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Abstract 8 

Cell-autonomous circadian system, consisting of core clock genes, generates near 24-9 

hour rhythms and regulates the downstream rhythmic gene expression. While it has become clear 10 

that the percentage of rhythmic genes varies among mouse tissues, it remains unclear how this 11 

variation can be generated, particularly when the clock machinery is nearly identical in all 12 

tissues. In this study, we sought to characterize circadian transcriptome datasets that are publicly 13 

available and identify the critical component(s) involved in creating this variation. We found that 14 

the relative amplitude of 13 genes and the average level of 197 genes correlated with the 15 

percentage of cycling genes. Of those, the correlation of Rorc in both relative amplitude and the 16 

average level was one of the strongest. In addition, the level of Per2AS, a novel non-coding 17 

transcript that is expressed at the Period 2 locus, was also linearly correlated, although with a 18 

much lesser degree compared to Rorc. Overall, our study provides insight into how the variation 19 

in the percentage of clock-controlled genes can be generated in mouse tissues and suggests that 20 

Rorc and potentially Per2AS are involved in regulating the amplitude of circadian transcriptome 21 

output. 22 

 

Introduction 23 

Circadian clocks regulate the daily fluctuations of biochemical, physiological, and 24 

behavioral rhythms 1. In mammals, signals originating in the suprachiasmatic nucleus (SCN) of 25 

the hypothalamus synchronize independent oscillators in other peripheral tissues, such as the 26 

brain and even in fibroblasts 2,3. The molecular circadian clock within each cell is comprised of 27 

interlocking transcriptional-translational feedback loops, whose coordinated action is essential to 28 

generating cell-autonomous circadian oscillation 4.  29 
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At its core mechanism, the BMAL1 (official gene name: Arntl) and CLOCK (or its 30 

paralogue NPAS2) form a heterodimer and activate the transcription of Period (Per) 1-3 and 31 

Cryptochrome (Cry)1-2, whose promoters contain target DNA regulatory elements, called E-32 

boxes. As the level of PER and CRY proteins increases, they form a heterodimer and translocate 33 

back to the nucleus to repress their own transcription. As repression of Per and Cry transcription 34 

progresses, the level of the PER/CRY protein decreases, thereby allowing ARNTL and CLOCK 35 

to begin a new cycle of transcription. As an auxiliary loop, ARNTL and CLOCK also activate 36 

the expression of Rev-erba/b (official gene name: Nr1d1 and Nr1d2), and Rora-c, all of which 37 

are nuclear receptors. REV-ERB and ROR proteins, in turn, repress or activate the target mRNA 38 

expression including Arntl, Clock, and Npas2, respectively, by recognizing DNA elements 39 

termed REV-ERB/ROR binding motifs (ROREs) in their promoters. As an additional loop, 40 

ARNTL/CLOCK activates the expression of Dbp, which activates the transcription of target 41 

mRNAs that possess a DNA element, called a D-box, while REV/ROR proteins regulate the 42 

expression of Nfil3, which represses D-box containing genes. Targets include Rev-erbs, Rors, 43 

and Pers 4. 44 

Cell-autonomous circadian clocks also drive thousands of rhythmic output genes (i.e., 45 

clock-controlled genes) that, ultimately, produce daily rhythms of many types of physiology and 46 

behavior 5-10. Interestingly, the number of cycling genes is vastly different among mouse tissues. 47 

In some tissues, more than ten percent of the entire transcriptome is rhythmic, while only a few 48 

percent are rhythmic in other tissues 10-12. Nevertheless, it remains unclear how the core clock 49 

machinery drives different numbers of clock-controlled genes, even though the core clock 50 

mechanism is nearly identical in each tissue.  51 
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To gain mechanistic insights into how some tissues produce more cycling genes than 52 

others, we characterized the circadian transcriptome data from various mouse tissues and 53 

attempted to identify a parameter(s) that correlates with the percentage of clock-controlled genes. 54 

We found that the differences in the percentage of cycling genes are not due to the strength of 55 

transcriptome.  Interestingly, however, the relative amplitude of 13 genes as well as the average 56 

level of 197 genes correlated with the percentage of cycling genes. Of our particular interest was 57 

Rorc, whose correlation in both the relative amplitude and the average level was one of the 58 

strongest. We also found that the level of Per2AS, a novel non-coding transcript that is expressed 59 

at the Period 2 locus, also showed a correlation. Based on these data, we propose that Rorc is 60 

involved in regulating the amplitude of circadian transcriptome output, although the effect of 61 

Rorc is most likely independent of its activity as a transcriptional activator, as the percentage of 62 

cycling genes with RORC binding motif in their promoter was consistent across all the tissues. 63 

 

