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Abstract  41 

Diffusion MRI allows non-invasive assessment of white matter maturation in typical 42 

development and of white matter damage due to brain injury or pathology. Probabilistic 43 

white matter atlases provide delineation of white matter tracts, allowing diffusion metrics to 44 

be measured in specific white matter pathways. However, given the known age-dependency 45 

of developmental change in white matter it may not be optimal to use an adult template when 46 

assessing data acquired from children. This study develops an age-specific probabilistic white 47 

matter atlas for delineation of 12 major white matter tracts in children aged 6-8 years. By 48 

comparing to subject-specific tract tracing in two validation cohorts, we demonstrate that this 49 

age-specific atlas gives better overall performance than simply registering to the Johns 50 

Hopkins University adult white matter template. Specifically, when normalising diffusion 51 

data acquired from children to an adult template, estimates of fractional anisotropy (FA) 52 

values for corticospinal tract, uncinate fasciculus, forceps minor, cingulate gyrus part of the 53 

cingulum and anterior thalamic radiation were all less accurate than those obtained when 54 

using an age-specific atlas, potentially leading to false negatives when performing group 55 

comparisons. We then applied the newly developed atlas to compare FA between children 56 

treated with therapeutic hypothermia for neonatal encephalopathy and age-matched controls, 57 

which revealed significant reductions in the fornix, the left superior longitudinal fasciculus, 58 

and both the hippocampal and cingulum parts of the left cingulate gyrus. To our knowledge, 59 

this is the first publicly available probabilistic atlas of white matter tracts for this age group. 60 

 61 

Keywords 62 

White matter; development; diffusion MRI; neuroimaging; tractography; atlas; anatomy.  63 
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1 Introduction  64 

Tract-level analysis of diffusion weighted imaging (DWI) data is used extensively to 65 

investigate white matter microstructure in both typical (Asato et al., 2010; Hüppi and Dubois, 66 

2006; Lebel et al., 2008) and atypical brain development (for a review, see (Dennis and 67 

Thompson, 2013)). In children and adolescents, atypical brain development may lead to 68 

physical and intellectual disabilities including e.g. cerebral palsy (CP) (Arrigoni et al., 2016), 69 

autistic spectrum behaviours (Ameis and Catani, 2015; Dimond et al., 2019) and attention 70 

deficit hyperactivity disorder (Konrad and Eickhoff, 2010). Diffusion metrics such as 71 

fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial 72 

diffusivity (AD) (Assaf and Pasternak, 2008) are sensitive to changes in the underlying white 73 

matter structure. These metrics are widely investigated in studies of brain development 74 

(Dennis and Thompson, 2013; Lebel et al., 2008), as well as having clinical relevance in 75 

patient cohorts (Assaf et al., 2019; Assaf and Pasternak, 2008; Horsfield and Jones, 2002). 76 

To measure tract-level diffusion metrics, white matter tracts can be delineated by registering 77 

to a standard template with a probabilistic atlas of tract locations. Using a white matter atlas 78 

eliminates the need for computationally intensive methods of delineating tracts by 79 

segmenting streamlines generated by tractography (Lawes et al., 2008; Sydnor et al., 2018; 80 

Wakana et al., 2007; Wassermann et al., 2010; Zhang et al., 2018). This is beneficial in 81 

clinical settings or when studying large datasets. Additionally, data which have been acquired 82 

with shorter, more simplistic diffusion tensor acquisitions may not facilitate accurate 83 

tractography. Such acquisitions may be favoured in an effort to minimise scan times (and 84 

therefore minimise risk of movement during the scan) when studying children, including 85 

those with disabilities who would benefit from investigating white matter development (Phan 86 

et al., 2018).  87 

The widely used Johns Hopkins University (JHU) white matter tract atlas (Hua et al., 2008) is 88 

constructed from adult data. Numerous developmental studies demonstrate white matter 89 

alterations continuing into adolescence (Cascio et al., 2007; Hagmann et al., 2010; Lebel et 90 

al., 2008; Simmonds et al., 2014), and white matter development varies widely across the 91 

brain (Lebel et al., 2019), therefore an atlas constructed from adult scans is by design and 92 

definition not representative of children. There are several publicly available age-specific 93 

structural templates (Altaye et al., 2008; Fonov et al., 2011; Richards et al., 2016; Sanchez et 94 

al., 2012), however none of these provide diffusion data.  95 
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Using robust tract reconstruction protocols (Hua et al., 2008; Wakana et al., 2007) this study 96 

develops an age-specific probabilistic white matter atlas for 12 major tracts in children aged 97 

6-8 years. To assess whether this atlas accurately delineates tracts, we measured both 98 

volumetric overlap and the diffusion metrics sampled by the tract mask in comparison with 99 

subject-specific tractography-based tract delineation. We then assess the utility of this age-100 

specific tract atlas by comparing it to results obtained using an adult atlas (JHU). The atlas is 101 

then further validated against an open data source (i.e. different scanner and acquisition 102 

protocol), and against a different tractography algorithm. 103 

As a demonstration, we then investigate tract-level differences in children treated with 104 

therapeutic hypothermia (TH) for neonatal encephalopathy (NE) at birth, compared with 105 

healthy controls, and compare results obtained using the age-specific atlas to those from the 106 

JHU atlas. The children who had TH, do not have CP and are in mainstream education still 107 

exhibit significantly reduced performance on cognitive tests (Jary et al., 2019; Lee-Kelland et 108 

al., 2020) and have slower reaction times and reduced visuo-spatial processing abilities 109 

(Tonks et al., 2019), compared to the typically developing controls.  110 

2 Material and Methods 111 

2.1 Participants  112 

Ethics approval was obtained from the North Bristol Research Ethics Committee and the 113 

