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Abstract

Over the past decade, there has been an abundance of research on the difference between age and age
predicted using brain features, which is commonly referred to as the “brain age gap”. Researchers have
identified that the brain age gap, as a linear transformation of an out-of-sample residual, is dependent
on age. As such, any group differences on the brain age gap could simply be due to group differences on
age. To mitigate the brain age gap’s dependence on age, it has been proposed that age be regressed out
of the brain age gap. If this modified brain age gap (MBAG) is treated as a corrected deviation from
age, model accuracy statistics such as R2 will be artificially inflated. Given the limitations of proposed
brain age analyses, further theoretical work is warranted to determine the best way to quantify deviation
from normality.
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Highlights:

• The brain age gap is an out-of-sample residual, and as such varies as a function of age.

• A recently proposed modification of the brain age gap, designed to mitigate the dependence on age,
results in inflated model accuracy statistics if used incorrectly.

• Given these limitations, we suggest that new methods should be developed to quantify deviation from
normal developmental and aging trajectories.
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1 Introduction

In the past decade, there has been an explosion of research devoted to estimating individuals’ ages using1

features derived from magnetic resonance images (MRIs) of the brain (Franke & Gaser, 2019). From studies2

using diffusion-weighted features to complex functional connectivity metrics, the literature is extensive (Cole,3

2020; Erus et al., 2015; Irimia, Torgerson, Goh, & Van Horn, 2015; Li, Satterthwaite, & Fan, 2018; Lin et4

al., 2016). While age is easily measured through more conventional means, assessing the appearance of the5

brain with respect to the natural patterns of development and aging provides a framework for dimension6

reduction; from hundreds of thousands to millions of MRI measurements, these models aim to provide the7

age of the brain for each subject as a convenient summary measure. The predicted age from these models has8

been coined “brain age”, and the difference between age (sometimes referred to as “chronological age”) and9

brain age is typically referred to as the “brain age gap”. Predicted ages are calculated using the following10

fitted model:11

Âi = f̂(Bi1, Bi2, . . . , Bip),

where Âi is the predicted age of the ith subject, Bij is the jth brain feature for the ith subject, and f(·) is12

some function of the brain features.13

Brain age gap analysis was developed to address two major challenges in neuroscience and medicine:14

high-dimensionality, and individual risk assessment. Neuroimaging data are high dimensional, with the15

average T1-weighted scan containing approximately 1,200,000 voxels of brain tissue (Cosgrove, Mazure, &16

Staley, 2007). Importantly, different parts of the brain follow a variety of trajectories across the lifespan17

(Coupé, Catheline, Lanuza, & Manjón, 2017; Gennatas et al., 2017; Kennedy et al., 2015). Therefore, in18

order to better predict age, it is beneficial to use more brain features that complement each other (Varikuti19

et al., 2018). The main motivation, however, behind brain age gap analyses has been to develop a single20

number to represent an individual’s deviation from some normal trajectory (de Lange & Cole, 2020). This is21

an admirable goal, since deviating from a normal trajectory may be indicative of or predictive of debilitating22

disorders (Marquand, Rezek, Buitelaar, & Beckmann, 2016).23

Researchers often test whether members of a group tend to have their age overestimated compared to24

a control group, striving to assess whether the disorder is associated with the brain aging prematurely or25

lagging behind. For instance, Chung et al. (2018) asked if those at clinical high risk for psychosis had a26

larger brain age gap than healthy controls, and Liem et al. (2017) asked if the brain age gap differed across27

groups with varying degrees of objective cognitive impairment. Typically, these models are developed using28

regression or machine learning in one dataset, and are evaluated in a test set. The cross-validation process29
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involves dividing the training set into k folds, estimating the model parameters on k − 1 folds, applying the30

fitted model to the remaining fold, and repeating until every participant in the training set has a predicted31

age. This procedure helps avoid over-fitting and reporting an inflated model accuracy statistic. Finally, the32

trained model is applied on a separate test set to predict age of each individual based on their brain features.33

In this article, we note that the brain age gap, and a recently proposed modified version of it (Beheshti,34

Nugent, Potvin, & Duchesne, 2019; Chung et al., 2018; Liang, Zhang, & Niu, 2019; Smith, Vidaurre, Alfaro-35

Almagro, Nichols, & Miller, 2019), are not up to the task of quantifying deviation from a normal trajectory.36

The brain age gap is a linear transformation of an out-of-sample residual (subsequently referred to as a37

