be generated by our realistic models would re-
quire a heavily diamagnetic myelin compartment (beyond our
current dictionary limits). Alternatively this result could be
explained by such nuclei having a more randomly distributed665

micro-structure organization that is not well described by our
dispersion free tissue models. These observations suggest that
further improvement of the realistic model are needed to be able
to describe iron rich gray matter.

To demonstrate the robustness of the microstructural param-670

eter map findings with respect to the changes of the acquisition
protocol, we analyzed the acquisitions with different flip an-
gles separately. The microstructural parameters should not de-
pend on the flip angle, except the relative water weight that is
linked not only to the proton density but also the relative sat-675

uration of each compartment (which depends on T1, TR and
the flip angle). The mean parameter maps, estimated with the
Lorentzian correction, showed overall the same characteristics
than the ones presented previously for flip angle 35. In sup-
plemental material it can be seen that the standard deviation680

of the microstructure parameters FVF, g-ratio, χi, intra-axonal,
R̂∗2,Intra−Extra and R̂∗2,Myelin are small when compared to the de-
coded maps, the only exception being the relative weight map.

Fig. 10 demonstrates the possibility of decoding the mi-
crostructure parameter maps, estimated with the Lorentzian cor-685

rection, from only 3 brain orientations. The mean parameter
maps highlight the expected brain structures, and are in good
agreement with our ground truth (obtained from 9 brain ori-
entations). The standard deviation maps estimated across 10
combinations of 3 different rotations (middle row), reveal very690

low values when compared to the recovered values (note that
the colorbars of the standard deviation maps are significantly
reduced with respect to those used to show the decoded param-
eters). Thus, the process is robust to the specific set of orien-
tations used. Interestingly, the contrast seems lower compared695

to the parameter maps obtained with 9 rotations, in particular
within deep gray matter, as illustrated by the absolute differ-
ence maps (see bottom row). As mentioned earlier, this is the
region where our model is failing to describe the microstructure
properly.700

4. Discussion

4.1. White matter models: promise and limitations

We introduced a pipeline to create a simple yet realistic bio-
physical model to simulate the MRI ME-GRE signal. These
WM models contain real axon shapes and a g-ratio variability705

similar to what is reported in tissue samples, and have vary-
ing levels of FVF within themselves as a result of the axon
packing approach. With the realistic WM models available
for microstructural quantification, it can be used as an alter-
native means in contrast to the analytical expression of WM710

microstructure in parameter mapping which can lead to mea-
surement bias as previously reported [14]. Yet, some effects
are deliberately overlooked: (1) diffusion within the compart-
ments, (2) chemical exchange, (3) compartmentalization of wa-
ter within the myelin sheath and (4) other sources of suscepti-715

bility perturbations beyond the myelin sheath.
Diffusion has been demonstrated to have a minor effect in

WM models based on EM data [14] when compared to the
hollow cylinder model or simple cylindrical perturbers [45].
Chemical exchange between myelin water and myelin protons720

results in frequency shift, and thus, can be accounted for by
adding an exchange term in the HCM [23]. The size of this
frequency offset term has been reported to be of 0.02 ppm in
the corpus callosum [17], but models have been proposed that
would make this offset depends on the number of myelin layers725

and therefore varies throughout the brain and fibre bundles [46].
Yet, chemical exchange has been demonstrated to have a larger
impact when measuring the longitudinal relaxation in WM (a
process that is much slower than time scales explored here).
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Figure 9: The left and right panels show the 6 parameter maps estimated from the ex vivo acquisition with flip angle 35° with the Lorentzian correction and without
the Lorentzian correction. The middle column shows a T1 map estimated from MP2RAGE and downsampled to the resolution of the ME-GRE, and the magnitude
of the first echo of a ME-GRE for visual comparison of the contrasts. Each image contrast and parameter map is shown on a sagittal and a coronal slice crossing the
globus pallidus. Arrows highlight WM regions where: blue - the microstructural maps correctly reflect tissue properties; green - where the contrast is unexpected
given the T1 maps; red - artifacts are highlighted by using the cylindrical Lorentzian correction in our dictionary.
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Figure 10: Coronal slices of the 6 decoded microstructure parameter maps (FVF, g-ratio, χi, R̂∗2,Intra−Axonal, R̂∗2,Myelin and relative weight shown from 1st to 6th
column) obtained from the ME-GRE with flip angle 35°. The top row shows the averaged parameter maps obtained using 10 distinct dictionaries trained with only
3 orientations. The middle row shows the standard deviation across the various decoded maps obtained from the different subset of 3 orientations. The bottom
row shows the difference to the absolute difference of the obtained maps in respect to the our "ground truth" (maps decoded from data containing 9 different head
orientations).
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This is the main reason why longitudinal relaxation mecha-730