Health Research Authority (REC ID: 15/SW/0148). Informed and written consent was 114 

obtained from the parents of participants before collecting data. The cohort was made up of 115 

36 healthy children aged 6-8 years with no evidence of neurological disease, originally 116 

recruited as controls for a study of the long-term effects of TH (“CoolMRI”) on behavioural 117 

and imaging outcomes. The 36 controls were split randomly into 28 atlas and 8 validation 118 

subjects such that the group were matched for age, sex, socio-economic status (SES) and full-119 

scale intelligence quotient (FSIQ). For the demonstrative case study, data from 33 children 120 

treated with TH following NE at birth were compared to the control data.  121 

2.2 Image Acquisition  122 

DWI data were acquired with a Siemens 3 tesla Magnetom Skyra MRI scanner at the Clinical 123 

Research and Imaging Centre (CRiCBristol), Bristol, UK. Subjects were placed supine within 124 

the 32-channel receive only head-coil by an experienced radiographer, and head movement 125 
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minimised by means of memory-foam padding. Children wore earplugs and were able to 126 

watch a film. A multiband echo-planar imaging (EPI) sequence was used with the following 127 

parameters: TE = 70 ms; TR = 3150 ms; field of view 192 × 192 mm; 60 slices; 2.0 mm 128 

isotropic voxels; phase encoding in the anterior-posterior direction, in-plane acceleration 129 

factor = 2 (GRAPPA (Griswold et al., 2002)), through-plane multi-band factor = 2 (Moeller 130 

et al., 2010; Setsompop et al., 2012b, 2012a). 131 

For the purpose of data averaging and eddy-current distortion correction, two sets of 132 

diffusion weighted images were acquired with b = 1,000 s mm-2 in 60 diffusion directions, 133 

equally distributed according to an electrostatic repulsion model, as well as 8 interspersed b = 134 

0 images, with one data set acquired with positive phase encoding steps, then repeated with 135 

negative steps (so-called, “blip-up”, “blip-down”), giving a total of 136 images.  136 

2.3 Quality Control  137 

The quality of the diffusion data was assessed using the EddyQC tool (Bastiani et al., 2019) 138 

from FSL (Smith et al., 2004). This provides several measures of the amount of movement 139 

and eddy current induced distortion present in the data. For each participant, metrics were 140 

normalised, then the root-mean-square was calculated, giving a score which increases 141 

monotonically with the amount of movement and eddy current distortion. Scans were rejected 142 

if their score was more than one standard deviation above the mean of all participants. 143 

2.4 Image Processing & Atlas Construction  144 

DWI data were corrected for eddy current induced distortions and subject movements using 145 

EDDY (Andersson and Sotiropoulos, 2016) and TOPUP (Andersson et al., 2003), part of 146 

FSL. Subsequent DWI processing and tractography steps were performed using MRtrix 147 

(Tournier et al., 2019). The response function (the DWI signal for a typical fibre population) 148 

was estimated from the data (Tournier et al., 2013). The fibre orientation distribution (FOD) 149 

was then calculated by performing constrained spherical deconvolution of the response 150 

function from the measured DWI signal (Tournier et al., 2007). Deterministic tractography 151 

was run in each subject using the “SD Stream” algorithm (Tournier et al., 2012). Streamlines 152 

were seeded randomly in the brain and generated with a step size of 0.2 mm, then terminated 153 

if the FOD amplitude dropped below 0.2 or the angle between successive steps exceeded 40 154 

degrees. 10 million streamlines were generated, which were then filtered to 1 million using 155 
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spherical-deconvolution informed filtering of tractograms (SIFT) (Smith et al., 2013) to give 156 

better reconstruction of FODs, improving anatomical accuracy.  157 

The process of generating probability maps from the whole-brain tractograms is summarised 158 

in Figure 1. White matter tracts were segmented from whole-brain tractograms using the 159 

protocols described in Wakana et al., whereby regions of interest (ROI) are drawn to include 160 

or exclude streamlines passing through them (Wakana et al., 2007). For a given tract, any 161 

streamlines which pass through all inclusion ROIs and no exclusion ROIs belong to that tract, 162 

and all other streamlines are removed. Inclusion and exclusion ROIs were manually drawn in 163 

each subject to delineate 12 major fibre tracts: anterior thalamic radiation (ATR); cingulate 164 

gyrus part of the cingulum (CG); hippocampal part of the cingulum (CH); cortico-spinal tract 165 

(CST); forceps major (Fmajor); forceps minor (Fminor); inferior fronto-occipital fasciculus 166 

(IFOF); inferior longitudinal fasciculus (ILF); superior longitudinal fasciculus (SLF); 167 

temporal projections of the superior longitudinal fasciculus (SLFt); uncinate fasciculus (UF); 168 

and the fornix. The locations of ROIs for all tracts apart from the fornix are described in 169 

Wakana et al. as shown in Figure 2 (Hua et al., 2008; Wakana et al., 2007). 170 

To delineate the fornix, streamlines were included which pass through the body of the fornix 171 

and either of the posterior limbs which project to the hippocampus (Figure 3). These were 172 

isolated by first selecting an axial level at the lower edge of the splenium of the corpus 173 

callosum, as seen in the mid-sagittal plane (Figure 3, left); in this axial level, the first ROI 174 

was drawn around the body of the fornix. Viewing the streamlines which are delineated by 175 

the first ROI, additional bilateral ROIs were defined to include only those which project 176 

posteriorly from the fornix body (Figure 3, right).  177 

For spatial normalisation, the average diffusion weighted image (aDWI), created for each 178 

subject by averaging all DWI images, was registered to the JHU aDWI template by 12-degree 179 

of freedom affine registration using FSL’s FLIRT (Jenkinson et al., 2002). The resulting 180 

transformation was then applied to the segmented streamlines. Any voxel containing one or 181 

more of these streamlines was then labelled, to create a binary mask for the tract for each 182 

individual. The average, across 28 subjects, of these binary masks was taken to give a 183 

probability map for each tract. The aDWI was then created for the group by averaging 184 

transformed aDWIs from all 28 subjects, and the group FA image was created from the 185 

group-average tensor map.  186 

This atlas is available at Neurovault (https://neurovault.org/collections/LWTAAAST/).  187 
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2.5 Validation  188 