“prediction error”). As such, it is dependent on the outcome variable (i.e., age) (Le et al., 2018). Therefore,38

differences in the brain age gap between groups may be due to differences in the brain, or due to differences39

in the age distributions across groups (Le et al., 2018; Smith et al., 2019). A recently proposed solution to40

this problem — regressing the brain age gap on age and taking the residuals from this model as a modified41

brain age gap that is orthogonal to age — creates new problems. In particular, if this new prediction error42

is treated as a deviation from a subject’s age, which it is not, metrics of model accuracy will be severely43

inflated.44

2 Known Limitations of the Brain Age Gap45

Brain age gap analyses have historically been based on the assumption that the difference between age and46

predicted age does not vary as a function of age; however, recently several groups have pointed out that this47

assumption is false (Le et al., 2018; Liang et al., 2019; Smith et al., 2019). Smith et al. (2019) pointed out48

an extreme case of this error: when age has truly no relationship with brain features, the difference between49

age and predicted age (“brain age gap”) is a linear function of age, which implies that age explains 100%50

of the variance in the brain age gap. Smith et al. (2019) note that any subsequent analyses studying the51

relationship between this gap and other metrics is equivalent to relating a linear transformation of age to52

other metrics.53

To flesh out the gravity of this observation, consider an example: If age does not vary as a function of any54

of the brain parameters, all coefficients, aside from the intercept, will be close to zero with high probability,55

and the intercept will be close to the mean age of the training sample. Let Ai be the age of the ith subject,56

Bij the jth brain feature for the ith subject, εi random error, and A the mean age of the training sample.57

The brain age model is thus:58

Ai = β0 + β1Bi1 + β2Bi2 + · · ·+ βpBip + εi (1)
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And the fitted values are:59

Âi = β̂0 + β̂1Bi1 + β̂2Bi2 + · · ·+ β̂pBip ≈ A+ 0×Bi1 + 0×Bi2 + · · ·+ 0×Bip = A. (2)

For simplicity, let’s assume that the coefficients are estimated to be exactly zero. Suppose the mean age60

of the training sample is 10 years old. Every person will have an estimated age of 10, so their brain age gap,61

Âi − Ai, will be 10 − Ai. Thus, the brain age gaps are as follows: 15-year-olds have a brain age gap of -5,62

10-year-olds have a brain age gap of 0, 5-year-olds have a brain age gap of 5, etc. Older participants are63

estimated as being younger than they are, and younger participants as older. The brain age gap is a linear64

transformation of a residual (i.e., ε̂i = Ai − Âi = −(Âi − Ai)), which by definition varies as a function of65

the outcome variable, in this case age. If the brain features are linearly independent of age, then testing for66

differences in the brain age gap is equivalent to testing, “Is the mean age of group A different from the mean67

age of group B?” When testing for differences on the brain age gap in general, the question being asked is68

similar to “Controlling for the brain features, is the mean age of group A different from the mean age of69

group B?” Because regression on the residuals of a previous model is not equivalent to multiple regression,70

this description is not quite correct (Chen, Hribar, & Melessa, 2018; Freckleton, 2002). Thus, interpretation71

of these residuals is difficult.72

Even if age varies as a function of the brain parameters, the predicted age for every subject will still be73

shrunk towards the mean age of the training sample. This is referred to as regression towards the mean, and74

was first documented by Sir Francis Galton in 1886 (Bland & Altman, 1994). As Liang et al. (2019) noted,75

this phenomenon is a common feature of many good models. Therefore, older subjects will have negative76

brain age gap estimates on average simply because they are older, while younger subjects will have positive77

estimates on average.78

It is important to note that regression towards the mean is not a failure, but a feature, of regression79

and related methods. If there is any randomness in a process, observations will tend towards the mean80

of the outcome variable rather than remain as extreme as they were upon initial sampling (Stigler, 1997).81

Regression towards the mean is a feature of regression that is actively useful for prediction. Since age is82

known with certainty, the notion of predicting it makes the construction of a residual awkward. Thus,83

as we continue to use age prediction as a means to reduce dimensionality, it is important to understand84

the limitations of using age as an outcome variable and subsequent associated analyses. Recognizing the85

dependence of the brain age gap on age, researchers have begun to develop methods to mitigate the age-86

dependence of the brain age gap (Beheshti et al., 2019; Le et al., 2018; Smith et al., 2019). Unfortunately,87

a misuse of residuals persists, resulting in a systematic overestimation of model accuracy.88
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3 Risks of Using a Modified Brain Age Gap89

