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1 Abstract

Background: Functional resonance magnetic imaging (fMRI) noise is usually assumed to have constant volatility.

However this assumption has been recently challenges with a few studies examining heteroscedasticity arising from

head motion and physiological noise. However, to our knowledge no studies have studied heteroscedasticity in

scanner noise. Thus the aim of this study was to estimate the smoothness of fMRI scanner noise using latest

methods from the field of financial mathematics.

Methods: A multi-echo fMRI scan was performed on a phantom using two 3 tesla MRI units. The echo times were

used as intra-time point data to estimate realised volatility. Smoothness of the realised volatility processes was

examined by estimating the Hurst, H, parameter in the rough Bergomi model using neural network calibration.

Results: All H < 0.5 and on average fMRI scanner noise was very rough with H ≈ 0.03. Substantial variability

was also observed, which was caused by edge effects, whereby H was larger near the edges of the phantoms.

Discussion: The findings challenge the assumption that fMRI scanner noise has constant volatility and add to the

steady accumulation of studies suggesting implementing methods to model heteroscedasticity may improve fMRI

data analysis. Additionally, the present findings add to previous work showing that the mean and normality of

fMRI noise processes show edge effects, such that signal near the edges of the images is less likely to meet the

assumptions of current modelling methods.

Keywords: fMRI, rough noise, volatility, rBergomi, CNN
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2 Introduction

A given functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series can

be defined as

yt = µt +
√
vtεt (1)

where the µt is the mean, εt is a one dimensional noise process, and vt is the volatility of the noise process. Detrend-

ing is typically conducted as part of preprocessing to remove signal drift. Thus, a given fMRI time series is often

assumed to be a constant process, indicating that vt in equation (1) could be replaced by constant v. However,

recently this assumption has been challenged and there has been increasing interest in exploring time-dependent

properties of fMRI noise [17, 31, 34, 41, 53, 57]. It has been shown that factors such as head motion and physio-

logical processes including respiration and pulse can introduce heteroscedasticity to the time series [2, 17, 34, 41].

Heteroscedasticity in turn has been found to complicate the linear modelling, which has led to the introduction of

several statistical models to counteract the impact of these artefacts [2, 17, 34]. One limitation of these models is

that they cannot explain non-constant volatility arising from unknown or uncontrollable sources, such as scanner

noise.

As volatility of a time series cannot be directly observed, a plethora of deterministic and stochastic models have

been proposed to estimate it in financial returns data [40, 44, 46]. Over the years, direct comparisons of different

volatility models have shown that stochastic models, which assume that logarithm of the volatility process behaves

like standard Brownian noise with Hurst parameter of 0.5, outperform their deterministic, data-driven counterparts

providing a better fit to data [4,7,22]. However, more recently rough stochastic volatility models have been intro-

duced. The seminal 2014 paper by Gatheral et al. [23] found that the log-volatility of returns of a given financial

time series behaves more like fractional Brownian motion with the Hurst parameter H < 1
2 , thus introducing the

rough fractional stochastic volatility (RFSV) model.

According to the RFSV model, log-volatility is mean reverting and satisfies the fractional Ornstein-Uhlenbeck

process [11]

dXt = νdWH
t − α(Xt −m)dt (2)

where WH
t is the fractional Brownian motion with H < 1

2 , and m ∈ R, ν > 0, and α > 0. Volatility of the process

is then achieved by
√
vt = exp(Xt) (3)

An enhancement of the RFSV model, the rough Bergomi (rBergomi) model, has since been introduced and studied

extensively [1]. The rBergomi model is described by

dSt
St

=
√
vtd
(
ρWt +

√
1− ρ2W⊥t

)
vt = ξ0(t) exp

(
η

∫ t

0

(t− s)H−1/2dWs −
1

2
η2t2H

)
,

(4)

where Wt and W⊥t represent two independent standard Brownian processes with ρ ∈ [−1, 1], η is a positive constant

that represents the volatility of volatility, and ξ0(·) describes the initial variance curve, which we assume to be

constant. Volatility processes simulated using the rBergomi model exhibit remarkable similarity to realised volatil-

ity processes. Furthermore, the rBergomi and other rough models introduced since have been found to provide

important improvements to forecasting volatility [1, 3, 40,46].