The age-specific atlas was assessed by comparison with subject-specific tracts, delineated by 189 

applying the ROI-based tract-tracing method, described above, to each validation subject. 190 

These tracts were transformed to the atlas space by nonlinearly registering each subject’s FA 191 

image to the group FA template, constructed from the 28 atlas subjects, using FSL’s FNIRT 192 

(Andersson et al., 2007). We used three methods to assess accuracy of the atlas: i) volumetric 193 

overlap; ii) slice-wise correlation of FA measurements; and iii) correlation of whole-tract FA 194 

measurements. The same methods were also applied to the JHU atlas for comparison. 195 

2.5.1 Volumetric Overlap 196 

To compare spatial similarity between normalised data we tested the volumetric overlap 197 

between the probabilistic atlas (age-specific or JHU) and each individually traced tract by 198 

measuring the Dice score (Dice, 1945) over a range of probability thresholds. The amount of 199 

volumetric overlap between the atlas data and the individually traced tract depends on both i) 200 

the quality of registration of the individual to the template, and ii) the agreement between the 201 

atlas data and the results from tractography in the individual. Thus, if the template is a closely 202 

matched target for registration, and if the underlying anatomy and diffusion process captured 203 

by the atlas is a good match to the validation subjects, we expect the Dice scores to be high.  204 

2.5.2 Slice-wise Correlation 205 

We assessed the ability of the atlas to reproduce individually traced DWI metrics by 206 

calculating the mean FA in the tract in every slice along the major axis of each tract (coronal 207 

slices for tracts which project anterior/posterior; axial slices for tracts which project 208 

dorsal/ventral). In individually traced tracts, average FA was calculated by taking the mean 209 

FA in all masked voxels. In the probabilistic atlases (age-specific or JHU), the FA was 210 

weighted by the probability in each voxel using the following equation:  211 

 FA �  
∑ FA�  � ���

∑ ���

 (1) 

where FAi is the FA in voxel i and Pi is the probability in voxel i. We then calculated the 212 

correlation between the probabilistic FA and individual FA (see Section 2.7). 213 
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2.5.3 Whole-tract Correlation 214 

Whole-tract average FA was calculated in each subject, using both probabilistic and 215 

individually traced tracts. Average FA was calculated in probabilistic tracts using equation 216 

(1) and in individually traced tracts by averaging FA in all masked voxels. We then 217 

calculated the correlation between the probabilistic FA and individual FA (see Section 2.7). 218 

2.5.4 Healthy Brain Network (HBN) Data 219 

In order to alleviate bias associated with using same-site scans for validation, we used an 220 

additional validation dataset obtained from the Healthy Brain Network (HBN, 221 

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/) (Alexander et al., 222 

2017), a data-sharing biobank from the Child Mind Institute. Scans were obtained from 15 223 

subjects, aged 6-8 years, from release 7.0 from the CitiGroup Cornell Brain Imaging Centre 224 

dataset. These multi-shell DWI data were acquired on a Siemens 3 tesla Prisma scanner using 225 

using an echo-planar pulse sequence with the following parameters: TE = 100.2 ms; TR = 226 

3320 ms; 81 slices; 1.8 x 1.8 x 1.8 mm resolution; multi-band acceleration factor = 3; b = 227 

1,000 s mm-2 and b = 2,000 s mm-2, each with 64 directions, and one b = 0 image. 228 

Preprocessing and quality control pipelines were applied as described above, followed by 229 

calculation of FODs using multi-shell multi-tissue constrained spherical deconvolution 230 

(Jeurissen et al., 2014) and tractography as described above. This allowed validation using 231 

subjects scanned in a different scanner, and with different scanning parameters. To further 232 

alleviate bias associated with using the same tractography algorithm for atlas construction 233 

and validation we also ran tractography in this cohort using a deterministic tensor-based 234 

algorithm (Basser et al., 2000), in addition to the FOD-based tractography algorithm 235 

described above. To give an overall indication of the accuracy of the atlas in these datasets, 236 

we applied the whole-tract correlation method described above. For completeness, in-depth 237 

results of the volumetric overlap and slice-wise correlation for the HBN data are given in the 238 

Supporting Information. 239 

2.6 CoolMRI Study  240 

As a demonstration, the age-specific atlas was used to investigate tract-level differences in 241 

white matter microstructure between the case and control children of the CoolMRI study. In 242 

each of the tracts delineated by the age-specific atlas, the average whole-tract FA was 243 

calculated for each individual using equation (1). We then tested for group differences in 244 
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whole-tract FA. Bilateral tracts were tested separately. For comparison, we repeated the 245 

analysis using the JHU adult atlas. In the absence of ground truth, only a qualitative 246 

comparison of results obtained with the two atlases was performed. 247 

2.7 Statistical Methods 248 

To assess whether the age-specific atlas gave better volumetric agreement with individually 249 

traced tracts than the JHU adult atlas, we performed a two-tailed, paired t-test comparing the 250 

peak Dice scores. 251 

In the slice-wise FA analysis and whole-tract FA analysis, we measured the correlation 252 

between atlas measurements and individual measurements using a repeated measures 253 

correlation coefficient (Bland and Altman, 1995), which uses an analysis of variance to 254 

calculate the correlation coefficient between residuals of the repeated measurements. This 255 