Methods 64 

Microarray Data Processing 65 

Microarray data were downloaded through NCBI GEO from series GSE54650 10. Data 66 

was originated from 12 different tissues, with 24 time points from each tissue in 2-hour intervals 67 

over the course of 48 hours. Extracted data was normalized by Robust Multichip Average 68 

(RMA) normalization 16 and annotated by the Affymetrix Transcriptome Analysis Software 69 

package (http://www.affymetrix.com/support/technical/byproduct.affx?product=tac). 70 

Unannotated probesets, as well as those that had values lower than the average of all negative 71 

probesets across all timepoints in the respective tissue, were eliminated from the downstream 72 
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analysis. For multiple probesets annotated to the same gene, the probeset with the highest 73 

average value was selected. 74 

 

RNA-seq Data Processing 75 

RNA-seq data were downloaded as fastq files through the NCBI database from SRA ID 76 

SRP036186 10. Data contained information from 12 different tissues, with 8 time points from 77 

each tissue in 6-hour intervals over the course of 48 hours. Reads were mapped to the Ensembl 78 

mouse genome release 95 using STAR 2.7.0a 17 with outFilterScoreMinOverLRead = 0.3 and 79 

outFilterMatchNMinOverLRead = 0.3 options. We added the option ‘Condensegenes’ to select 80 

the most abundant isoform as the representative of a gene, as well as the option ‘count exons’ to 81 

measure only mRNA. The quantification of expression level was performed by HOMER 18 using 82 

the transcripts per million (TPM) option. Any transcript with an average TPM < 0.5 across all 83 

timepoints were eliminated from the downstream rhythmicity analysis. We also used TPM to 84 

normalize the expression levels of each transcript. We eliminated white adipose data from the 85 

downstream analysis because no transcripts were rhythmic with our statistical threshold (BH. Q-86 

value <0.05), even though more than 13,500 transcripts were detected after applying the filter of 87 

TPM > 0.5. The expression of Per2AS was measured with the “strand –“ option in HOMER. We 88 

did not apply the filter (TPM > 0.5 to call ‘expressed’) in quantifying the level of Per2AS, 89 

because non-coding transcripts generally have low expression levels 19-21. 90 

 

Rhythmicity Analysis 91 

We used MetaCycle 22 to determine the rhythmicity of each gene. MetaCycle integrates 92 

three different algorithms ARSER, JTK_CYCLE, and Lomb-Scargle and calculates the p-value, 93 
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Benjamini-Hochberg q-value (BH.Q value), period, phase, baseline value, amplitude (AMP), and 94 

relative amplitude (rAMP), which is the ratio between amplitude and baseline expression level. 95 

We defined the expression rhythmic when meta2d BH.Q < 0.05.  96 

 

Correlation Analysis 97 

Pearson and Spearman correlation tests were performed in R to determine the linear and 98 

non-linear correlation between the percentage of cycling transcripts in each tissue and the 99 

rhythmicity (using BH.Q value), phase, and relative amplitude of the 15 clock genes, as well as 100 

Per2AS, calculated by the MetaCycle package in R. A significant correlation was defined as a p-101 

value < 0.05. For the transcriptome-wide correlation analysis, we used the rcorr function from 102 

the Hmisc and tidyverse packages in R to perform Pearson or Spearman correlation tests and 103 

used the average gene expression of transcripts expressed in all 12 (microarray) or 11 tissues, 104 

excluding white adipose tissue (RNA-seq)23,24. Fisher Z-scores were calculated from the Rho or 105 

R2 with Fisher transformation. GO enrichment analysis of the significantly correlated genes was 106 

performed using the Gene Ontology Resource 25,26.  107 

 

Promoter Motif Analysis 108 

We first retrieved the promoter sequences (-1000 bp to +100 bp with respect to the 109 

transcription start site: TSS) of all the cycling transcripts from the UCSC Genome Browser, and 110 

performed a motif search using Find Individual Motif Occurrence (FIMO) with a p-value = 1x10-111 

4 as the threshold 27. Input motif matrices were downloaded from JASPER (RORA: MA0071.1, 112 

RORA(var.2): MA0072.1, RORB: MA1150.1, RORC: MA1151.1, NR1D1: MA1531.1, NR1D2: 113 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.19.161307doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.19.161307


  

6 

MA1532.1, ANRTL: MA0603.1, CLOCK: MA0819.1, NPAS2: MA0626.1, NFIL3: MA0025.1, 114 

and MA0025.2, DBP: MA0639.1) 28. 115 

 

 