To mitigate the residuals’ dependence on age, some researchers apply the following algorithm (Beheshti et90

al., 2019; Chung et al., 2018; Liang et al., 2019; Smith et al., 2019) (see the appendix for details on Beheshti91

et al. (2019)’s method). First, a training sample is used to estimate a mapping f(·) from brain features92

to age. Then, for a left out subject i with brain data Bi1, Bi2, . . . , Bip, the predicted age (“brain age”) is93

estimated as Âi:94

Âi = f̂(Bi1, Bi2, . . . , Bip). (3)

Then the ith subject’s brain age gap (BAG) is95

BAGi = Âi −Ai. (4)

Recognizing the brain age gap’s dependence on age, the researcher poses a linear model of the brain age gap96

on age:97

BAGi = α+ γAi + δi (5)

where estimated parameters α̂ and γ̂ are found from a regression using training data, and δi is random error.98

Thus, the effect of age is removed, producing the modified brain age gap (MBAG):99

MBAGi = δ̂i = BAGi − (α̂+ γ̂Ai), (6)

which, as the prediction error from model (5), is approximately uncorrelated with age (only exactly uncorre-100

lated if test data is used to estimate α and γ). Because MBAG has been interpreted as a corrected residual,101

MBAG is added to (or subtracted from; equivalent in correlation, see Supplement) age. This new variable102

is then referred to as the corrected predicted age:103

ÂM
i = Ai + MBAGi = Â+ α̂+ γ̂Ai. (7)

Because the researcher perceives this predicted age as corrected, they correlate it with age to assess their104

model’s accuracy in predicting age. We will refer to ÂM
i as the “modified predicted age” and will show below105

why this age estimation is flawed.106

MBAG is by no means a more accurate measure of an out-of-sample residual, or prediction error (i.e.,107

the “brain age gap”). The brain age gap itself is more dependent on age the less the brain features are108
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Table 1: Papers reporting inflated model accuracy statistics.

Paper Before Modification After Modification

Beheshti et al. (2019) Corr(A, Â)2 = .38 Corr(A, ÂM )2 = .88

Chung et al. (2018) Corr(A, Â)2 = .66 Corr(A, ÂM )2 = .84
Liang et al. (2019) MAE = 1.57 MAE = 1.32

Smith et al. (2019) Corr(A, Â) = .06 Corr(A, ÂM ) = .99

Note: MAE = Mean Absolute Error.

associated with age. Again, consider the extreme case where age is independent of the brain features. Then,109

the brain age gap is completely determined by age, as explained in the previous section. If MBAG is treated110

as an estimate of the deviation from age, the reported model accuracy (e.g., Corr(Ai, Â
M
i )2 = R2) will111

always be inflated relative to the true model accuracy, and often drastically so (see Table 1 for details on112

papers that have reported inflated model accuracy statistics). When age has no true dependence on the113

brain features, the population covariance between age and predicted age, Âi, is zero. But when MBAG is114

treated as the deviation from age, Ai +MBAGi, age and modified predicted age, ÂM
i , have an approximately115

perfect correlation of 1.116

In fact, the inflated correlation can be directly computed as a function of the sample estimates of the117

covariance between age and predicted age, the variance of age, and the variance of predicted age (see118

Supplement for derivations):119

Corr(A, ÂM ) =
−γ̂Var(A) + Cov(A, Â)√

Var(A)×
(

Var(Â) + γ̂2Var(A)− 2γ̂Cov(A, Â)
)

=

(
1 +

1(
rAÂ − γ̂

√
Var(A)

Var(Â)

)2 (1− r2
AÂ

)

)−1/2
(8)

If α̂ and γ̂ are estimated in the test set, equation (8) can be further simplified:120

Corrtest(A, Â
M ) =

(
1 +

Var(A)

Var(Â)
(1− r2

AÂ
)
)−1/2

. (9)

The equation can be simplified even further if Â is a linear estimator:121

Corrtest, linear(A, Â
M ) =

(
1 + r2

AÂ
(1− r2

AÂ
)
)−1/2

. (10)

To illustrate the inflated correlation effect and confirm that equation 8 is correct, a series of simulations122

were run to compare the transformations that researchers describe performing to the above equation using R123
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Figure 1: Inflated correlation, Corr(A, ÂM ), is a func-

tion of the true correlation, Corr(A, Â). The inflated
correlation is the correlation between age and the mod-
ified predicted age. The true correlation is the correla-
tion between age and predicted age. To illustrate that
the series of transformations that researchers perform
is equivalent to (8), correlations using both are plot-
ted. rfunc is using (8), and rtrans is using the series of
transformations. The identity line is displayed.