method was used in slice-wise FA analysis to calculate the correlation coefficient without 256 

variation due to different subjects, and in the whole-tract FA analysis to calculate the 257 

correlation coefficient without variation due to different tracts.  258 

For each validation method, we compared the correlation coefficient given by the age-259 

specific atlas with that given by the JHU adult atlas, by applying Fisher’s z-transform to each 260 

correlation coefficient and estimating the 95% confidence intervals of the difference between 261 

these z-transformed correlation coefficients. The confidence intervals were estimated with a 262 

percentile bootstrap method (Wilcox and Muska, 2002). In the slice-wise correlations, a 263 

moving block bootstrap method was used to account for the spatial dependence of repeated 264 

measurements in each subject (Politis and Romano, 1992).  265 

In the CoolMRI demonstration, Mann-Whitney U tests were applied to test for differences in 266 

the median FA between cases and controls in each tract, with Bonferroni correction applied 267 

to correct for family-wise error. Significant results have corrected p < 0.05. 268 

3 Results 269 

3.1 Participant Demographics 270 

The CoolMRI study recruited 51 children, without CP, treated with TH for NE at birth and 43 271 

control children matched for age, sex and SES (Lee-Kelland et al., 2020). Of the recruited 272 

children, 7 cases and 4 controls did not want to undergo scanning. A further 4 cases had 273 
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incomplete data due to movement during the scan. Quality control led to the rejection of a 274 

further 6 cases and 2 controls. One further case and one control were rejected due to incorrect 275 

image volume placement. This left 33 cases and 36 controls. These controls were split into 28 276 

(15 male) for atlas construction and 8 (4 male) for validation. Data for each set of 277 

participants, as well as for HBN subjects, is shown in Table 1.  278 

3.2 Atlas 279 

Figure 4 shows the probabilistic map for each tract, as well as the aDWI and FA images for 280 

the group of 28 children. 281 

3.3 Validation  282 

3.3.1 Volumetric Overlap  283 

The Dice score at a range of thresholds is plotted for each tract for the same-site validation 284 

data in Figure 5. The peak Dice scores for the age-specific atlas was significantly higher than 285 

for the JHU atlas in every tract (p < 0.05; see Table S1 for all p-values). The Dice scores for 286 

the HBN data are shown in Figures S1 and S2. 287 

3.3.2 Slice-wise Correlation  288 

The correlation between slice-wise FA measured by the age-specific atlas and that measured 289 

by subject-specific tract tracing is shown for the same-site validation data in Figure 6, with 290 

correlation coefficients measured using a repeated measures correlation (Bland and Altman, 291 

1995). The correlations for the HBN data are shown in Figures S3 and S4. A correlation 292 

coefficient of one indicates perfect slice-wise agreement between the gold-standard (FA 293 

extracted from subject-specific tract tracing) and the FA estimated for each tract by 294 

registration to the either age-specific or JHU adult atlas. In the same-site data, most tracts 295 

showed strong correlation between FA measured by the age-specific atlas and that measured 296 

by subject-specific tract tracing, with all tracts having r > 0.8 apart from the CG (r = 0.625), 297 

SLF (r = 0.468) and SLFt (r = 0.546). The correlation coefficient for the age-specific atlas 298 

was higher than for the JHU adult atlas in all tracts, and this difference was significant in the 299 

ATR, CG, CST, Fminor and UF (indicated by the 95% confidence intervals of the difference 300 

between z-transformed correlation coefficients, see Table S2). 301 
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3.3.3 Whole-tract Correlation 302 

Figure 7 shows the whole-tract FA measured by the atlas plotted against that given by 303 

subject-specific tract tracing for the same-site data, the HBN data with FOD-based 304 

tractography, and the HBN data with tensor-based tractography. The fornix is not included in 305 

these plots to allow valid comparison with the JHU atlas. Correlation coefficients, and 306 

confidence intervals of the difference between z-transformed correlation coefficients, are 307 

shown in Table 2. The age-specific atlas gave significantly stronger correlation of whole-tract 308 

FA measurements than the JHU adult atlas in all validation datasets. 309 

3.4 CoolMRI Study  310 

Numerous tracts in children treated with TH for NE had reduced FA compared to controls 311 

(see Table S5). After Bonferroni correction, only the left CG (p = 0.0056), left CH (p = 312 

0.0081), left SLF (p = 0.0383), and fornix (p = 0.0121) had significantly reduced FA in cases 313 

compared to controls. The same analysis was run with the JHU atlas for comparison (see 314 

Table S6). Figure 8 shows box plots for both atlases for tracts in which at least one of the 315 

atlases revealed group differences in FA. Significant differences were found in the left SLF 316 

with the age-specific atlas but not the JHU adults atlas. Differences were found in the left CG 317 

and left CH with both atlases. Differences in the right CH were found with the JHU adult 318 

atlas but not with the age-specific atlas. Differences were found in the fornix with the age-319 

specific atlas, but it is not available in the JHU atlas so could not be tested. 320 

4 Discussion  321 

This study introduces an age-specific probabilistic white matter atlas constructed from 322 

children aged 6-8 years, providing a method of delineating white matter tracts without 323 

tractography. We have shown that this atlas accurately delineates tracts in children from a 324 

same-site cohort, and a cohort from a different site, imaged with different scanner and 325 

acquisition protocol. The strong correlation between FA sampled by the atlas and that 326 

measured in each individual (i.e. the “gold standard”), at both a whole-tract level and slice-327 

wise level, shows that the atlas provides an accurate estimate for the underlying white matter 328 

microstructure. Additionally, the Dice scores between tracts in the atlas and those delineated 329 

by subject-specific tract tracing were higher with the age-specific atlas than with the JHU 330 

adult atlas, demonstrating improved anatomical accuracy of the age-specific atlas. In these 331 
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validation methods, the age-specific atlas performed better than simply registering to an 332 

existing adult white matter tract atlas, as is routinely done in the literature. As a 333 

demonstration, we applied the age-specific atlas to the CoolMRI study, revealing 334 

significantly reduced FA in several major white matter tracts in children treated with TH for 335 

