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Abstract 1 

The initiation of rhythmic heartbeat is the earliest manifestation of new life after conception. A 2 

normal heartbeat originates as an action potential in a group of pacemaker cells of the sinoatrial node 3 

(SAN)1. Pacemaker cells are evident since early embryogenesis when the entire sinus venosus exhibits 4 

electric automaticity and possesses specific gene expression profile distinct from that of working 5 

myocardium2,3. During the subsequent looping and ballooning stages of cardiac development, 6 

pacemaker cells eventually localize into SAN near the superior vena cava (SVC) when the two horns 7 

of the sinus venosus coil in formation of the atria2. The heart rate and anatomical site of origin of 8 

pacemaker activity dynamically change in response to various physiological input such as autonomic 9 

stimuli and pharmacological interventions4. However, the mechanisms of dominant pacemaker shift 10 

are not well understood. Here, we present functional and molecular evidence of two competing right 11 

atrial pacemakers localized near the SVC and the inferior vena cava (IVC), which we call the superior 12 

and inferior SANs: sSAN and iSAN. Using ex vivo optical mapping techniques and RNA sequencing 13 

of rat and human hearts, we demonstrate that sSAN and iSAN preferentially control the fast and 14 

slow heart rates during sympathetic or parasympathetic stimulation, respectively. RNAseq 15 

confirmed unique transcriptional profiles of sSAN and iSAN, which differs from both atria and 16 

ventricles. We speculate that the anatomical locations of sSAN and iSAN are a result of the way the 17 

two horns of the sinus venosus twist into a mature chambered heart. We anticipate these findings 18 

would clarify previously observed migration of dominant pacemaker and corresponding changes in 19 

P-wave morphology in many species. Furthermore, we expect these findings will shed light onto 20 

pathogenesis of aberrant pacemakers responsible for life-threatening arrhythmias near orifices of 21 

other major vessels: SVC and IVC, coronary sinus, pulmonary veins, aorta and the right ventricular 22 

outflow tract.   23 
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Background 1 

In 1906, Sunao Tawara discovered the atrio-ventricular node (AVN) near the orifice of coronary sinus5. A 2 

year later, Sir Arthur Keith and Martin Flack followed his lead and discovered the sinoatrial node (SAN) 3 

structure in the right atrium (RA) near the orifice of another vein, the SVC1. In 1910, Thomas Lewis et al. 4 

demonstrated that the SAN is the site of origin of the normal heart beat6. Over the next century, cardiac 5 

electrophysiologists have explored the pacemaking mechanisms of this specialized tissue located near the 6 

SVC.  7 

 8 

For years, the “textbook” location of the SAN has been depicted at the junction of the SVC and the RA 9 

(Fig. 1a). However, the site of origin of the electrical activity of the heart – also referred to as the leading 10 

pacemaker site – has been shown to anatomically shift with various types of interventions leading to 11 

changes in heart rate7,8. The first studies which carefully dove into locating and characterizing pacemaker 12 

shifts began in the 1960s-70s with the rabbit9,10, later extending to the dog in the 1980s11, and finally 13 

carrying over to the human in the late 1980s12. Studies in the rabbit mapped the SAN with roving 14 

microelectrodes, examining responses to a number of interventions, including sympathetic and 15 

parasympathetic stimulation, acetylcholine, adrenaline, cardiac glycosides, temperature changes, changes 16 

in extracellular Na+, K+, Ca2+, and Cl- concentrations, and divided preparations4,13. Beat-to-beat variations 17 

have also been identified during vagal stimulation14,15. However, the rationale of these anatomical shifts is 18 

still incompletely understood, and the demarcation of the center and periphery or head and tail of the SAN 19 

continues to be ill-defined. 20 

 21 

Optical mapping has evolved over the years as a valuable technique for investigating cardiac 22 

electrophysiology16. It utilizes voltage-sensitive dyes that bind to cell membranes, offering high spatial and 23 

temporal resolutions for isolated preparations of complex electrically active tissues17. Traditional 24 

electrophysiological methods for investigating the SAN over the years involved string galvanometers, 25 

intracellular microelectrodes, extracellular bipolar or multi-electrode arrays, and unipolar surface 26 
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electrograms. However, for intricate cardiac tissues such as the SAN, optical mapping is arguably one of 1 

the best technologies currently available for identifying beat-to-beat changes over a range of physiological 2 

conditions, a concept of which we are only beginning to explore. 3 

 4 

Given the large but still conflicting literature on the anatomical shift of the leading pacemaker site, we 5 

aimed in this study to quantify changes in SAN dynamics using optical mapping techniques on a beat-to-6 

beat basis during changes in heart rate. Heart rates dynamically change in vivo to adjust cardiac output to 7 

physiological demands, regulated by the autonomic tone, exercise, stress, temperature, and circadian 8 

variability8. Heart rates can also change with age, dysfunction of the SAN, various illnesses, including 9 

myocardial infarctions, and heart failure18,19. Therefore, we sought to elucidate temporal and spatial changes 10 

of the leading pacemaker in ex vivo SAN preparations with controlled experimental conditions over a range 11 

of physiological heart rates using optical mapping techniques (Fig. 1a-b). Rat and human hearts were 12 

chosen for this study since their SANs have been less studied in the field to-date20.  13 