In addition to improving forecasting accuracy, rough models can be used to assess smoothness of a given pro-

cess by estimating the H parameter [21, 23, 32, 50]. Estimating the H parameter can provide information about

the extent of heteroscedasticity in the series, but requires access to the realised, historical volatility process, which

cannot be directly observed. To bypass this difficulty, in finance intra-day data such as 5-minute asset prices returns
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are used to estimate daily realised volatility [37, 42, 43]. The daily estimates are then combined to form a realised

volatility process providing information about daily variances in an asset price over the course of months or years.

Considering recent calls to explore the possibility of implementing models from the field of financial mathematics

to fMRI [31,52] and the visual similarities between financial returns data and fMRI BOLD signal (Figure 1), such

an approach could be applied to fMRI data as well to examine time-dependent behaviour in volatility of the noise

process. Utilising multi-echo acquisition, the data from each echo could be used as intra-time point data to esti-

mate volatility. Thus, in a manner similar to standard combination of data from each echo time, we can produce

a realised volatility series. These series could then be used to estimate the smoothness of volatility in fMRI data

using models such as the rBergomi.

Figure 1: Financial returns and fMRI BOLD series

A. S&P 500 returns over 200 days during the year 2000; B. Dow Jones returns over 200 days over the year 2004; C. Nasdaq
225 returns over 200 days during the year 2003; D. Nikkei 100 returns over 200 days during the year 2000; E. Demeaned
BOLD signal from voxel [28,14,26]; F. Demeaned BOLD signal from voxel [12,27,30]; G. Demeaned BOLD signal from
voxel [17,36,24]; H. Demeaned BOLD signal from voxel [37,19,15]. All returns data is from the Oxford-Man database
https://realized.oxford-man.ox.ac.uk/. All fMRI data is from participant sub-17821 from dataset ds000258 available at

https://openneuro.org/datasets/ds000258.

Estimating rBergomi model parameters, including the H parameter, is computationally expensive and often relies

on the use of Monte Carlo based calibration methods [9, 58]. This limits the use of this model in practice despite

the benefits it offers [1, 18, 23]. Recently, neural networks have been proposed as an efficient way to solve the

calibration problem [25, 26, 45, 47]. Neural networks provide a powerful way of identifying relationships between

input parameters and model output and can be particularly useful for models that do not have closed-form solu-

tion [25,26]. Recent work found that neural network calibration framework can be successfully applied to a range

of rough stochastic volatility models to aid accurate pricing and hedging [5, 26]

The aim of this paper was to conduct an exploratory empirical study examining the volatility of fMRI noise.

We were specifically interested in exploring whether volatility of fMRI noise exhibits time-dependent behaviour

that cannot be explained by factors such as head motion and physiological noise. We aimed to collect multi-echo

fMRI signal from a phantom to examine thermal noise. Observations collected at each echo time were treated as

intra-time point data and were used to estimate realised volatility. The roughness of the realised volatility was as-

sessed by estimating the H parameter, which was accomplished with a neural network approach. As the study was

exploratory in nature we did not have prior hypotheses. However, considering the visual similarities between many

financial returns and fMRI BOLD series, we anticipated that the estimated H of the realised volatility processes

was in the rough volatility range, 0 < H < 1
2 .
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3 Material and methods

3.1 FMRI data acquisition

An MRI phantom filled with liquid material was used to acquire multi-echo fMRI signal consisting entirely of

thermal noise. The data were acquired with two different 3 Tesla GE Discovery MR750 units using 32-channel

receive only head coils (Nova Medical, Wilmington, MA, USA). This was done to ensure the findings were not

unique to a specific scanner. The functional multi-echo echo planar imaging (EPI) data consisted of 200 volumes

and each volume consisted of 18 slices with the following parameters: 2.5 second repetition time (TR), 80◦ flip

angle, 64 × 64 acquisition matrix, 3mm slice thickness with 4mm slice gap. The fMRI slices were acquired in

an ascending order and eight echo times were used: 12 ms, 28 sm, 44 ms, 60 ms, 76 ms, 92 ms, 108 ms, 124 ms.