NE at birth compared to healthy controls. 336 

The correlation of whole-tract FA measured by the atlas with that given by subject-specific 337 

tract tracing offers quantification of the performance of the atlas as a whole. In the same-site 338 

validation data, the HBN data traced with FOD-based tractography and the HBN data traced 339 

with tensor-based tractography, the age-specific atlas exhibited stronger correlation with the 340 

individual measurements than for the JHU atlas (Figure 7, Table 2). This shows that the age-341 

specific atlas can accurately characterise the distribution of tract-level diffusion metrics in a 342 

study group, facilitating more sensitive group comparison and investigation of associations 343 

between these metrics and neuropsychological and behavioural measures.  344 

Those tracts which exhibit low correlation between atlas and individual slice-wise FA 345 

measurements (namely the CG, SLF and SLFt) have very little spread in FA values, resulting 346 

in tightly grouped measurements with a low correlation coefficient (Figure 6). For these 347 

tracts, the Dice scores in Figure 5, as well as the tract-wise validation in Figure 7 demonstrate 348 

improved performance of the age-specific atlas at the level of whole tracts.  349 

Long, thin tracts, such as the CST, IFOF and ILF, are particularly susceptible to partial 350 

volume effects when measuring volumetric overlap; a small radial translation will result in a 351 

large change to the Dice score. In these tracts, the high correlation in sampled FA values 352 

shows that the age-specific atlas gives accurate measurement of the tract microstructure.  353 

Multi-site validation alleviates bias associated with using the same scanner for validation data 354 

and atlas construction, thus validation with the HBN data demonstrates that the age-specific 355 

atlas generalises to data from a different site, acquired with a different scanning protocol. In 356 

this dataset, the age-specific atlas gave better correlation of whole-tract FA measurements 357 

(Figure 7, Table 2). Additionally, the volumetric overlap in this dataset is significantly higher 358 

with the age-specific atlas than with the JHU adult atlas in all tracts apart from the CST and 359 

Fmajor, in which neither atlas performed significantly better than the other (Figure S1, Table 360 

S1). The age-specific atlas gave higher slice-wise correlations than the JHU adult atlas in all 361 

tracts; this difference was significant in the ATR, CST, Fminor, IFOF, ILF and UF (Figure 362 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.06.21.157222doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.157222
http://creativecommons.org/licenses/by/4.0/


 

 

14

S3, Table S3). There were no tests in which the JHU adult atlas performed significantly better 363 

in this dataset. 364 

Further bias may be introduced by the use of the same tractography algorithm for both atlas 365 

generation and in estimating diffusion metrics for the validation data. Therefore, we also 366 

included a validation dataset in which subject-specific tract tracing was performed using a 367 

tensor-based tractography algorithm. Whereas the FOD-based tractography algorithm used to 368 

construct the age-specific atlas uses spherical deconvolution to find the peak FOD in the 369 

closest orientation to the propagating streamline, the tensor-based algorithm propagates the 370 

streamline along the principal eigenvector of the diffusion tensor at each step. This is 371 

comparable to the tensor-based tractography algorithm used in the construction of the JHU 372 

adult atlas, thus providing a conservative test case for validation. Despite this bias towards 373 

the JHU atlas, the age-specific atlas still gave stronger correlation of whole-tract FA 374 

measurements. In the tests of volumetric overlap (Figure S2, Table S1) and slice-wise 375 

correlation (Figure S4, Table S4) in this dataset, the age-specific atlas performed significantly 376 

better than the JHU adult atlas in at least one of these tests in six tracts (ATR, CH, ILF, UF, 377 

Fmajor, Fminor). In four tracts (CG, IFOF, SLF, SLFt) neither atlas performed significantly 378 

better in either test. In one tract (CST) the JHU atlas gives better volumetric overlap. 379 

This introduces the question of how to provide the “gold-standard” of fibre tracking; the 380 

tensor-based algorithm was used in one of the HBN datasets in order to eliminate bias 381 

towards the age-specific atlas (by introducing bias towards the JHU adult atlas). However, 382 

this category of fibre tracking algorithm is widely acknowledged to give poor 383 

characterisation of diffusion in brain white matter due to its inability to resolve crossing 384 

fibres (Behrens et al., 2007; Tournier et al., 2012). Thus, the FOD-based algorithm used in 385 

the other validation datasets and in the construction of the atlas, which facilitates more 386 

comprehensive tracing due to its superior performance in regions of crossing fibres (Tournier 387 

et al., 2008), arguably gives a more accurate representation of the ground truth (i.e. the 388 

underlying white matter fibres). Therefore, when comparing the atlas to individually traced 389 

tracts in the validation data, the FOD-based algorithm likely gives a better indication of 390 

performance overall. Consequently, we believe the HBN data with tensor-based tract tracing 391 

provides a worst-case performance estimate, yet the age-specific atlas still out-performs the 392 

adult JHU atlas in many tests.  393 
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In future, as well as providing coverage of other age ranges, atlases could offer more 394 

extensive labelling of additional tracts and regions of white matter throughout development. 395 

A comprehensive database of traced tracts across a range of ages, potentially constructed by 396 

applying automated tractography-based white matter tract segmentation protocols (Lawes et 397 

al., 2008; Verhoeven et al., 2009; Wassermann et al., 2010; Zhang et al., 2018) to data from 398 

population studies such as the Human Connectome Project (Van Essen et al., 2013), 399 