 14 

Methods 15 

Ethical Approval 16 

All animal procedures were completed in agreement with the George Washington University institutional 17 

guidelines and in compliance with suggestions from the panel of Euthanasia of the American Veterinary 18 

Medical Association and the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory 19 

Animals. Procurement of de-identified donor human hearts rejected to transplant were approved for 20 

research by the Institutional Review Board (Office of Human Research) at the George Washington 21 

University. Hearts were procured from the Washington Regional Transplant Community (Falls Church, 22 

VA USA).  23 

 24 

Rat Model of Heart Failure 25 
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Ascending aortic constriction was performed on 6-8 day old Sprague-Dawley rat pups to induce left 1 

ventricular hypertrophy through pressure overload. Neonatal rats were anesthetized with hypothermia and 2 

given an intraperitoneal injection of buprenorphine (0.05mg/kg) immediately before surgery. Upon deep 3 

anesthesia, a sharp blade was used to make a 3-5 mm longitudinal cut in the skin along the midsternal line, 4 

and a pair of blunt-tip scissors was used to subsequently open up the breastbone to expose the base of the 5 

heart. The chest cavity was open, the thymus separated to expose the aorta, and a 4-0 silk braided suture 6 

was passed below the base of the ascending aorta and tied securely around a custom-made 20 gauge spacer 7 

to perform an aortic constriction. After ligation, the spacer was immediately removed and the chest of the 8 

animal sutured shut. The average time of surgery was 7 minutes. Animals were allowed to recover under a 9 

heat lamp and with supplemental oxygen to aid recovery. Rats were monitored daily and in vivo heart rates 10 

were recorded until the animals were sacrificed for experiments at 8-11 weeks of age.  11 

 12 

Rat Heart Excision and Isolation of the Right Atria 13 

On the day of terminal surgery, adult rats (8-12 weeks old) were deeply anesthetized with a mixture of 5% 14 

isoflurane/95% O2 until unconscious, with anesthesia depth determined by unresponsiveness to tail and toe 15 

pinches. Following the cessation of pain reflexes, an injection of heparin (250 U/kg) was administered 16 

intraperitoneally, and animals were euthanized via heart excision. Excised hearts were quickly cannulated 17 

and placed in a constant-pressure Langendorff system (maintained between 60 and 80 mmHg) with warmed 18 

(37°C) and oxygenated (95% O2/ 5% CO2) Tyrode’s solution (in mM: 128.2 NaCl, 4.7 KCl, 1.05 MgCl2, 19 

1.3 CaCl2, 1.19 NaH2PO4, 20 NaHCO3, 11.1 Glucose). Hearts were allowed to stabilize for ~15 minutes. 20 

To isolate the RA for visualization of the SAN, ventricles were removed from the base of the heart, the RA 21 

free wall was opened, and the entire preparation was pinned to a Sylgard-coated chamber. Tissues were 22 

perfused with warmed Tyrode’s solution at a constant flow rate of 20 mL/min focused near the SAN and 23 

superfused in the tissue chamber with Tyrode’s at a flow rate of 80 mL/min. Sensing electrodes were placed 24 

in the bath for pseudo-ECG recordings monitored during each experimental protocol using LabChart. 25 

 26 
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Human Heart Procurement and Isolation of the Right Atria 1 

Human hearts were procured by the Washington Regional Transplant Community and arrested in an ice-2 

cold cardioplegic solution in the operating room prior to delivery to our laboratory. The entire RA was 3 

carefully isolated and the right coronary artery (RCA) was cannulated with a custom flexible plastic 4 

cannula. All major transected arteries were tied off, the tissue was stretched across a custom frame, and 5 

transferred to a vertical bath of warmed and oxygenated Tyrode’s solution. Adequate perfusion was 6 

maintained for the duration of the experiment for tissue viability (60-80mmHg through the RCA), and 7 

sensing electrodes were pinned into the tissue for pseudo-ECG recordings using LabChart.  8 