Eight echo times were used as this was the maximum number of echoes that can be acquired with the MR units used.

3.2 FMRI data preprocessing

The phantom data was preprocessed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm). Each echo was preprocessed

separately to ensure the echoes could be used as intra-TR data to estimate realised volatility. The following pre-

processing steps were taken: slice timing correction was applied first with the middle slice used as a reference slice.

The data was then realigned and resliced to correct for head motion and estimate six rigid body transformations.

Prior to combining the echoes and estimating realised volatility linear model based de-trending was conducted.

3.3 T ∗
2 -weighted realised volatility

As our data from the phantoms contains only noise, we can re-write equation (1) for each echo n at a given time

point t...T as

yn,t =
√
vn,tεn,t (5)

µn,t = 0 as no true brain signal is present.

Observations from each echo time were treated as intra-TR data which were used to estimate realised volatil-

ity for each point in the time series. As fMRI signal decays rapidly, the observations from each echo time were

weighted to avoid bias [30]. The weighting was based on T ∗2 estimates, which were calculated in accordance with

methodology used in tedana [16,28,29]:

Sn = S0 exp(−R∗2 × En) (6)

where Sn represents the signal intensity at a given echo time n, R∗2 = 1
T∗
2

, E represents the echo time in millisec-

onds, and S0 represents the signal intensity at E = 0. The value of R∗2 is solved by a log-linear regression.

T ∗2 -based weights were then calculated as follows

wn =
En exp(−E/T ∗2 )∑N

n=1En exp(−En/T ∗2 )
(7)

The weights were used to estimate the mean of the fMRI noise processes at each echo time n at each time point,

t = 1...T .

x̄t =

∑N
n=1 wnyn,t∑N
n=1 wn

(8)

Realised volatility at each time point,t = 1...T , was estimated by calculating variance between observations at each

echo time n.

v̂t =

∑N
n=1 wn(yn,t − x̄)2∑N

n=1 wn
(9)
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The estimated T ∗2 -weighted variance, v̂t, served as a proxy of the unobserved volatility process and was used to

investigate the smoothness of the fMRI noise series.

3.4 Estimating smoothness of realised volatility

3.4.1 Neural network architecture

To estimate the smoothness of the fMRI noise volatility series we used a one-dimensional feed-forward convolutional

neural network approach introduced by [47]. An introduction to neural networks is given in Appendix A; very

simply one can think of a neural network as a composition of affine and non-linear functions that approximates a

mapping of inputs to outputs.

The CNN consisted of three kernel layers with kernel size 20. The first convolutional layer had 32 kernels

followed by a dropout layer with dropout rate of 0.25, the second had 64 kernels followed by a dropout layer with

dropout rate of 0.25, the third had 128 kernels followed by a dropout layer with dropout rate of 0.4, and the

fourth dense layer had 128 units followed by a dropout layer with dropout rate of 0.3. Leaky ReLU activation

functions followed each layer with α = 0.1 and max pooling layers with size 3 were added between each kernel layer.
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3.4.2 Neural network training and test

For CNN training and testing, altogether 50,000 sample paths of the normalised rBergomi model log-volatility

process, defined as ṽt := η
∫ t
0
(t − s)H−1/2dWs. were simulated, with 200 time points and H ∼ Unif(0, 1.0) and

η ∼ Unif(0, 3) for each of the 50,000 sample paths. Stone provides a rigorous mathematical justification for this

set up [47, Section 3.2, p382].