Developing Human Connectome Project (Hughes et al., 2017), or Baby Connectome Project 400 

(Howell et al., 2019), would allow study-specific atlases to be built from subjects matched to 401 

a given study cohort.  402 

Applying the age-specific atlas to the CoolMRI study to investigate group differences in 403 

tract-level FA revealed selective reduction in FA, that was significantly reduced in the left 404 

CG, left CH, left SLF and the fornix (Table S5). For comparison, we performed the same 405 

analysis with the JHU adult atlas (Table S6). Figure 8 demonstrates the differences in FA 406 

measurements from the different atlases. These differences result in some tracts exhibiting 407 

group differences in one atlas but not the other (right CH and left SLF). Due to the absence of 408 

ground truth, these results do not support the use of one atlas over another. However, these 409 

results demonstrate that the two atlases can give differing outcomes in a case-control study. 410 

Quantitative results from the validation methods above indicate that the age-specific atlas 411 

gives more accurate delineation of white matter tracts in this age group than the JHU adult 412 

atlas, suggesting the CoolMRI results obtained with the age-specific atlas are more reliable. 413 

Previous studies of neonates treated with TH for NE have investigated the relationship 414 

between white matter diffusion properties, measured in the first weeks following birth, and 415 

neurodevelopmental outcome at 2 years of age. These studies found a significant reduction in 416 

FA in infants with adverse outcomes, compared to those with favourable outcomes, in 417 

widespread areas of white matter including, but not limited to the corpus callosum, anterior 418 

and posterior limbs of the internal capsule, external capsule, fornix, cingulum, and ILF (Lally 419 

et al., 2019; Tusor et al., 2012). Many of these regions were also shown to have reduced FA 420 

in the CoolMRI cases, indicating that the early structural alterations resulting from the brain 421 

injury cause lasting changes to white matter development. These results also provide 422 

evidence for an underlying white matter deficit which manifests as neuropsychological 423 

differences seen at school-age (Jary et al., 2019; Lee-Kelland et al., 2020; Tonks et al., 2019). 424 
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Further investigation is required to link these structural impairments to specific components 425 

of the cognitive and motor assessments, and to develop therapeutic intervention strategies. 426 

5 Conclusions  427 

The age-specific atlas provided by this study has been shown to robustly delineate white 428 

matter tracts in children aged 6-8 years. Diffusion metrics sampled by the atlas correlate 429 

strongly with those measured by individual fibre tracking, allowing reliable investigation of 430 

white matter microstructure in cohorts. The closer agreement between FA measured in 431 

individually identified tracts and that estimated when registering to an age-specific atlas, 432 

suggests that such an approach would increase sensitivity to group differences, and is 433 

recommended for all studies performed in children. 434 
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Figure Legends 647 

Figure 1. Methodology for generating probabilistic tract maps from whole-brain tractography 648 

data, shown here for the corticospinal tract (CST). ROIs were manually drawn in each 649 

subject, as defined by (Wakana et al., 2007) (in the case of the CST, inclusion ROIs were 650 

drawn in the cerebral peduncle and the primary motor cortex), and tracts were segmented by 651 

including streamlines passing through the inclusion ROIs. Streamlines were transformed to 652 

standard space (JHU template) and a binary mask was created for each subject indicating all 653 

voxels containing streamlines. The average of these masks (across N = 28 subjects) gives the 654 

probability map. 655 

Figure 2. ROIs used to delineate the following major white matter tracts: anterior thalamic 656 

radiation (ATR); cingulate gyrus part of the cingulum (CG); hippocampal part of the 657 

cingulum (CH); cortico-spinal tract (CST); forceps major (Fmajor); forceps minor (Fminor); 658 

inferior fronto-occipital fasciculus (IFOF); inferior longitudinal fasciculus (ILF); superior 659 

longitudinal fasciculus (SLF); temporal part of the superior longitudinal fasciculus (SLFt); 660 

uncinate fasciculus (UF). Streamlines are included in a given tract if they pass through both 1 661 

AND 2. The following abbreviations indicate anatomical landmarks used to draw the ROIs: 662 

internal capsule (IC); decussation of the superior cerebellar peduncle (DSCP); central sulcus 663 

(CS); parieto-occipital sulcus (POS); anterior commissure (AC); sagittal stratum (SS). ROIs 664 

are drawn in white with streamlines in yellow, overlaid on FA images with principal 665 

diffusion directions indicated by the colour ball; blue = superior-inferior (S-I), green = 666 

anterior-posterior (A-P) and red = right-left (L-R). Adapted from Hua et al., 2008, with 667 

permission from Elsevier. 668 

Figure 3. ROIs used to delineate the fornix, shown here on the group FA template. Yellow 669 

voxels contain streamlines which pass through the body of the fornix (1) AND bilateral 670 

posterior limbs of fornix (2a OR 2b). 671 

Figure 4. Age-specific probabilistic atlas for the 12 major white matter tracts: anterior 672 

thalamic radiation (ATR); inferior fronto-occipital fasciculus (IFOF); forceps minor 673 

(Fminor); forceps major (Fmajor); cingulate gyrus part of the cingulum (CG); hippocampal 674 

part of the cingulum (CH); cortico-spinal tract (CST); fornix; inferior longitudinal fasciculus 675 

(ILF); superior longitudinal fasciculus (SLF); temporal part of the superior longitudinal 676 

fasciculus (SLFt); and uncinate fasciculus (UF). Probabilities are indicated by the colour bar. 677 