 9 

Optical Mapping and Electrophysiological Experimental Protocol 10 

Once the intrinsic SAN heart rate stabilized, isolated RA preparations were electromechanically uncoupled 11 

with blebbistatin (<10 µM for rat and 10-15 µM for human) and fluorescently stained with di-4-ANEPPS. 12 

Optical action potentials (OAPs) were captured with either an Ultima-L or MiCAM05 CMOS camera with 13 

high spatial and temporal resolutions (100 × 100 pixels, 1-2 kHz sampling frequency; SciMedia, CA).  14 

During recordings, tissues were illuminated with a 520 nm LED (Prizmatix), and emitted fluorescence was 15 

captured through a 650 nm long-pass filter (Thorlabs, Newton, NJ). 16 

 17 

Ex vivo rat RA preparations were optically mapped under two different experimental protocols: 18 

pharmacological dose responses (n = 8) and physical separation of the sSAN and iSAN (n = 5). Ex vivo 19 

human RA preparations were optically mapped under baseline conditions and pharmacological stimulation 20 

(n = 3). For pharmacological studies, tissue preparations were treated with increasing dosages of 21 

acetylcholine chloride (ACh, Millipore-Sigma, Burlington, MA) and increasing dosages of isoproterenol 22 

(ISO, Tocris Bioscience, Ellisville, MO), with a washout step in-between the two drugs. Washout involved 23 

rinsing the system and the tissue with 1-2 L of fresh, oxygenated, and warmed Tyrode’s solution until the 24 

heart rate returned to baseline and stabilized. Optical mapping recordings (2 or 4-second files) were taken 25 

during normal sinus rhythm under the influence of each dosage of drug.  26 
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 1 

Sinus Node Recovery Times 2 

In a subset of studies, optical files were also taken during a sinus node recovery time (SNRT) protocol to 3 

evaluate SA nodal function in normal and failing rat hearts. Briefly, a 12 pulse stimulus drive train at a 4 

pacing cycle length of 100 ms was delivered at the tip of the RA. SNRT values were calculated as the time 5 

interval between the last paced captured beat to the first recovered intrinsic beat following tissue overdrive 6 

by rapid pacing. Values were measured during dose-response protocols for ACh and ISO in both normal 7 

and failing hearts, but no significant differences were observed between groups (2-way ANOVA). When 8 

plotted against the intrinsic heart rate of the preparation just prior to pacing, SNRT values of failing hearts 9 

were also not found to be any different than those of normal, healthy hearts.  10 

 11 

Data Processing and Identification of the Leading Pacemaker Location 12 

RHYTHM, a custom-made MATLAB program designed for optical mapping data analysis, was used for 13 

creating activation maps. OAPs were filtered in space (3 × 3 or 5 x 5 pixel neighborhood for rat and human, 14 

respectively), in time (low pass Butterworth filter at 150–200 Hz), and 60 Hz noise was removed. Baseline 15 

fluorescent drift was removed with a first- or second-order fitted curve, as necessary. Activation times were 16 

determined by 50% of the maximum OAP amplitude and used to reconstruct activation maps. The location 17 

of the earliest activation time was identified from its spatial neighbors, and this site within the SAN was 18 

plotted on a beat-to-beat basis. Leading pacemaker sites within the same preparation were compared to one 19 

another by being replotted onto a new y-axis between the SVC (y=1) and inferior vena cava (IVC) (y=0) 20 

along the crista terminalis (CT), and onto a perpendicular x-axis displayed in millimeters.  21 

 22 

RNAseq Sample Preparation and Analysis 23 

RNA sequencing (RNAseq) was performed on healthy rat hearts (8-11 weeks old, n = 4) and donor human 24 

hearts (n = 3) that were not used for any functional experiments. Tissue samples in the analysis included 25 

the upper and lower regions of the SAN, as well as the RA, LA, and LV for comparative purposes. The 26 
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preparation of whole-transcriptome libraries and next-generation sequencing were conducted by Novogene 1 

Corporation Inc. using the Illumina HiSeq System with paired-end 150 reads (Sacramento, CA). The raw 2 

reads were filtered by removing reads containing adapters, reads containing N > 0.1% (N represents base 3 

that could not be determined), and low-quality reads. The reads from the rat samples were aligned to the 4 

reference genome Rattus norvegicus release 98 by HISAT235. Expression values were calculated using 5 

HTSeq v0.6.1.  The raw reads for the human samples were aligned to the reference genome hg38 using 6 