We took a nested cross-validation approach whereby the simulated sample paths were first divided into training

and test datasets with 30% holdout. The training dataset was then further divided into training and validation

sets with 20% hold out. Thus, the training dataset consisted of 28,000 training and 7,000 validation sample paths

and the final test dataset included 15,000 sample paths.

The sample paths were generated using classical methodology which utilises the Cholesky decomposition to

achieve exact distribution of the log-volatility paths (add link to code here). The H and η values were sampled

from uniform [0, 0.5] and [0, 3] distributions respectively. The sampling was conducted in a manner that ensured

that each sample path had a unique H and η enabling better fitting to varying fMRI noise log-volatility processes.

The performance of the trained CNN was assessed using the final test dataset by extracting mean squared er-

ror to calculate root mean squared error (RMSE) between the predicted and true H parameters.

RMSE =

√
E((Ĥ −H)2) (10)

After training the RMSE = 0.045 and the correlation between predicted and true H can be seen in Figure 2.
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Figure 2: Scatter plot showing the correlation between predicted and true H parameter

3.5 Evaluation of CNN H estimation

The performance of the CNN was first evaluated by conducting a Spearman correlation test between the estimated

H parameters and the memory in the fMRI noise log-volatility series. Memory was estimated by fitting autore-

gressive fractionally integrated moving average (ARFIMA) [0, d, 0] model to the log-volatility data and calculating

the d parameter.

εt = (1−B)d log(σt) (11)

Where B is the backshift operator and d represents the memory parameter to be calculated. 0 < d < 1
2 indicates the

series is a stationary, mean reverting long memory process, while d < 0 indicates the series is anti-persistent short

memory process. 1
2 < d < 1 indicates the series is a mean reverting, non-stationary long memory process. Although

the relationship between smoothness of log-volatility processes and long memory is a complicated one [10,14,23,39],

this correlation will give us an indication of the performance of the CNN in estimating H.
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4 Results

4.1 Estimated Hurst

The summary statistics of the estimated H of the realised log-volatility series in phantoms 1 and 2 are presented

in Table 1. On average the log-volatility series were rough, but there was substantial variability in the H estimates

from voxel to voxel in both phantoms. The maximum estimated H remained under 0.5, suggesting that despite

the substantial variability fMRI noise was rough across the phantoms.

Table 1: Estimated H exponent in Scanner 1, phantom 1 and Scanner 2, phantom 2

Phantom 1 Phantom 2
Mean 0.025 0.025
Standard deviation 0.018 0.015
Max 0.476 0.361
Min 0.0004 0.0001

4.2 Spatial pattern in estimated Hurst

Figure 3 shows how the estimated H varied from region to region across the phantoms. Log-volatility series asso-

ciate with the maximum, minimum, and H estimates close to the mean are also shown.

Some edge effects were observed, such that the estimated H was generally larger near edges of the phantoms

than the middle. In both phantoms the voxels with the maximum H estimates were found near the edge and

appeared to form large clusters. In the middle of the phantoms the H estimates were generally very small.

Interestingly, phantom 1 has a small region near the top where the signal intensity was lower than in the nearby

voxels, suggesting signal dropout due to a possible air bubble (Supplementary Figure 1). This area consisted of

two voxels and one of these voxels had the largest H estimate in phantom 1. This voxel also represents the centre

of the cluster near the top of the phantom in Figure 3A. No such signal dropout was seem in phantom 2.

Figure 3: Spatial distribution of estimated H

Multi-slice view of scanner 1 phantom 1 (A) and scanner 2 phantom 2 (B).
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4.3 Correlation between H and autocorrelation

The relationship between estimated H and ARFIMA[0, d, 0] memory parameter, d, of the log-volatility processes

are presented in Figure 4. the correlation was significant and positive in both phantoms: r = 0.64, p < 0.001 and

r = 0.65, p < 0.001 for phantoms 1 and 2, respectively. Additionally, as can be seen in Figure 4, the log-volatility

processes with larger estimated H had substantially longer memory than log-volatility processed with very small

estimated H. Some log-volatility series with small H estimates still showed long memory, d > 0, but some were

anti-persistent with d < 0. This suggests that the performance of the model was acceptable, providing accurate H

estimates.