Results 116 

Characteristics of circadian transcriptomic output in various mouse tissues 117 

 To gain insight into what determines the number of clock-controlled genes in each tissue, 118 

we first retrieved existing circadian transcriptome datasets from various mouse tissues 10. We 119 

found this particular dataset best-suited to our study, because it covered the highest number of 120 

tissues (12 total) and provided the highest time resolution (2hr intervals), compared to other 121 

studies 5,7-9.  122 

Our in-house analysis was able to replicate the previous findings, in which the percentage 123 

of cycling genes was highest in liver, followed by kidney, lung, brown adipose, and heart, and 124 

lowest in brainstem (Fig. 1A). The ranks are slightly different from the original study 10, which is 125 

most likely due to the differences in the analytical methods and statistical criteria used in our 126 

study (see Materials and Methods). Distribution of Benjamini-Hochberg q-values from the 127 

rhythmicity analysis was also widest in liver, followed by kidney, lung, brown adipose, and 128 

heart, and was particularly narrow in white adipose and brainstem (Fig. 1B). These data indicate 129 

that in liver, the expression of many transcripts fluctuates even if it does not reach a statistically 130 

significant level for circadian rhythmicity, while in white adipose and brainstem, the expression 131 

of the majority of the transcripts do not fluctuate at all (Fig. 1B).  132 

Differences in the percentage of cycling genes in each tissue were not due to differences 133 

in the “strength” of the transcriptome. First, the total number of transcripts detected in each 134 
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tissue was comparable, irrespective of the percentage of rhythmic transcripts (Fig. 1C). Second, 135 

the median microarray signals per transcript varied among tissues, and did not correlate with the 136 

percentage of rhythmic transcripts (Pearson r2=0.115, p=0.368; Spearman rho=-0.042, p=0.904) 137 

(Fig. 1D). When we focused only on the transcripts that were rhythmically expressed 138 

(Benjamini-Hochberg q<0.05), the median of the relative amplitude (i.e., the ratio between 139 

amplitude and baseline expression level) (Fig. 1E) or the amplitude itself (Fig. 1F) of cycling 140 

gene expression did not correlate with the percentage of cycling genes in each tissue (relative 141 

amplitude: Pearson r2=0.060, p=0.189; Spearman rho=0.070, p=0.834, amplitude: Pearson 142 

r2=0.439, p=0.154; Spearman rho=0.175, p=0.588), indicating that the amplitude of gene 143 

expression is comparable in each tissue if they are rhythmic.   144 

We also performed the same set of analyses using the RNA-seq data 10, which surveyed 145 

the same set of tissues but with a lower time resolution (Microarray: 2 hrs, RNA-seq: 6 hrs) 10. 146 

Even though the order of the tissues was slightly different than the microarray datasets (Fig. 147 

S1A), which was likely due to the differences in time resolution and the threshold to eliminate 148 

low-expressed transcripts (see Materials and Methods), the results were essentially the same: 149 

distribution of Benjamini-Hochberg q-values from the rhythmicity analysis was wider in tissues 150 

with a high percentage of rhythmic transcripts (Fig. S1B), the strength of transcriptome was 151 

comparable among tissues (Fig. S1C, D), and the median of the relative amplitude or the 152 

amplitude of cycling gene expression was comparable in each tissue (Fig. S1E, F).  153 

 

Characterization of cycling gene expression in various mouse tissues 154 

Because we did not observe any characteristics that had a correlation with the percentage 155 

of cycling genes at a genome-wide scale, we shifted our focus on single gene level analyses. We 156 
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first analyzed a total of 15 core clock genes (Arntl, Clock, Npas2, Per1-3, Cry1-2 Rora-c, Nr1d1-157 

2, Dbp, Nfil3), and found that most of these genes were expressed ubiquitously across all tissues, 158 

except for Rorb, whose expression was restricted to brain and brown adipose tissue 159 

(Supplemental Data File 1a and 1b). A majority of these genes were also rhythmically expressed, 160 

except for the Rors: Rora was rhythmic in four tissues (liver, lung, heart, and muscle) but not in 161 

the other eight tissues (kidney, BAT, adrenal, aorta, cerebellum, hypothalamus, WAT, and 162 

brainstem), Rorb was arrhythmic in all 4 tissues that it is expressed in (BAT, hypothalamus, 163 

cerebellum, and brainstem), and Rorc was rhythmic in most of the peripheral tissues but not in 164 

the hypothalamus, muscle, or brainstem (Supplemental Data File 1), which was consistent with 165 

previous reports 7,9,29,30. Clock and Cry1 were also arrhythmic in hypothalamus, making the 166 

hypothalamus the tissue with the lowest number of rhythmic core clock genes, even though 167 

hypothalamus ranked 9th out of 15 tissues in the percentage of cycling transcripts (Fig. 1A). 168 

Similar results were obtained from the RNA-seq data, although the number of rhythmic core 169 

clock genes were lower, most likely due to the lower time resolution of the RNA-seq data 170 

compared to the microarray data (Supplemental Data File 2). 171 

As was previously reported, the phases of core clock gene expression were confined to a 172 

relatively narrow window 12,30-33, except for a few genes such as Cry2, Rorc, and Nfil3 (Fig. 2A). 173 