Also shown are the aDWI and FA maps. 678 
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Figure 5. Same-site validation of tract overlap with “gold-standard” subject specific tract 679 

tracing. For each tract, the plot on the left shows the Dice score of volumetric overlap (y axis) 680 

against probability threshold (x axis) when using the age-specific atlas (blue) or the JHU 681 

adult atlas (red), with lines showing the mean score for the 8 validation subjects not included 682 

in the formation of the atlas, and shaded regions show the 95% confidence interval of the 683 

mean. Also shown for each tract is a paired plot of the peak Dice scores calculated with each 684 

atlas. P-values, given in Table S1, are indicated by: *p < 0.05; **p < 0.001; ***p < 0.0001. 685 

Note that the age-specific atlas outperformed the JHU (adult) atlas in all tracts. The tract 686 

representing the fornix is not available in the JHU atlas so only the new mask was tested. 687 

Figure 6. Same-site validation of slice FA values. Plots show slice FA measured from 688 

individually traced tracts (i.e. the “gold-standard”) plotted against corresponding values 689 

extracted from the age-specific and JHU atlases. Each plot shows a point for every slice in 690 

each of the 8 validation subjects and the regression. Correlation coefficients are shown on 691 

each plot, measured using a repeated measures correlation (Bland and Altman, 1995). All 692 

tracts exhibit higher correlation when measured with the age-specific atlas than with the JHU 693 

adult atlas. This difference is significant in the ATR, CG, CST, UF and Fminor, as indicated 694 

by † next to the tract abbreviation. Confidence intervals and regression parameters are given 695 

in Table S2. *p < 10-20. 696 

Figure 7. Comparison of mean FA extracted from whole tracts traced in individuals (“gold-697 

standard”) and that estimated using each atlas. Whole-tract FA was measured by subject-698 

specific tracing in the same-site validation data (left), the HBN data with FOD-based 699 

tractography (middle), and the HBN data with tensor-based tractography (right), then plotted 700 

against whole-tract FA measurements given by the age-specific atlas (top) or JHU adult atlas 701 

(bottom). The solid line shows the regression, and the dotted line represents exact equality 702 

between individual and the age-specific or JHU data. Correlation coefficients are given in 703 

Table 2. 704 

Figure 8. Box plots of significant differences in whole-tract average FA between children 705 

treated with TH for NE and healthy controls. Measurements obtained with both the age-706 

specific atlas (blue) and the JHU adult atlas (red) are shown for tracts in which at least one of 707 

the atlases revealed significant differences between cases and controls; *p < 0.05, **p < 0.01, 708 

Bonferroni corrected. The fornix is not available in the JHU atlas so was only tested with the 709 

age-specific atlas. In each box, the point shows the median, the box shows the 25th to 75th 710 
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percentiles, and the lines extend to the maximum and minimum data points, excluding 711 

outliers which are displayed as circles. 712 

Table 1. Demographics of participants in the atlas dataset, same-site validation dataset, HBN 713 

validation dataset, and the CoolMRI dataset. Mean (range) is shown for age; median (range) 714 

is shown for SES and FSIQ in the CoolMRI cohort. Also shown are p-values of t-tests 715 

between atlas data and validation data for validation cohorts, and between cases and controls 716 

for the CoolMRI cohort. SES is defined as follows: A= upper middle class, B = middle class, 717 

C1 = lower middle class, C2 = skilled working class, D = working class, E = casual worker or 718 

unemployed. 719 

Table 2. Validation of whole-tract FA correlations, corresponding to Figure 7. Columns 720 

show the parameters of the best-fit line y = mx + c and the correlation coefficient, r, between 721 

slice FA values from individual tracing and that from each atlas, measured using a repeated 722 

measures correlation (Bland and Altman, 1995). Also shown is the difference between the z-723 

transform of the correlation coefficients for the age-specific atlas and the JHU atlas, and the 724 

95% confidence intervals (CI) for this difference. Positive differences indicate a higher 725 

correlation with the age-specific atlas. These are shown for the same-site validation data, the 726 

HBN data with FOD-based tractography and the HBN data with tensor-based tractography. 727 

*p < 10-10. 728 
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Figure 1: Methodology for generating probabilistic tract maps from whole-brain tractography data, 

shown here for the corticospinal tract (CST). ROIs were manually drawn in each subject, as defined by 

(Wakana et al., 2007) (in the case of the CST, inclusion ROIs were drawn in the cerebral peduncle and 

the primary motor cortex), and tracts were segmented by including streamlines passing through the 

inclusion ROIs. Streamlines were transformed to standard space (JHU template) and a binary mask was 

created for each subject indicating all voxels containing streamlines. The average of these masks (across 

N = 28 subjects) gives the probability map. 
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Figure 2: ROIs used to delineate the following major white matter tracts: anterior thalamic radiation 

(ATR); cingulate gyrus part of the cingulum (CG); hippocampal part of the cingulum (CH); cortico-spinal 

tract (CST); forceps major (Fmajor); forceps minor (Fminor); inferior fronto-occipital fasciculus (IFOF); 

inferior longitudinal fasciculus (ILF); superior longitudinal fasciculus (SLF); temporal part of the superior 

longitudinal fasciculus (SLFt); uncinate fasciculus (UF). Streamlines are included in a given tract if they 

pass through both 1 AND 2. The following abbreviations indicate anatomical landmarks used to draw the 

ROIs: internal capsule (IC); decussation of the superior cerebellar peduncle (DSCP); central sulcus (CS); 

parieto-occipital sulcus (POS); anterior commissure (AC); sagittal stratum (SS). ROIs are drawn in white 

with streamlines in yellow, overlaid on FA images with principal diffusion directions indicated by the 

colour ball; blue = superior-inferior (S-I), green = anterior-posterior (A-P) and red = right-left (L-R). 

Adapted from Hua et al., 2008, with permission from Elsevier. 
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Figure 3: ROIs used to delineate the fornix, shown here on the group FA template. Yellow voxe

contain streamlines which pass through the body of the fornix (1) AND bilateral posterior limbs of forn

(2a OR 2b). 