nisms were up to now hidden in the weight parameter.
In Appendix A, we compared the classical HCM [17] im-

plicitly used in previous WM models [14], with a layered model
where the source of susceptibility (phospholipids) is spatially
separated from the source of signal [15, 30] and the new imple-735

mentation of the Lorentzian correction (see Eq. 6) used in our
realistic WM models. The main aspects addressed in this com-
parison were the frequency distribution of the different com-
partments. As has been analytically described the field pertur-
bations are equivalent in the intra-axonal and extra-axonal com-740

partments. Conversely, strong differences exist in the myelin
water compartment for the three models, which predict opposed
angular dependence of the mean frequency shift of this com-
partment as a function of the axon orientation with respect to
the magnetic field. The results described in Fig. A.12 of the745

Appendix A suggest that the cylindrical Lorentzian correc-
tion within the myelin compartment would better fit experimen-
tal data without requiring an exchange mechanism [17] or the
hop in hop out of water across myelin layers described in [15].
Introducing the new correction in our network resulted in an750

isotropic susceptibility that was more diamagnetic than other-
wise (see Figure 9) but seemed to enhance some decoding arti-
facts in some of the resulting micro-structural maps.

The extra-axonal compartment currently includes everything
that is found outside the axon. More classes with specific prop-755

erties could be used, particularly: free water (CSF and intersti-
tial spaces); blood vessels; bound-water compartment (that rep-
resents the water bound to macromolecules present in cell walls
and organelles [47]), and iron accumulated in ferritin, amongst
other. Blood vessels represent a very small fraction of the tis-760

sue volume (1-4% in WM and GM, but venous blood, which is
deoxygenated, has a much larger susceptibility different to free
water than myelin) and tends to follow the orientation of WM
axon bundles [21]. This is expected to introduce some degree
of T̂ ∗2 anisotropy that would act as a confound in our ex vivo ex-765

periment. Ferritin, which is known to be strongly paramagnetic,
can be found everywhere in the brain (with increasing quanti-
ties found from WM, GM to deep gray matter where it can be
found in large quantities [48]). On our current implementation,
iron is expected to be equally distributed in the intra- and extra-770

axonal space. As a result, ferritin will be mapped as a reduction
of the T̂ ∗2,Intra−Extra and the isotropic magnetic susceptibility at-
tributed to the myelin compartment is effectively the difference
between the susceptibility of the myelin and the free water com-
partments where there might be ferritin inclusions. Note that in775

the case of high ferritin concentration our current cylindrical
Lorentzian correction will be overestimated.

4.2. Dictionary and deep learning
Many of the simplifications used in our WM models arise

from the need to restrict the number of parameters associated780

with our network. The size of a dictionary, which in this study
had 7 dimensions (see Table 1), is around 10 GB. Moreover, an
increase in the number of variables mapped by the network will
result in an increased noise level of the parameters estimated.
We believe we have restricted the models to the most relevant785

parameters. In particular, we have considered FVF and g-ratio
inherent to the model, as described previously the extra-axonal
space can have various types of constituents, thus the extra-
axonal T̂ ∗2 cannot be fixed. We choose to free χi (allowing this
to incorporate magnetic susceptibility in the intra-/extra-axonal790