version 3.6.2 (R Core Team, 2019). Training and testing sets of 10,000 samples were simulated from each of a124

series of bivariate normal distributions, where the true correlation between age and brain was varied between125

0 and 1, with the correlation between age and the modified predicted age, ÂM
i , in the test set being the key126

outcome measure recorded. All model parameters were estimated in the training set. Since there is only one127

brain feature, the correlation between age and predicted age is the same as the correlation between age and128

brain. Results using a single brain feature are detailed in Figure 1. A single brain feature was used so as to129

have easy control over the correlation between age and predicted age, but note that this result generalizes130

to any number of brain features. For a set of correlations between 0 and 1, the correlation between age and131

the modified predicted age, ÂM
i , was calculated using the theoretical formulation in (8) (black line), and the132

inflated correlation was obtained using the previously described transformations (pink dots). The identity133

line is displayed to aid in visualizing that the inflated correlation is larger than the true correlation. The134

simulations confirmed that the theoretical formulation in (8) is equivalent to the transformations researchers135

have described. In addition, Figure 1 illustrates that the degree of inflation is much greater for models that136

have lower values of Corr(A, Â) than for models that have higher values of Corr(A, Â).137

Additional analyses were run using the Philadelphia Neurodevelopmental Cohort (PNC) to illustrate138

the findings in brain MRI data. Sample details, neuroimaging protocols, and processing can be found in139

Calkins et al. (2015), Gur et al. (2020), and Satterthwaite et al. (2014). Briefly, participants ages 8-22140

were recruited through their primary care providers in the Philadelphia area. Subjects were excluded for141

the purposes of these analyses if their cognitive assessment was conducted more than a year before or after142

their neuroimaging data was collected, or if their structural image did not pass stringent quality assurance143
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measures. 132 regional volume values were extracted using the Advanced Normalization Tools software144

package (Tustison et al., 2013; Wang & Yushkevich, 2013).145

Elastic net models to predict age were built on youths ages 8-22 without a history of mental illness146

(“typically developing”). Hyperparameters were chosen using repeated five-fold cross validation on the147

typically developing youth as implemented in the ‘caret’ package, version 6.0-86 (Kuhn, 2012). Then, a148

linear regression of BAG on age was fit in the typically developing subjects (N = 317). Using the fitted149

values for the parameters from these models, the transformations previously described were applied to youth150

who met screening criteria for lifetime instance of a mental illness (N = 862). This real data example151

confirmed the theoretical and simulation findings (see Figure 3). Prior to any modification, the correlation152

between age (A) and predicted age (Â) was .773. After applying the modifications, the correlation became153

.884. There were no differences between the typically developing youth and youth with a history of mental154

illness on age (t = −1.05, p = 0.29), the brain age gap (t = 0.72, p = 0.47), or MBAG (t = 0.09, p = 0390).155

Age and performance on the complex cognition tasks were highly associated (r = 0.54, p < .0001). After156

regressing the brain features out of age and multiplying by negative one – or constructing the brain age gap157

– this association weakened (r = −0.30, p < .0001). MBAG and performance on the complex cognition tasks158

were not associated (r = −.01, p = 0.71). These results indicate that the association between cognition159

and the brain age gap are driven by the association between age and cognitive performance. Prior work160

highlighting group differences and correlations between brain age metrics and other variables should be161

examined in light of these results.162

4 Conclusion163

We have shown that predicted age estimates (“brain age”) based on a regression adjustment of the brain age164

gap result in a correlation between a modified predicted age and age never falling much below 0.9 regardless165

of the original predicted age and age correlation. Further, the interpretability of MBAG itself is limited by166

the fact that it is a prediction error from a regression to remove the effects of age from a residual obtained167

through a regression to predict age. By virtue of these limitations, we suggest that the brain age gap and168

the modified version may not provide useful information about precocity or delay in brain development. In169

light of this, we suggest that methods be developed specifically to answer questions about similarity between170

brains of different age groups and diseased states.171

Many other transformations have been developed to mitigate the downstream effects of BAG’s dependence172

on age (de Lange & Cole, 2020). Some are not susceptible to the inflated correlation issue described in this173

work. Methods include scaling the predicted age by the slope and intercept from the regression of predicted174
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Figure 2: The inflated correlation finding was replicated in the Philadelphia Neurodevelopmental Cohort.
Plotted are values for age, predicted age, brain age gap, modified brain age gap and modified predicted age
in the subset of participants who met screening criteria for an instance of mental illness in their lifetime.
The identity line is displayed in panels A and D.
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age on age (see (5) in de Lange and Cole (2020)), and including age as a covariate when testing for group175

differences in BAG (Le et al., 2018). The former results in a new BAG estimate that is uncorrelated with176

age, and the latter ensures that any group differences found on BAG will be linearly independent of age.177