 

 Atlas Same-site Validation HBN Validation CoolMRI 

   p  p Cases Controls p 

n = 28 8  15  33 36  

Age 7.0 (6.1-7.9) 7.0 (6.1-7.8) 0.9392 7.0 (6.0-7.9) 0.8684 6.9 (6.0-7.9) 7.0 (6.1-7.9) 0.5595 

M/F 15/13 4/4 0.8776 9/6 0.7002 18/15 19/17 0.8894 

SES      C1 (A-E) B (A-D) 0.1568 

FSIQ      93 (62-115) 108 (75-137) <0.0001 

Table 1: Demographics of participants in the atlas dataset, same-site validation dataset, HBN validati

dataset, and the CoolMRI dataset. Mean (range) is shown for age; median (range) is shown for SES a

FSIQ in the CoolMRI cohort. Also shown are p-values of t-tests between atlas data and validation data f

validation cohorts, and between cases and controls for the CoolMRI cohort. SES is defined as follow

A= upper middle class, B = middle class, C1 = lower middle class, C2 = skilled working class, D

working class, E = casual worker or unemployed.  

  

 

oxels 

ornix 

 

ation 

 and 

ta for 

lows: 

 D = 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.06.21.157222doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.157222
http://creativecommons.org/licenses/by/4.0/


Figure 4: Age-specific probabilistic atlas for the 12 major white matter tracts: anterior thalamic radiati

(ATR); inferior fronto-occipital fasciculus (IFOF); forceps minor (Fminor); forceps major (Fmajo

cingulate gyrus part of the cingulum (CG); hippocampal part of the cingulum (CH); cortico-spinal tra

(CST); fornix; inferior longitudinal fasciculus (ILF); superior longitudinal fasciculus (SLF); temporal pa

of the superior longitudinal fasciculus (SLFt); and uncinate fasciculus (UF). Probabilities are indicated 

the colour bar. Also shown are the aDWI and FA maps. 
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Figure 5: Same-site validation of tract overlap with “gold-standard” subject specific tract tracing. For 

each tract, the plot on the left shows the Dice score of volumetric overlap (y axis) against probability 

threshold (x axis) when using the age-specific atlas (blue) or the JHU adult atlas (red), with lines showing 

the mean score for the 8 validation subjects not included in the formation of the atlas, and shaded regions 

show the 95% confidence interval of the mean. Also shown for each tract is a paired plot of the peak Dice 

scores calculated with each atlas. P-values, given in Table S1, are indicated by: *p < 0.05; **p < 0.001; 

***p < 0.0001. Note that the age-specific atlas outperformed the JHU (adult) atlas in all tracts. The tract 

representing the fornix is not available in the JHU atlas so only the new mask was tested. 
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Figure 6: Same-site validation of slice FA values. Plots show slice FA measured from individually traced 

tracts (i.e. the “gold-standard”) plotted against corresponding values extracted from the age-specific and 

JHU atlases. Each plot shows a point for every slice in each of the 8 validation subjects and the 

regression. Correlation coefficients are shown on each plot, measured using a repeated measures 

correlation (Bland and Altman, 1995). All tracts exhibit higher correlation when measured with the age-

specific atlas than with the JHU adult atlas. This difference is significant in the ATR, CG, CST, UF and 

Fminor, as indicated by † next to the tract abbreviation. Confidence intervals and regression parameters 

are given in Table S2. *p < 10-20.  
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Figure 7: Comparison of mean FA extracted from whole tracts traced in individuals (“gold-standard”) 

and that estimated using each atlas. Whole-tract FA was measured by subject-specific tracing in the same-

site validation data (left), the HBN data with FOD-based tractography (middle), and the HBN data with 

tensor-based tractography (right), then plotted against whole-tract FA measurements given by the age-

specific atlas (top) or JHU adult atlas (bottom). The solid line shows the regression, and the dotted line 

represents exact equality between individual and the age-specific or JHU data. Correlation coefficients 

are given in Table 2. 
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 Age-specific Atlas JHU Atlas Difference between z-transformed 

correlation coefficients (95% CI) Dataset m c r m c r 

Same-site 0.88 0.13 0.715* 0.57 0.22 0.536* +0.298 (+0.115, +0.300) 

HBN (FOD) 0.84 0.15 0.781* 0.59 0.25 0.617* +0.328 (+0.231, +0.412) 

HBN (Tensor) 0.51 0.27 0.697* 0.39 0.32 0.595* +0.176 (+0.087, +0.281) 

Table 2: Validation of whole-tract FA correlations, corresponding to Figure 7. Columns show the 

parameters of the best-fit line y = mx + c and the correlation coefficient, r, between slice FA values from 

individual tracing and that from each atlas, measured using a repeated measures correlation (Bland and 

Altman, 1995). Also shown is the difference between the z-transform of the correlation coefficients for 

the age-specific atlas and the JHU atlas, and the 95% confidence intervals (CI) for this difference. 

Positive differences indicate a higher correlation with the age-specific atlas. These are shown for the 

same-site validation data, the HBN data with FOD-based tractography and the HBN data with tensor-

based tractography. *p < 10-10. 

 

 

Figure 8: Box plots of significant differences in whole-tract average FA between children treated with 

TH for NE and healthy controls. Measurements obtained with both the age-specific atlas (blue) and the 

JHU adult atlas (red) are shown for tracts in which at least one of the atlases revealed significant 

differences between cases and controls; *p < 0.05, **p < 0.01, Bonferroni corrected. The fornix is not 

available in the JHU atlas so was only tested with the age-specific atlas. In each box, the point shows the 

median, the box shows the 25th to 75th percentiles, and the lines extend to the maximum and minimum 

data points, excluding outliers which are displayed as circles.  
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