compartment) and to fix χa, as the major contribution to the
magnetic field perturbation comes from the isotropic suscepti-
bility [49]. The compartment water weights were represented
by a single variable, the relative water weight that includes the
water proton density as well as the degree of T1-weighting (and795

chemical exchange) of each compartment. If the myelin sheath
is considered having the same properties all over the brain, that
allows to fix the T̂ ∗2 of myelin and release the anisotropic sus-
ceptibility χa which was reported to be ranging from −0.15 to
−0.09 ppm [18]. A potential direction for future work is to in-800

vestigate different sets of parameters. For example, the myelin
water concentration may be linked to the susceptibility of the
myelin sheath, bearing in mind that the magnetic susceptibil-
ity of the phospholipids and water are both known. This would
benefit from some of the insights gained from our Appendix A.805

Our deep learning network is robust and systematically con-
verges for each dictionary associated to an experiment with
multiple orientations, as illustrated in Fig. 7. However, exten-
sive manual fine-tuning of the network hyper-parameters was
required to achieve this level of agreement. A more system-810

atic approach, while potentially desirable, would need an ex-
cessively long computation time. The in silico analysis (see
Fig. 8) shows that a dictionary trained with a higher noise
level is more robust to noise amplification than a dictionary with
matched noise levels. This was attributed to the noise allowing815

to smear our differences associated with the fact that our "re-
alistic model" produce different signals (see Fig. 5) and none
of them really corresponds to the actual WM mapped. An in-
teresting experiment would be to assess the performance of a
dictionary including all different noise levels, mimicking closer820

to the signal found in the brain, where regions further away
from the receiver coils are bound to have a lower SNR. It was
observed that the level of noise remains within the range that
differentiates our 2D models from a real 3D WM for a rela-
tively wide range of dispersion values, which effectively makes825

our network more generalizable. Nevertheless, once the neural
network is trained, it can provide much faster processing speed
when compared to transitional voxel-wise data fitting approach
(few seconds vs several minutes with typical 2-mm isotropic
whole-brain coverage data for gradient echo MWI [50].830

4.3. Ex vivo experiment
The human brain scanned on our ex vivo experiment was

fixed in formalin for 7 months prior to the experiment. It is
well known that the microstructural tissue properties change
throughout the fixation process, and the final properties of the835

tissue depend on: the post-mortem fixation delay, the fixation
time, the concentration of formalin and the temperature history
[51, 52, 53]. The T1 map presented in Fig. 9 shows partic-
ularly small values revealing strongly fixed tissues where wa-
ter has a reduced mobility. The mean ADC in WM found was840

0.3 mm2s−1 while a normal in vivo value would be above 0.8
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mm2s−1 [54]. While it had already been demonstrated that adding
diffusion to realistic models of WM was not relevant when try-
ing to model the GRE signal [14], for fixed tissues this should
be even more so. One risk of using fixed tissues is that pro-845

tein binding might change the sizes of the different compart-
ments and tightness of the myelin packing, making our realistic
models less valid. Fresh tissues do not present such problems
(reduced diffusion and fixation artifacts) and could be an alter-
native option. However, our current protocol took 8h, without850

the DWI. In such a time window, fresh tissues would not be
sufficiently stable to assume constant microstructural proper-
ties over time [55]. Thus, it was necessary to use fixed human
brain for this proof of concept microstructural parameter decod-
ing experiment, although the fixation time could be reduced to855

6-10 weeks would make our findings more comparable to what
is found in vivo.