Note that, if all models had been built on the test set, controlling for age when testing for group differences178

on BAG is the two-step regression equivalent of including age as a covariate in a multiple regression with179

brain features predicting age. The real question then becomes: to what extent do these methods quantify180

advanced or delayed brain development? This question warrants further theoretical investigation.181

Future research should also determine appropriate analytic methods to answer whether the brains of182

patients with disorders are more similar to older healthy controls’ than age-matched healthy controls’ brains,183

and to evaluating the extent to which analyses of residuals as deviations from some trajectory exist in the184

literature. Thus far, we are aware of a similar trend of predicting age using genetic features in attempt to185

document differences in precocious and delayed genetic development (Sumner, Colich, Uddin, Armstrong,186

& McLaughlin, 2019; Wolf et al., 2018). In the meantime, while previous studies have suggested that the187

brain age gap be used as biomarker in clinical trials (Cole et al., 2018), our findings suggest that further188

methodological work is warranted.189
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Beheshti et al. (2019) correlation291

Beheshti et al. (2019) suggest subtracting α̂ + γ̂Ai from Âi, and calling this new value the corrected292

predicted age:293

Corr(A, Â− (α̂+ γ̂A)) = Corr(A, Â− γ̂A)

=
Cov(A, Â− γ̂A)√

Var(A)Var(Â− γ̂A)

=
−γ̂Var(A) + Cov(A, Â)√

Var(A)
(

Var(Â) + γ̂2Var(A)− 2γ̂Cov(A, Â)
)

= Corr(A, ÂM ).

294

Therefore, their method is equivalent to Eqn. 8.295

296

Adding and subtracting MBAG from age results in the same297

inflated correlation with age298

Moditified predicted age has been calculated in the literature as either MBAGi = Ai−BAGi or MBAGi =

Ai + BAGi. In both cases, the main results from the paper applies since the correlation between age and

the modified predicted age using either formula is the same. We have that

Corr(A,A−MBAG) =
Var(A)− Cov(A,MBAG)√

Var(A) (Var(A) + Var(MBAG)− 2Cov(A,MBAG))

=
Var(A)√

Var(A)2 + Var(A)Var(MBAG)

Corr(A,A+ MBAG) =
Var(A) + Cov(A,MBAG)√

Var(A) (Var(A) + Var(MBAG) + 2Cov(A,MBAG))

=
Var(A)√

Var(A)2 + Var(A)Var(MBAG)

= Corr(A,A−MBAG)

which follows from the fact that MBAGi is a residual from regression of BAGi on Ai and thus MBAGi is299

orthogonal to Ai or equivalently, Cov(A,MBAG) = 0. Note that this result is only approximate when the300

regression of BAG on age is done in the training set.301
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Derivation of Equation (8)302

303

Corr(A, ÂM ) = Corr(A,A+ MBAG)

= Corr(A,A+ BAG− (α̂+ γ̂A))

= Corr(A, Â− α̂− γ̂A)

=
Cov(A, Â− α̂− γ̂A)√

Var(A)Var(Â− α̂− γ̂A)
, apply the definition of correlation

=
−γ̂Var(A) + Cov(A, Â)√

Var(A)
(

Var(Â) + γ̂2Var(A)− 2γ̂Cov(A, Â)
)

=
−γ̂ Var(A)√

Var(A)Var(Â)
+ Cov(A,Â)√

Var(A)Var(Â)√
1

Var(A)Var(Â)

[
Var(A)

(
Var(Â) + γ̂2Var(A)− 2γ̂Cov(A, Â)

)]

=
−γ̂
√

Var(A)

Var(Â)
+ Corr(A, Â)√

1 + γ̂2 Var(A)

Var(Â)
− 2γ̂ Cov(A,Â)

Var(Â)

=
−γ̂
√

Var(A)

Var(Â)
+ rAÂ√

1 +
(
γ̂
√

Var(A)