Figure 4: Relationship between ARFIMA memory parameters d and estimated H

A. Phantom 1; B. Phantom 2. d = ARFIMA[0, d, 0] memory parameter, H = Hurst parameter
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5 Discussion

The aim of the present empirical study was to examine the smoothness of fMRI noise volatility. We used multi-echo

scans of a phantom from two different MRI scanners to estimate realised volatility. Smoothness of logarithm of the

realised volatility processes was estimated using CNN methodology introduced in [47]. The findings indicated that

on average the volatility of fMRI noise is very rough with H ≈ 0.03, but substantial variability was also observed.

The variability was caused by the fact that the smoothness of the volatility was not constant across the phantoms,

with higher H estimates observed near the edges of the images. Overall, all H < 0.5 suggesting that across the

phantoms volatility was consistently rough.

The present findings suggest that log-volatility of fMRI noise appears to behave like fractional Brownian mo-

tion with H ≈ 0.03. As anticipated, these findings go some way to mimic the rough volatility pattern observed in

high frequency financial data with Hurst estimates varying between 0.02 and 0.14 [21, 23]. Thus, it appears that

although fMRI scanner noise on average does not have large fluctuations in volatility over time, the noise processes

exhibit some heteroscedasticity that cannot be explained by head motion, physiology, or other known sources of

non-constant noise. This finding challenges the assumption that fMRI noise has constant volatility and adds to

the steady accumulation of literature exploring heteroscedasticity in fMRI noise [17,31,34,41,53,57], further high-

lighting the importance of taking non-constant noise into consideration during analysis of the time series data

Heteroscedasticity in the fMRI noise process that cannot be easily removed using standard de-noising methods,

such as linear regression, may cause problems during data analysis. A previous study examined the impact of

heteroscedasticity introduced by simulated head motion spikes on fMRI data analysis [17]. The authors found that

a linear modelling approach based on weighted least sum of squares (WLSS) was able to accurately model impulse

responses to stimuli if the heteroscedasticity was constant across all voxels [17]. However, when the number of head

motion spikes varied from voxel to voxel, the WLSS failed to accurately detect impulse responses. These findings led

the authors to propose a heteroscedastic general linear model which incorporates head motion covariates. However,

our findings suggest that heteroscedasticity can also be present in the scanner noise, which cannot be easily en-

tered into analysis as a covariate because thermal noise processes cannot be directly observed during brain scanning.

Furthermore, resting state fMRI analyses examining functional connectivity between time series using simple

models such as Pearson correlation tests, are also likely to be affected by non-constant noise. Indeed, a few studies

have recently proposed using deterministic volatility models, autoregressive conditional heteroscedasticity (ARCH)

and generalised ARCH (GARCH), to aid investigation of time-dependent correlations [15,31,52]. Models based on

ARCH and GARCH have been found to accurately model time-dependent functional connectivity in both simula-

tion and real data experiments, while traditional approaches, including sliding window and exponentially weighted

moving average models, have been found to produce more false positive findings [12, 15, 31, 52]. Thus, further

investigation into implementing volatility models to fMRI time series analysis could ultimately help improve both

resting state and task-based data analysis as the noise in the time series is better understood [35,41].

Interestingly, present findings also show that the roughness of fMRI noise is not constant across regions in the

phantom with the edges showing greater smoothness in the volatility and thus increased heteroscedasticity relative

to the centre of the phantom. To an extent these findings mirror those from previous work examining long-range

dependence in the mean of fMRI noise [38, 54]. Previous studies have found that the long-range dependence near

the edges of the phantom has estimated H > 0.5 indicating that the processes are persistence in the mean [38].