On the other hand, the relative amplitude of core clock gene expression was more variable 174 

between tissues (Fig. 2B), and nine genes, Dbp, Npas2, Nr1d1, Arntl, Per3, Per2, Rorc, Cry1, 175 

and Cry2 had their relative amplitude positively correlated with the percentages of cycling 176 

transcripts in either Pearson and Spearman correlation analyses (Table 1). Additional ten clock-177 

controlled genes were expressed and rhythmic in all tissues, for which we calculated the 178 

correlation between their relative amplitude and the percentage of cycling transcripts. Among 179 
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those, the relative amplitude of three genes (P4ha1, Tsc22d3, and Lonrf3), or another set of three 180 

genes (Tsc22d3, Lonrf3, and Usp2) correlated significantly with the percentage of cycling 181 

transcripts in Spearman or Pearson analyses, respectively (Table 1). Notably, the strongest 182 

correlation was observed for Rorc (Pearson r2=0.852, p=0.004; Spearman rho=0.917, p=0.001). 183 

It is unclear, however, whether the higher amplitude of core clock gene expression leads to a 184 

higher percentage of rhythmic transcripts in each tissue or vice versa. We also analyzed the data 185 

from RNA-seq and performed the same analyses. However, the lower number of rhythmic core 186 

clock genes detected in the RNA-seq dataset significantly compromised our ability to calculate 187 

the correlations between the percentage of rhythmic transcripts in each tissue and the phase and 188 

amplitude of core clock gene expression.  189 

We also investigated the correlation between the mean levels of core clock gene 190 

expression across all time points and the percentage of cycling genes in each tissue, as non-191 

cycling genes could contribute to the differences in the percentage of cycling genes. 192 

Interestingly, we again found that there was a positive correlation between the percentage of 193 

cycling transcripts and the mean level of Rorc, but not with any other core clock genes (Fig. 2C, 194 

Table 2). This correlation was also observed in the RNA-seq dataset (Fig. S2, Table 2). We also 195 

tested Per2AS, a newly identified non-coding RNA 34-36, because the expression of Per2AS is 196 

rhythmic and antiphasic to Per2 in liver, adrenal gland, lung, and kidney 10, and it was suspected 197 

that Per2AS is involved in regulating the circadian system 37. Indeed, we found a linear 198 

correlation between the mean levels of Per2AS and the percentages of rhythmic transcripts in 199 

both microarray and RNA-seq datasets (Fig. 2D).  200 

To test how robust the correlation of Rorc is, we extended the analysis to the genome-201 

wide scale. We found that among 12,024 genes expressed in all 12 tissues from microarray 202 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.19.161307doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.19.161307


  

10 

datasets, the mean level of 1,131 and 400 genes was correlated significantly with the percentage 203 

of rhythmic genes in each tissue from the Pearson (linear) and the Spearman (non-linear) 204 

correlation test, respectively (Supplemental Data File 3). Similarly, among 8,269 genes 205 

expressed in all 11 tissues from the RNA-seq datasets, we found the mean level of 925 and 1,664 206 

genes correlated significantly with the percentage of rhythmic genes from the Pearson and 207 

Spearman correlation tests, respectively (Supplemental Data File 3). Of those, 135 (Pearson) or 208 

77 (Spearman) genes were found correlated in both microarray and RNA-seq datasets 209 

(Supplemental Data File 3), and we therefore considered those as more robustly correlated. Gene 210 

ontology (GO) analyses were then performed to assess whether a specific process contributes to 211 

the high percentage of rhythmic transcripts. No pathways were detected as statistically 212 

significant (FDR < 0.05) among those that correlated robustly in the Spearman analysis. Whereas 213 

numerous metabolic processes were enriched among those that correlated robustly in the Pearson 214 

analysis (Supplemental Data File 4). We also calculated Fisher Z-scores from each test to 215 

evaluate the relative strength of Rorc correlation, compared to other genes. Rorc was ranked 5th 216 

(Pearson) or 14th (Spearman) when we used average Z-scores from both microarray and RNA-217 

seq datasets. These data suggest that the correlation between the level of Rorc and the amplitude 218 

of the mouse circadian transcriptome is one of the strongest.   219 

 

The effect of RORC as a transcriptional activator in regulating the circadian transcriptome 220 

Because Rorc directly activates the transcription of RORE-containing genes 29,31,38, we 221 

hypothesized that, if Rorc was directly driving rhythmic gene expression leading to a high 222 

number of cycling transcripts, then the number of rhythmic genes with RORE motifs in their 223 

promoter would be higher in tissues with a higher number of rhythmic genes. To test this, we 224 
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first retrieved the promoter sequence of rhythmic genes in each tissue using the RNA-seq dataset 225 

(-1000 bp to +100 bp with respect to TSS), and then determined the number of DNA motifs that 226 

can be recognized by RORC in silico. We surveyed the recognition sequences of not only 227 