5. Future work

5.1. Ground truth validation

We have demonstrated the feasibility of incorporating real-860

istic models to measure WM microstructural properties. While
the recovery of the microstructural parameters generated fol-
lows the general expectations for FVF, R̂∗2,Intra−Extra, g-ratio, it
would be important to validate them by an independent method
is future experiments. One possible avenue is to perform histol-865

ogy on excised samples after the MRI experiment which could
provide ground truth of microstructural properties. Amongst
the potential candidates: CLARITY is an optical 3D imag-
ing method combined with a tissue clearing technique which
can provide neuro density, fibre orientation distribution and cell870

types [56]; X-ray microscopy can also be used to generate an
entire 3D view in a non-destructive way [57]; 3D transmission
electron microscopy, as used to generate the axon models, can
provide excellent resolution to quantify myelin volume and ax-
onal orientations. However, using histology as a means for875

method validation has to be interpreted carefully as the tissue
preparation for processes can change the intra and extra-axonal
water content and relative volume. A direct comparison of the
obtained microstructural parameters obtained ex vivo on fixed
tissue with in vivo acquisitions should be avoided. In a prelimi-880

nary work (data not shown), we replicated the fixation formalin
process and the MRI experiment with a porcine brain sample,
from which small WM samples were excised for 3D EM anal-
ysis. We observed significant degradation of the myelin sheath
for a number of axons where the myelin sheath appeared un-885

packed. Such tissue change could result in a decrease of g-ratio,
χi, as well as a decrease of myelin R̂∗2,Myelin and proton density
with respect to in vivo imaging. Yet, given the lengthy MR ac-
quisition performed, using a fresh tissue sample would not be
feasible.890

In this study, we did not compare our proposed method
to any conventional imaging methods for WM microstructural
quantification. Our realistic WM model driven with deep neu-
ral network provides a set of microstructural properties that
is unique making direct comparison to other microstructural895

quantification methods not straightforward. For example, myelin
water imaging [9] might be a combination of FVF, g-ratio and
the myelin weight term derived by our method, the NODDI ob-
tained intra-axonal volume fraction would be a combination of
FVF and g-ratio. Additionally, the structural alteration of ex900

vivo samples hinder the robust applicability of the conventional
methods in ex vivo imaging: previous studies have shown that
the R̂∗2s of myelin and intra-/extra-axonal water become less dis-
tinguishable in ex vivo data [58] and, as in our data, the reduced
water diffusivity in ex vivo samples makes the extraction of in-905

formation beyond main fiber orientation extremely challenging.
Future work will address such comparisons in vivo, where our
deep learning methods could benefit from additional diffusion
modelling information.

5.2. Application910

The current implementation of the network (based on ME-
GRE data acquired with one single flip angle and information
regarding the main fiber orientation) requires at least 3 head ori-
entations with respect to the main magnetic field. Although this
limits its applicability in vivo it is comparable to the require-915

ments of other magnetic susceptibility related methods such
as COSMOS [59] and Susceptibility Tensor Imaging [60] and
compares favorably to magnitude and frequency-based fiber ori-
entation estimation [17]. Two possible solutions recently intro-
duced to raise this degeneracy in the context of myelin water920

imaging is to explore the difference between the T1 of myelin
and free water by using various GRE acquisitions with different
T1- weighting and use additional information from DWI regard-
ing the relative size of intra and extra-axonal components [61].

The approach presented in this work may find applications925

in the imaging of myelin water with gradient-echo-based acqui-
sitions [62, 10]. Traditionally, myelin water imaging in gradient-
echo-based experiments tries to fit 9 independent parameters:
three independent signals (separate amplitude, decay rate and
frequency shift) for each of the three compartments (intra- and930

extra-axonal water and myelin) to a ME-GRE signal. The main
shortcomings of this approach are that: the model is known
to be simplistic (even the simple HCM predicts more complex
signal evolution than 3 overlapping exponential signal decays)
[23] and the fitting procedure is ill-conditioned. In the work935

presented here, we have shown with simulations and data that
we can obtain acceptable results with as few as 3 orientations
with the advantage that we obtained the most relevant microstruc-
tural information. One of the common findings in myelin water
imaging is, as in our ex vivo results (see Figs. 9, 10) an over-940

estimation of the myelin water compartment in deep gray mat-
ter [62, 63], where the limitations of the tissue model become
evident. One approach is to use advanced diffusion modelling
priors that, for example, quantify intra- and extra-axonal water
fractions [64, 65] or describe each voxel as being an overlap945

of various fiber orientations [66]. Both these approaches have
been successfully been demonstrated recently in the context of
in vivo myelin water imaging [61], but because of the poor qual-
ity of the ex vivo diffusion data could not be pursued. Finally,
addressing specifically the erroneous fitting in deep gray mat-950

ter, it is foreseeable to integrate this methodology with QSM
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[59], in which case the additional information on regions that
are high in iron load could avoid applying a model that does
not describe this regions appropriately.