Similar edge effects have also been observed in real brain scans [38, 48]. Along the same lines, a previous study

investigating normality of fMRI data revealed that signal from the cortex, which lies near the edge of the image,

showed greater non-normality than that from the middle of the images [35]. Taken together with the present

findings this suggests that fMRI data near the edges of an image appears to be more complex than that near the

centre where the dependence in the mean is low and volatility near constant. Such time-dependent behaviour in

the noise near the edges complicates data analysis as these effects violate assumptions of most time series modelling
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methods and can lead to both spurious regressions and correlations [6, 8, 13, 19, 49, 51, 55, 56]. This is particularly

problematic for studies interested in examining brain activity in and around the cortex.

It is also important to note that in the present study, one of the phantoms had a small region of signal dropout,

possibly indicating a presence of an air bubble. This region was the centre of one of the clusters where the

smoothness of the volatility process was greater than in nearby regions. Previous studies have also found that

air bubbles in phantoms can lead to drop in signal intensity, which has been suggested to due to susceptibility

artifacts at the air-water boundary [36]. Air bubbles can also introduce phase errors and related magnetic field

heterogeneity [27, 33], which could go some way to explain the larger H estimates in one of the clusters in one of

the phantoms. Interestingly, such an effect was only found in one of the phantoms, suggesting that all the edge

effects could not be explained by air bubbles. Still further investigation of the spatial pattern of volatility in fMRI

noise in a gel phantom prepared with warm water, which are less susceptible to air bubbles [24], would be of interest.

The present study is not without limitations. Realised volatility was estimated after slice timing correction and

realignment, but no further preprocessing or de-noising steps were taken prior to estimation. This was done in an

attempt to mirror standard multi-echo preprocessing pipelines where the echoes are normally combined prior to

further preprocessing steps, such as smoothing, and independent component analysis-base de-noising [20, 29, 30].

This meant that we were unable to examine the impact of de-noising on realised volatility. Additionally, realised

volatility was estimated using only eight echo time points as this was the maximum number we were able to collect.

In finance, on the other hand, it is common to use high frequency asset price data, with sub-second granularity,

to estimate daily volatility. It is difficult to ascertain whether our use of lower frequency data to estimate realised

volatility had an impact on the present findings. Finally, the phantom data was collected from two very similar

3 Tesla MR scanners. It is possible that the volatility of fMRI noise from scanners with different field strengths

might vary and further investigation of this may be of interest.
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6 Conclusions

The aim of the present study was to examine the smoothness of estimated realised volatility of fMRI noise. This

was done by conducting two multi-echo scans of a phantom using two different MRI scanner units. Multi-echo data

was used to estimate realised volatility by T2∗-weighted variance. Smoothness of the realised volatility data was

estimated by following cutting edge methods developed in the field of financial mathematics, namely by training

a CNN to predict the Hurst parameter, H. The findings showed that on average fMRI noise is very rough with

H ≈ 0.02. Furthermore, it was shown that roughness of the volatility data varied across the spatially across the

phantoms. In both phantom scans the H estimates were larger near the edges, suggesting that volatility was

smoother in these regions. Taken together the present findings further challenge the assumption that fMRI scanner

noise has constant volatility and highlight the need for further research to investigate how to effectively model the

heteroscedasticity during time series analysis.
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A Artificial Neural Networks

In this appendix we repeat the introduction given by Stone [47, Section 2.1, p382] for the reader’s convenience. An

artificial neural network is a biologically inspired system of interconnected processing units, where each processing

unit is called a layer. Inputs to each layer, apart from the first layer, are outputs from previous layers. A layer is

composed of a number of nodes, and each node in a given layer is connected to the nodes in a subsequent layer,

thus forming a network; each edge in this network has a weight associated to it. The first processing unit is called

the input layer, and the final processing unit is the output layer. The processing unit or units between the input

layer and output layer are referred to as hidden layers; typically artificial neural networks have more than one

hidden layer.