RORC, but also RORA, RORB, NR1D1, NR1D2, ARNTL, CLOCK, NPAS2, NFIL3, and DBP, 228 

because these proteins are all considered important to drive rhythmic gene expression 39,40. We 229 

found that the RORC binding motif was found in approximately 8% of the rhythmically 230 

expressed genes, and this was consistent in all 11 tissues we examined (Fig. 3). The binding sites 231 

for NPAS2, ARNTL, NR1D1, and NR1D2 were the most highly represented (~10-14 %), and 232 

NFIL3 and DBP were the least represented (~3-6 %) (Fig. 3). These data indicate that the effect 233 

of RORC is most likely indirect and that the level of Rorc does not directly contribute to driving 234 

rhythmic gene expression. Instead, the level of Rorc is probably important to increasing the 235 

amplitude of circadian transcriptional output in the circadian system as a whole, and this 236 

ultimately results in increasing the number of cycling genes.  237 

 

Potential mechanism of RORC in regulating the amplitude of the circadian transcriptome 238 

To further gain more mechanistic insights into how Rorc contributes to the increase in the 239 

number of cycling mRNAs without driving mRNA expression, we next tested the correlation 240 

between the mean levels of Rorc and other core clock genes. Not surprisingly, we found a linear 241 

correlation between the mean levels of Rorc and Per2AS in both the microarray and RNA-seq 242 

datasets (Table 3).  The mean level of Rorc also linearly correlated with Nfil3 (Microarray) or 243 

Cry2 (RNA-seq) (Table 3); however, the biological significance of these correlations is unclear, 244 

as the correlations were not consistent between microarray and RNA-seq datasets. We did not 245 

detect any correlation between Rorc and Rorc-target genes such as Arntl, Cry1, Nfil3, and Nr1d1 246 
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(Table 3), whose promoter regions contain RORE motifs and the amplitude of their rhythmic 247 

mRNA expression was dampened in most of the Rorc-/- tissues 40-43. We did not find any 248 

correlations between the level of Per2AS and other core clock genes either, except for Per2 and 249 

Npas2 (Table 4). The significance of these correlations is also unclear, because they were found 250 

only in microarray but not in RNA-seq datasets. 251 

 

Discussion 252 

Among the three key parameters for cycling systems (period, phase, and amplitude), the 253 

regulatory mechanisms of period and phase have been relatively well-characterized, whereas that 254 

of amplitude have remained much more enigmatic. Forward genetics or screening approaches 255 

using pharmacological or genetic perturbation have not been successful, as the variance of 256 

amplitude is much higher than that of period, compromising the statistical ability to distinguish 257 

true positives from false positives 44-48. Furthermore, it is currently unclear whether it is a single 258 

gene, a combination of genes, one of the feedback loops, and/or topology of the network that is 259 

important for amplitude. To make things even more complicated, amplitude can be measured by 260 

various outputs, such as gene expression, firing patterns in neurons, body temperature, and 261 

locomotor activity, each of which can be under the regulation of both cell-autonomous 262 

(intracellular or local) and systemic (or extracellular) rhythms. It also remains unclear whether 263 

all the amplitude of various rhythms is regulated by the same mechanism. 264 

In this study, we focused on the percentage of cycling genes in various mouse tissues and 265 

explored the possible mechanisms of amplitude regulation of circadian transcriptomic output. 266 

The circadian transcriptome can be influenced both by cell-autonomous and systemic cues in 267 

each tissue. However, the circadian gene expression is a common feature of the circadian clock 268 
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system in various tissues and allows us to directly compare the difference in amplitude between 269 

tissues without relying on their respective physiology.  270 

We found that 18 genes (eight core clock genes and ten clock-controlled genes) are 271 

rhythmically expressed in all tissues that we examined (Table 1, Supplemental Data File 3). This 272 

is consistent with previous observations that the rhythmicity of each gene is often tissue-specific, 273 

and while only a handful of genes are cycling in all or most tissues, others are rhythmic only in 274 

certain tissues 7-11. In addition, the relative amplitude of 13 genes (nine core clock genes and four 275 

clock-controlled genes) were correlated with the percentage of cycling genes, while the mean 276 

level of 197 genes correlated with the percentage of cycling genes. These genes are not 277 

necessarily expressed rhythmically, albeit about a half (100/197) are, and vast majority of these 278 

genes were involved in the metabolic processes (Supplemental Data File 3, 4). Given that the 279 

energy cost for cycling genes are higher than non-cycling genes 49, it is reasonable that 280 

metabolism related genes are highly expressed in tissues that have higher number of cycling 281 

transcripts.  Nevertheless, it is unlikely that clock-controlled genes directly regulate or contribute 282 

to determine the number of cycling genes, as these processes are under the circadian control (i.e., 283 

output pathway). Rather, it is tempting to postulate that the role of Rorc and/or Per2AS in the 284 

core-clock circuit gives it a more promising function in potentially regulating the amplitude of 285 

the circadian transcriptome, at least in the tissues where Rorc is expressed, as the correlation of 286 