6. Conclusion955

In this paper, we developed an open source toolbox 2 to gen-
erate 2D WM models with controlled microstructural properties
such as fiber density and variability in the g-ratio using publicly
available electron microscopy data. Such models are used to es-
timate the corresponding field perturbation and derive the ME-960

GRE signals. Although our WM models are limited to 2D, we
have demonstrated that they can be satisfactorily used to sim-
ulate 3D structures with a relatively high range of dispersion.
Finally, dictionaries of ME-GRE signals for 6 different param-
eters (FVF, g-ratio, χi, T̂ ∗2,Myelin, T̂ ∗2,Intra−Extra, and the relative965

water weight) associated with WM properties at a sub-voxel
level were created. This single acquisition dictionaries can then
be combined depending on the multiple rotation strategy used
in the experimental protocol to create a better conditioned de-
coding problem and train a deep learning network able to de-970

code microstructural parameters. We performed several tests
to assess the quality of the sub-voxel parameter recovery us-
ing our network, depending on the number of sample rotations,
echo times used and noise added to the library. Unsurprisingly
we found that the network performs better as more data are975

given as input. Thus the number of rotations and echo times
should be maximised in a given acquisition window. However,
because of the large variations between different WM models
used in the training process, it is advantageous to train the net-
work with a level of noise higher than that of the available data.980

The network was demonstrated through an ex vivo experiment
performed using gradient echo data acquired at multiple brain
orientations with respect to the main magnetic. We were able
to obtain promising FVF, g-ratio, R̂∗2 maps that showed the ex-
pected variations through out most brain structures such as the985

CSF, GM, WM and the corpus callosum . The parameter val-
ues (except for χi) follow the expected patterns and were robust
for different acquisition protocols and reduced number of brain
orientations.
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Appendix A. Impact of compartmentalization of water within
the myelin sheath

Appendix A.1. Presentation of the model
In this appendix, we compare three distinct infinite cylinder1005

white matter models to address the question of how to better
model the compartmentalization of water in the myelin com-
partment: - the classic HCM [17], which considers the myelin
sheath with water as one single compartment; - the HCM in
which a cylindrical Lorentzian correction [29] was applied to1010

the myelin water compartment as described in Eq. 6; - a layered
model that divides the myelin sheath in several phospholipid
layers (that are the source of susceptibility) interleaved with 10
myelin water layers (source of the signal) [15, 30];

To describe the layered axon model, the myelin compart-1015

ment was replaced by phospholipid and water compartments.
To ensure that the model does not alter the intra and extra-
axonal fields generated by the standard model, the volumet-
ric isotropic and anisotropic susceptibility are set to −0.1/wP,
where wP is the volume fraction of the phospholipid layers in1020

the myelin compartment (1 − wMW , where wMW is the myelin
water fraction). Finally the T̂ ∗2 s of the phospolipid and myelin
water were set to 0.5 and 15 ms. The cylinder models were sim-
ulated in a 2000 × 2000 grid, to avoid numerical errors in the
presence of large number of layers.1025

Following the process described in Section 2.2, the field
perturbation and the corresponding ME-GRE signal were simu-
lated using the 3 models (with the same FVF and g-ratio) while
two different myelin water fraction (in the standard HCM model
weight matched the layered water volume fraction).1030

Appendix A.2. Field perturbations in the layered WM model
The field perturbation and their corresponding frequency

distributions of the 3 models are shown in Fig. A.11. As analyt-
ically predicted [15], the intra-axonal and extra-axonal frequen-
cies have similar distribution for the 3 models, but the myelin1035

water has very different frequency distributions. Because in the
models shown the susceptibility of the axon has been matched,
the field within the phospholipid layers is increased, while the
water compartment shows the opposite behaviour. The cylin-
drical Lorentzian correction to the myelin compartment of the1040