Convolutional neural networks (CNNs) are a class of artificial neural networks, where the hidden layers can

be grouped into different classes according to their purpose; one such class of hidden layer is the eponymous

convolutional layer. Below we describe the classes of hidden layers used in our CNN. Of course, this list is not

exhaustive, and there exist many classes of hidden layers that we omit for means of brevity. Note also that we

describe a CNN in the context of the problem we are trying to solve, where the input data are one dimensional

vectors. CNNs can of course also be used on higher dimensional input data, but the fundamental structure and

different roles of the hidden layers do not change.

• Convolutional Layer: In deep learning, the convolution operation is a method used to assign relative

value to entries of input data, in our case one dimensional vectors of time series data, while simultaneously

preserving spatial relationships between individual entries of input data. For a given kernel size k and an

input vector of length m, the convolution operation takes entries 1, ..., k of the input vector and multiplies by

the kernel element-wise, whose length is k. The sum of the entries of the resulting vector are then the first

entry of the feature map. This operation is iterated m + 1 − k times, thus incorporating every entry in the

input data vector into the convolution operation. The output of the convolutional layer is the feature map.

For example, let (1, 2, 1, 0, 0, 3) be our input vector, and (1, 0, 1) be our kernel; here the kernel size is 3. The

first iteration of the convolution operation involves taking the element-wise multiple of (1, 2, 1) and (1, 0, 1):

(1, 0, 1) is produced and the sum, equal to 2, is computed. This is the first entry of the feature map. The

resulting feature map in this example is then (2, 2, 1, 3).

Clearly, the centre of each kernel cannot overlap with the first and final entry of the input vector. Zero-

padding, sometimes referred to as same-padding, preserves the dimensions of input vectors and allows more

layers to be applied in the CNN: zero-padding is simply the extension of the input vector and the setting of

the first and final entries as 0, while leaving the other entries unchanged. In our example, the input vector

becomes (0, 1, 2, 1, 0, 0, 3, 0) after zero padding.

• Activation Layer: The activation layer is a non-linear function σ that is applied to the output of the

convolutional layer i.e. the feature map; the purpose of the activation layer is indeed to introduce non-

linearity into the CNN. Examples of activation functions include the sigmoid function and the hyperbolic

tangent function. In our CNN we use the ‘LeakyReLU’ activation function, defined as

fα(x) :=

x, if x > 0,

αx, otherwise.
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The LeakyReLU activation function allows a small positive gradient when the unit is inactive.

• Max Pooling Layer: For a given pooling size p, the max pooling layer returns a vector whose entries

are the maximum among the neighbouring p entries in the feature map. For example, for feature map

(1, 3, 8, 2, 1, 0, 0, 4, 6, 1) and p = 3 the max pooling output is (8, 8, 8, 8, 8, 2, 4, 6, 6, 6).

Other pooling techniques apply the same idea, but use different functions to evaluate the neighbouring p

entries in the feature map. Examples include average pooling, and L2-norm pooling, which in fact uses the

Euclidean norm in mathematical nomenclature.

• Dropout Layer: Dropout is a well-known technique incorporated into CNNs in order to prevent overfitting.

Without the addition of a dropout layer, each node in a given layer is connected to each node in the subsequent

layer; dropout temporarily removes nodes from different layers in the network. The removal of nodes is random

and determined by the dropout rate d, which gives the proportion of nodes to be temporarily dropped. Note

that dropout is only implemented during training; during testing the weights of each node are multiplied by

the dropout rate d.

• Dense Layer: Also referred to as the fully connected layer, each node in the input layer is connected to

each node in the output layer as the name suggests. After being processed by the convolutional, activation,

pooling, and dropout layers, the extracted features are then mapped to the final outputs via a subset of the

dense layer, an activation function is then applied subsequently. This activation function is chosen specifically

for the task that the CNN is required to execute, i.e. binary/multi-class classification, or regression to output

a continuous value. The final output from the dense layer has the same number of nodes as the number of

classes in the output data.
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