Rorc in both relative amplitude and the average level was one of the strongest. It is unclear from 287 

our study whether these are simply a correlation or causation and this needs to be studied in the 288 

future. Furthermore, it would also be of great interest to test whether the RORC protein levels, 289 

not mRNAs, also correlate with the amplitude of circadian transcriptome.  290 
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We also found that the effect of Rorc is most likely independent of its activity as a 291 

transcriptional activator (Fig. 3). Rather, Rorc appears to be one of the components that regulate 292 

the amplitude of the circadian system, particularly the part that is important for the circadian 293 

transcriptome (if different parts regulate different amplitude). The positive loop (Clock-Arntl-294 

Rev-Ror) was originally considered to confer additional robustness to the system and, therefore, 295 

stabilizes the system. However, it is not required for circadian rhythm generation 42,50. Recent 296 

studies have also highlighted the role of the positive loop as the central axis of amplitude 297 

regulation 51,52. Our study is consistent with these findings and suggest that the positive loop, 298 

particularly the level of Rorc, is important in setting the amplitude of the circadian transcriptome. 299 

In addition, our study also suggested that Per2AS is involved in the positive loop, because the 300 

level of Per2AS positively correlated with the level of Rorc as well as the percentage of cycling 301 

genes in each tissue, even though it was originally assumed to only interact with Per2 37. 302 

Interestingly, the mathematical model predicted the functional interaction between Ror and 303 

Per2AS, as Per2AS would restore stable circadian rhythms when they are disrupted by the 304 

overproduction of Ror or Rev-erb mRNAs 37. It is possible that Rorc and Per2AS function 305 

synergistically in the circadian clock system.  306 

It still remains unclear why Rorc, but not Rora and Rorb, correlates with the amplitude of 307 

the circadian transcriptome, as all the ROR proteins share significant sequence similarities 38,53. 308 

Unfortunately, the physiological relevance of each ROR paralogue has never been clarified in the 309 

mammalian circadian system. One notable difference among Ror paralogues, however, is their 310 

unique expression patterns (Supplementary Data Files 1a, 1b, 2). It is possible that the systemic 311 

cues, which are, in theory, the same to all the tissues have a tissue-specific impact in regulating 312 

the level of Rorc. Understanding the difference in the regulatory mechanisms of Ror gene 313 
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expression would provide insight into how their tissue-specific expression pattern is achieved 314 

and how Rorc specifically impacts the amplitude of the circadian transcriptomic output. 315 

Overall, our study highlighted the potential role of Rorc in regulating the amplitude of the 316 

circadian transcriptome. Follow-up experimental studies would further complement our 317 

observations from the rich transcriptomic datasets that are publicly available and delineate the 318 

mechanisms of circadian amplitude regulation. 319 
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 The datasets generated during and/or analyzed during the current study are available in 333 

the NCBI GEO repository, from series GSE54650. 334 

 

 

Figure Legend 335 

Figure 1. Characteristics of the mouse circadian transcriptome (microarray) in various 336 

mouse tissues. (A) Percentage of cycling genes in each tissue from highest (left) to lowest (right) 337 

% cycling. Rhythmicity of a gene was defined as Benjamini-Hochberg q values < 0.05 by 338 

MetaCycle.  (B) Distribution of Benjamini-Hochberg q values of all expressed genes in each 339 

tissue. (C) Numbers of genes expressed in each tissue. (D) Average microarray signals per gene 340 

for all the probesets. (E) Distribution of relative amplitude of cycling genes in each tissue 341 

calculated by MetaCycle. (F) Distribution of the amplitude of cycling genes in each tissue 342 

calculated by MetaCycle. (D-F) The central line represents the median, and each box represents 343 

the 25th and 75th percentiles, respectively. The notch represents the 95% confidence interval 344 

around the median. Numbers of expressed genes or rhythmic genes in each tissue can be found in 345 

the Supplementary Data Sheet 1. Each color corresponds to a tissue; liver (purple), kidney (light 346 

purple), lung (blue), brown adipose (BAT) (light blue), heart (green), adrenal (light green), aorta 347 

(yellow), cerebellum (gold), hypothalamus (orange), muscle (coral), white adipose (WAT) (red), 348 

and brainstem (dark red).  349 

 

Figure 2. A positive correlation between the percentage of cycling transcripts and the mean 350 

level of Rorc. (A) The peak phase of core clock gene expression in CT (Circadian Time) 351 

determined by MetaCycle. (B) The relative amplitudes of core clock gene expression determined 352 
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by MetaCycle. (C) Correlation between % rhythmic transcripts and the mean levels of each core 353 

clock gene determined by MetaCycle. (D) Correlation between % rhythmic transcripts and the 354 

mean levels of Per2AS in each tissue. Each color corresponds to a tissue; liver (purple), kidney 355 