HCM, see dashed lines in the histogram, has a much milder ef-
fect when the axon is perpendicular to the magnetic field (small
reduction of the frequency shift), and has the same effect as the
layered model when axon is parallel to the magnetic field (in
which case the water is on resonance).1045

To better understand the relationship between the myelin
water frequency in the three models Fig. A.12 a and b show the
mean frequency of the myelin water compartments as a func-
tion of the orientation with respect to the magnetic field, θ . As
predicted analytically, the HCM and the layered model have1050

opposed frequency shift dependence on θ. As noted earlier,
the layered model and the Lorentzian cylinder corrected version
of the HCM do not show a frequency shit of the myelin water
compartment when the axon runs parallel to the main magnetic
field. The impact of changing the myelin water volume frac-1055

tion (see Fig. A.12 a and b) does not play a significant role.
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But it should be noted that, when increasing the water volume
fraction, the magnetic susceptibility of the phospholipid com-
partment was increased in the layered model, which is not the
case in reality where the susceptibility is a property of the phos-1060

pholipid bilayer.
It is interesting to note that the HCM with the Lorentzian

correction in the myelin water compartment has the experimen-
tally found behaviour where the myelin water has no frequency
shift when WM is running parallel to B0 and a positive fre-1065

quency shift when perpendicular to B0. This is achieved with-
out the need to consider hop in and and hop out mechanisms as
is the case for the layered model [15]. Because of its simplic-
ity and straightforward application to our realistic WM models,
this was the model used in our study.1070

Figure A.11: Field perturbations and frequency distributions of the HCM (top
row), and the Layered model (bottom row), for a parallel (left) and a perpen-
dicular (right) orientation of the axon relative to the main magnetic field orien-
tations. On the top row, the blue dashed line represents the myelin histogram
without the Lorentzian correction while the blue solid line represents the myelin
histogram with the Lorentzian correction. The frequency histograms only show
the frequency distribution in the compartments with water signal. The reduction
in area of the myelin water distribution reflects its decrease in volume fraction.

Appendix B. 3D WM model

Appendix B.1. Presentation of the 3D WM model
With a view to validating the ability of the 2D realistic mod-

els developed to describe the 3D structures encountered in a
WM voxel, we compared the signal associated to the 2D mod-1075

els to those of a real 3D WM sample. A segmented [67] 3D
EM of a genu of a sagittal mouse corpus callosum section was

Figure A.12: Plots of the mean frequency shift of the myelin water compart-
ment as a function of the orientation with respect to B0 for the HCM without
the cylindrical Lorentzian correction, the HCM with the cylindrical Lorentzian
correction and the layered model.

used for this comparison. The resolution of the initial 3D EM
dataset was of 7.3x7.3x50 nm, which was subsequently down
sampled by a factor of 7 resulting in a quasi isotropic reso-1080

lution 51x51x50 nm. The FOV of the segmented piece was
20 × 20 × 20 µm (represented on a matrix of 400 × 400 × 400).
Using the segmentation 3D EM data, the FVF and g-ratio were
computed to be 0.51 and 0.67 respectively. Additionally, be-
cause the 3D model does not consist of infinitely long struc-1085

tures that are parallel, the fiber dispersion was computed with
respect to the average fiber orientation [68], and found to be low
σ = 0.04. In addition to this original model, to study the im-
pact of higher dispersion, 60 axons within the 3D model were
selected to create a fiber orientation dispersion of σ = 0.4. A1090

mask surrounding the selected axons was used to ensure mi-
crostructural parameters remained equivalent to those of the
whole sample (FVF = 0.51 and g-ratio = 0.67). The 3D sig-
nal was computed only within the mask and selected axons.