Var(Â)

)2
− 2γ̂

√
Var(A)

Var(Â)
rAÂ

=
−γ̂
√

Var(A)

Var(Â)
+ rAÂ√

1 +
(
γ̂
√

Var(A)

Var(Â)

)2
− 2γ̂

√
Var(A)

Var(Â)
rAÂ + r2

AÂ
− r2

AÂ

=
−γ̂
√

Var(A)

Var(Â)
+ rAÂ√

1− r2
AÂ

+
(
rAÂ − γ̂

√
Var(A)

Var(Â)

)2 , factor the quadratic

=
(

(−γ̂

√
Var(A)

Var(Â)
+ rAÂ)−2

)−1/2(
1− r2

AÂ
+
(
rAÂ − γ̂

√
Var(A)

Var(Â)

)2)−1/2

=

(
1− r2

AÂ
+
(
rAÂ − γ̂

√
Var(A)

Var(Â)

)2)
(
− γ̂
√

Var(A)

Var(Â)
+ rAÂ

)2
)−1/2

=

(
1 +

1(
rAÂ − γ̂

√
Var(A)

Var(Â)

)2 (1− r2
AÂ

)

)−1/2

304
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Derivations of Equations (9) and (10)305

306

The following derivation involves the algebraic manipulation of the sample estimates and not expectations.

Assuming that the linear regression of BAG on age has been estimated with the testing data, then

MBAG = BAG−HABAG

= Â−A−HA(Â−A)

= Â−A−HAÂ+HAA

= Â−HAÂ− (A−HAA)

= Â−HAÂ

= RAÂ

where HA = A(ATA)−1AT is the hat matrix for the regression on age, A = [1A], and RA = I −HA is the307

corresponding residual forming matrix.308

We first note that309

Cov(A, ÂM ) = Cov(A,A+ MBAG)

= Cov(A,A+RAÂ)

= Var(A) + Cov(A,RAÂ)

= Var(A)

where the last equality holds due to the orthogonality of A and RA.310

Then, consider:

Var(ÂM ) = Var(A+ MBAG)

= Var(A+RAÂ)

= Var(Â)

(
Var(A)

Var(Â)
+

Var(RAÂ)

Var(Â)

)

= Var(Â)

(
Var(A)

Var(Â)
+ (1− r2

AÂ
)

)
.
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Then, Eqn. (9) is found as311

Corr(A, ÂM ) =
Var(A)√

Var(A)Var(ÂM )

=
Var(A)√

Var(A)Var(Â)
[
Var(A)

Var(Â)
+ (1− r2

AÂ
)
]

=

[
Var(Â)

Var(A)

(
Var(A)

Var(Â)
+ (1− r2

AÂ
)

)]−1/2

=

(
1 +

Var(Â)

Var(A)
(1− r2

AÂ
)

)−1/2

.

For insight on the Var(Â)/Var(A) term, note that shrinkage will generally mean this term is less than

one. Moreover, if Â were found with a linear regression on the testing data, i.e. Â = X(XTX)−1XTA where

X are brain features, then this ratio is exactly the squared correlation,

Var(Â)

Var(A)
= r2

AÂ
,

producing Eqn. (10).312

313

In this setting, when both brain age and MBAG are determined from testing data using linear regression,314

the correlation of A and ÂM can never fall below 1√
1+0.52∗(1−0.52)

≈ 0.9177. Of course, in practice, held-out315

training data is used to learn the brain-age relationship, so a regression prediction would instead have the316

form Â = X(XT
inXin)−1XT

inAin, where Xin and Ain are held-in training data, but Var(Â)/Var(A) ≈ r2
AÂ

still317

provides a useful starting point for exploring the parameters in the expression for Corr(A, ÂM ).318

319

Finally, note that the equality of Var(Â)/Var(A) and r2
AÂ

holds not just for linear regression, but any lin-320

ear estimator. Specifically, if there exists an idempotent HX (HXHX = I,HT
X = HX) such that 111THX = 111321

and Â = HXA, then322

323
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Var(Â)

Var(A)
=

Var(HXA)

Var(A)

=
(HXA)T /N − (111THXA/N)2

Var(A)

=
ATHXA/N − (111TA/N)(111THXA/N)

Var(A)

=
Cov(A,HXA)

Var(A)

=
Cov(A, Â)

Var(A)

=

√
Var(Â)

Var(A)
rAÂ.

And thus

Var(Â)

Var(A)
= r2

AÂ
.
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