(light purple), lung (blue), brown adipose (light blue), heart (green), adrenal (light green), aorta 356 

(yellow), cerebellum (gold), hypothalamus (orange), muscle (coral), white adipose (red), 357 

brainstem (dark red). Core clock gene expression that did not fulfill Benjamini-Hochberg q < 358 

0.05 criteria for rhythmicity was not included.  359 

 

Figure 3. The number of RORC-binding motifs does not correlate with the percentage of 360 

rhythmic genes in each tissue. Weighted scatterplot representing the percentage of rhythmic 361 

genes containing binding motifs of circadian transcription factors listed on the left. The size of 362 

each circle represents the % and each color corresponds to a tissue.  363 
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Table 1. Correlations between the percentage of rhythmic transcripts and the relative 364 
amplitude of core clock genes in each tissue 365 
 366  

Pearson (linear) Spearman (non-linear) 
R2 P-value Rho P-value 

Arntl 0.5775568 0.04923* 0.8741259 0.0003089* 

Clock 0.3962219 0.2277 0.3181818 0.3414 

Npas2 0.6054532 0.04839* 0.7181818 0.0168* 

Per1 0.4538226 0.1384 0.4685315 0.2175 

Per2 0.6617942 0.01907* 0.7972028 0.0031161* 

Per3 0.5899605 0.04347* 0.5944056 0.04575* 

Cry1 0.7952259 0.003433* 0.7090909 0.01873* 

Cry2 0.5342694 0.07355 0.6853147 0.01731* 

Nr1d1 0.6248975 0.02981* 0.5944056 0.04575* 

Nr1d2 0.5542365 0.06149 0.4405594 0.1542 

Rora 0.3681567 0.5421 0.2 0.7833 

Rorc 0.8522986 0.003518* 0.9166667 0.001312* 

Dbp 0.6452423 0.02346* 0.6853147 0.01731* 

Nfil3 0.4639099 0.1506 0.3272727 0.327 

P4ha1 0.5738972 0.05103 0.6923077 0.01588* 

Tsc22d3 0.677488 0.01549* 0.6293706 0.03239* 

Lonrf3 0.74423 0.005506* 0.7972028 0.003161* 

Usp2 0.5768827 0.04956* 0.4685315 0.1275 

*Asterisks denote p<0.05 367 
** Rorb was excluded from our correlation analyses due to its low expression in all tissues 368 
except brain 369 
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Table 2. Correlations between the percentage of rhythmic genes and the mean expression 370 
level of core clock genes in microarray and RNA-seq datasets 371 
 
 Pearson (linear) Spearman (non-linear) 
 
 

Microarray RNA-seq Microarray RNA-seq 
R2 P-

value 
R2 P-

value 
rho P-

value 
rho P-

value 
Arntl 0.00025806 0.9993649 -0.2477924 0.46255259 -0.0629371 0.8459309 -0.3545455 0.28469274 

Clock  0.20709174 0.5184007 -0.3077513 0.35722663 -0.020979 0.9484022 -0.3818182 0.24655958 

Npas2 0.13268917 0.6810054 NA NA 0.03496503 0.9140933 NA NA 

Per1 0.07460386 0.8177602 -0.4232656 0.19458479 -0.2797203 0.3785687 -0.4454545 0.1697326 

Per2 0.4444646 0.1477156 -0.3037159 0.36389063 0.25174825 0.4299188 -0.1 0.769875 

Per3 -0.004058 0.9900137 -0.5366997 0.08871493 -0.3006993 0.3422595 -0.6181818 0.04264557 

Cry1 0.17502327 0.5863932 -0.1887732 0.57828653 -0.1258741 0.6966831 -0.4272727 0.18994372 

Cry2 -0.0725671 0.8226649 -0.469578 0.14504423 -0.3636364 0.245265 -0.6454545 0.0319628 

Nr1d1 -0.1931836 0.5474633 -0.4214839 0.19667007 -0.4055944 0.1908359 -0.5818182 0.0604199 

Nr1d2 -0.1093403 0.7351637 -0.3684187 0.26490747 -0.3006993 0.3422595 -0.5090909 0.10973723 

Rora -0.154493 0.6316449 -0.0850269 0.8037002 -0.2097902 0.5128409 -0.4 0.22286835 

Rorc 0.81551562 0.0012236* 0.80572369 0.0027537* 0.65734266 0.0201855* 0.8 0.0031104* 

Dbp -0.3043041 0.3362164 -0.5439689 0.08366 -0.4615385 0.1309481 -0.4454545 0.1697326 