Figure B.13: Raw 3D EM data and myelin segmentation of size 400x400x400.
Frequency histogram of the computed axon orientations present in the EM
model and the average orientation, ~µ

The magnetic susceptibility tensor, XR, was calculated with1095

respect to the orientation of the phospholipids inside the myelin
sheath, using a 3D variant of the process described in the meth-
ods section. The tensor map obtained was then used to calculate
the magnetic field perturbations in 3D, ∆B0(X(r)), as described
in [28]. These processes are straightforward extensions of the1100

2D case and their implementation is available in our toolbox.

Appendix B.2. Comparison between 2D and 3D field pertur-
bations

To simulate the fiber dispersion within the 3D samples, an
artificial dispersion was introduced into the 2D models by com-1105

puting the field perturbation for 100 different main magnetic
field orientations according to the von-Mises-Fisher distribu-
tion [69]. The final signal is the sum of signal from 2D mod-
els with the 100 different orientations with respect to the main
magnetic field.1110

The 3D models were compared to 10 realistic 2D models,
created as described in the methods section, using similar mi-
crostructural parameters to those of the 3D samples. Four dif-
ferent dispersion values (σ = 0, 0.2, 0.4, 0.6) were simulated.
The ME-GRE signals were computed for both 2D and 3D mod-1115

els, with the parameter used in Fig. 1 for TE = 1:1:80 ms.
Finally, the 2D and 3D signals were normalized and compared
using the root-mean-square-error (RMSE) computed according
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to:

RMS E(Ŝ 3D, Ŝ 2D) =

√
| < (Ŝ 3D − Ŝ 2D), (Ŝ 3D − Ŝ 2D) > |

#T E
(B.1)

where <.,.> is the complex dot product, |.| the absolute value1120

operator and #T E is the number of echos.
Fig. B.14 shows the signal RMSE between the 2D and 3D

models as a function of the orientation of the main magnetic
field. In each plot, various 2D simulated signals with different
dispersion levels are compared to (a) the original 3D model (b)1125

the 3D model with high dispersion. The 2D models with lower
dispersion (0, 0.2) consistently match that 3D signal with RM-
SEs below the 2.5%, which is small when taking into account
the 4% noise added to the training of our deep learning net-
work used in our in silico and ex vivo experiments (see Section1130

2.4.1 and Section 2.6). For the high dispersion 3D model (Fig.
B.14b), the 2D models with high dispersion (0.4 and 0.6) have
the lowest RMSE for all magnetic field orientations. When no
dispersion is used in the 2D models, the RMSE stays below 5%.
The two 3D models considered are best represented with 2D1135

models with similar or slightly higher dispersion values. This
finding could be attributed to the additional dispersion associ-
ated with each axon that changes direction throughout the 3D
model and that is not taken into account in the current disper-
sion computation.1140

Figure B.14: Plots of the RMSE between the Signal of the 2D models using
4 different dispersion levels and Signal of the 3D models as a function of the
orientation of the main magnetic field. In a) the original 3D model with low
dispersion (0.04) and in b) the 3D model with high dispersion (0.4), which is
used as ground truth. The error bars represent the standard deviation across 10
different realistic 2D WM models created

To conclude, the 2D models developed based on separate li-
brary of axons accurately represent a real 3D WM model. In the
future, it could be considered to add dispersion to the 2D mod-
els to better represent a WM region with higher dispersion val-
ues that could be measured independently with DWI. In ex vivo1145

acquisitions, the quality of DTI data is severely hampered (re-
duced diffusion constant and reduced T ∗2 ), and from our data it
was not possible to apply more advanced diffusion models that
can decode this quantity. However, even without dispersion,
the RMSE consistently remained under 5% while 4% noise is1150

added to our dictionary when training the deep learning net-
work, which suggests that this might not have a large impact.

A situation not considered here and that should have a larger

impact are crossing fibers. Fiber dispersion, discussed above,
accounts for the spread of the fiber orientations within a bundle1155

of axons while the fiber crossing represents two or more bundles
of axons. Significant work on the diffusion community has been
devoted to this topic [70]. This could be studied as future work
assuming that such a 3D EM dataset exists.
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