Nfil3 0.2775392 0.3824536 0.18797349 0.57992718 -0.1188811 0.7128842 0.4 0.22286835 

Per2AS 0.8546421 0.0003983* 0.6079273 0.04723* 0.4545455 0.1404 0.07272727 0.8388 

*Asterisks denote p<0.05 372 
** Rorb was excluded from our correlation analyses due to its low expression in all tissues 373 
except brain 374 
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Table 3 Correlations between the mean level of Rorc and the mean level of other clock 375 
genes in each tissue 376 
 377 
 Pearson (linear) Spearman (non-linear) 

Microarray RNA-seq Microarray RNA-seq 
R2 P-value R2 P-value Rho P-value Rho P-value 

Arntl 0.1424678 0.6587 -0.1930034 0.5696 0.2517483 0.4301 -0.3 0.3711 

Clock  0.2017612 0.5295 -0.5247839 0.09743 0.2307692 0.4709 -0.5636364 0.07594 

Npas2 -0.1087769 0.7341 -0.1029352 0.8262 0 1 -0.1071429 0.8397 

Per1 -0.1271442 0.6938 -0.3823291 0.2459 0.02097902 0.9562 -0.5727273 0.0706 

Per2 0.2802252 0.3777 0.03352763 0.922 0.5244755 0.08388 0 1 

Per3 -1.93E-01 0.5478 -0.5847199 0.05884 -0.1328671 0.6834 -0.7818182 0.007012 

Cry1 0.2039933 0.5248 -0.3352892 0.3135 0.2237762 0.4849 -0.5909091 0.06073 

Cry2 -0.1406772 0.6628 -0.7071451 0.01495* -0.020979 0.9562 -0.8 0.005202 

Nr1d1 -0.1865557 0.5615 -0.2836711 0.3979 -0.013986 0.9737 -0.5636364 0.07594 

Nr1d2 -0.075446 0.8157 -0.6073742 0.4749 -0.0489511 0.8863 -0.6818182 0.02548 

Rora 0.08273569 0.7982 -0.2710108 0.4202 0.0979021 0.7663 -0.4545455 0.1634 

Dbp -0.2537079 0.4262 -0.2642677 0.4323 -0.1608392 0.6194 -0.4272727 0.1926 

Nfil3 0.6783749 0.01531* 0.4541654 0.1605 0.4195804 0.1766 0.4727273 0.1456 

Per2AS 0.858603 0.0003493* 0.6431022 0.0328* 0.5034965 0.09875 0.1454545 0.6734 

*Asterisks denote p<0.05 378 
** Rorb was excluded from our correlation analyses due to its low expression in all tissues 379 
except brain 380 
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Table 4. Correlations between the mean Per2AS TPM and the mean level of other clock 381 
genes in each tissue  382 
 
 Pearson (linear) Spearman (non-linear) 

Microarray RNA-seq Microarray RNA-seq 
R2 P-

value 
R2 P-

value 
Rho P-

value 
Rho P-

value 

Arntl 0.1072332 0.7401 -0.1923029 0.5711 0.4405594 0.1542 0.4727273 0.1456 

Clock  0.3049452 0.3351 -0.102975 0.7632 0.5804196 0.05209 0.5272727 0.1001 

Npas2 0.308457 0.3292 -0.0209776 0.9644 0.6783217 0.01883* 0.5357143 0.2357 

Per1 -0.0469417 0.8848 -0.3423037 0.3028 0.4125874 0.1845 0.0090909 0.9892 

Per2 0.3363529 0.2851 0.03514764 0.9183 0.7202797 0.01102* 0.5636364 0.07594 

Per3 -6.68E-02 0.8367 -0.2394287 0.4783 0.4265734 0.1689 -0.0454546 0.9029 

Cry1 0.1160046 0.7196 -0.1523629 0.6547 0.4125874 0.1845 0.2090909 0.5391 

Cry2 -0.0904382 0.7798 -0.360859 0.2756 0.2727273 0.3912 0.1090909 0.7549 

Nr1d1 -0.2317755 0.4685 -0.4086626 0.2121 0.1258741 0.6997 -0.0545455 0.8815 

Nr1d2 0.03833355 0.9058 -0.2832654 0.3986 0.1188811 0.7162 -0.0181818 0.9676 

Rora -0.027873 0.9315 -0.1883284 0.5792 0.2447552 0.4435 0.1363636 0.6935 

Dbp -0.1331303 0.68 -0.2910061 0.3853 0.2937063 0.3543 0.08181818 0.8177 

Nfil3 0.357542 0.2539 -0.1930106 0.5696 0.1468531 0.6511 -0.3909091 0.2365 

*Asterisks denote p<0.05 383 
** Rorb was excluded from our correlation analyses due to its low expression in all tissues 384 
except brain 385 
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Figure 1. Littleton and Kojima
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Figure 3. Littleton and Kojima
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