STAR (v2.5)36. featureCounts was used to count the read numbers mapped of each gene37. Differential 7 

expression analysis was carried out using DESeq238. Differentially expressed genes (DEGs) were identified 8 

with the significance criterion padj < 0.05 for loose analysis, and padj < 0.01,  FC > 3 for stringent analysis. 9 

ClusterProfiler39 was used for gene ontology analysis.  10 

 11 

Statistical Analysis 12 

Statistical analysis was performed using Prism 7 (GraphPad). Significant differences are labeled with 13 

individual p-values. Two different statistical tests were used in this study: one-way ANOVA and two-way 14 

ANOVA with a Sidak post-test for multiple comparisons. Statistical tests were chosen and used as 15 

necessary and as indicated in the text. 16 

 17 

Results 18 

Effects of Pharmacological Intervention on the Rat SAN  19 

In rats, the average in vivo resting heart rate was 395 ± 22.2 bpm, while the average ex vivo baseline heart 20 

rate was 280.9 ± 43 bpm (p < 0.0001) (Fig. 1c). Baseline ex vivo heart rates significantly dropped by 31.5% 21 

to 192.3 ± 50 bpm with 100 µM of acetylcholine chloride (ACh, Millipore-Sigma, Burlington, MA) and 22 

increased from baseline by 57% to 426 ± 57 bpm with the 500 nM isoproterenol (ISO, Tocris Bioscience, 23 

Ellisville, MO) (p = 0.0001 and p < 0.0001, respectively; 1-way ANOVA). Complete dose-response of ACh 24 

and ISO in the isolated ex vivo rat RA identified a range of physiologically possible heart rates (Fig. 1d). 25 

Once steady-state was achieved (usually 5-10 minutes after administration of each dose) and heart rates 26 
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stabilized, a two-second representative optical mapping file was recorded during sinus rhythm. Anatomical 1 

locations of the leading pacemaker site dynamically changing on a beat-to-beat basis between the SVC and 2 

IVC were identified and plotted on a normalized y-axis against the corresponding heart rate (from the 3 

immediately preceding beat) for all conditions (n = 8). Under baseline conditions, only three out of the eight 4 

spreparations displayed initial activation patterns from the traditional “textbook” location near the orifice 5 

of the SVC; the remaining five preparations exhibited a clustering of leading pacemaker activity originating 6 

close to the orifice of the IVC (Supplementary Fig. 1). However, in this study, pacemaking activity always 7 

originated from the SVC in the presence of ISO (or when heart rates reached >~ 400 bpm) and from the 8 

IVC region in the presence of ACh (or when heart rates reached <~ 250 bpm). Representative activation 9 

maps under baseline conditions and in the presence of high muscarinic and adrenergic pharmacological 10 

stimulation are shown in Fig. 1e. Based on the two observed clusters of intrinsic pacemaking activity, a 11 

complete schematic indicating the physiological presence of both a superior (sSAN) and inferior (iSAN) 12 

pacemaker region in the rat heart is displayed in Fig. 1f. 13 

 14 

Pacemaking Activity of the Physically Dissected Rat sSAN and iSAN 15 

To examine the independent behavior of the newly identified sSAN and iSAN regions, we surgically 16 

separated the ex vivo rat SAN into two distinct tissues (Fig. 2a). Though there were no significant 17 

differences between the heart rates of the intact and separated tissues, the iSAN possessed intrinsic 18 

automaticity with a similar mean and small standard deviation as the intact preparation under baseline 19 

conditions (intact: 284.9 ± 14.5 bpm; sSAN: 188.1 ± 112.3 bpm; iSAN: 286.7 ± 25.5 bpm, n = 5) (Fig. 2b).  20 

During high parasympathetic stimulation (100 µM ACh), all but one sSAN became completely quiescent, 21 

while the iSAN maintained an average heart rate of 213.6 ± 50.8 bpm. Upon washout of ACh and 22 

administration of 500 nM ISO, all sSAN tissues regained automaticity and possessed intrinsic heart rates 23 

comparable to the iSAN under ISO exposure (sSAN: 400 ± 58.2 bpm; iSAN: 393.5 ± 14.6 bpm, n = 5). 24 

Similar to the spatial distribution of leading pacemaker sites in the intact SAN, a hierarchical clustering 25 

distribution along the SVC-IVC axis is evident within each of the two separated tissues (pacemaker beats 26 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.18.159939doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.159939


10 

 

originate cranially with sympathetic stimulation and caudally with parasympathetic stimulation). 1 

Representative optical activation maps of the surgically dissected SANs under baseline conditions and in 2 

the presence of ACh or ISO are shown in Fig. 2c. In this preparation, the intact SAN exhibited a baseline 3 

heart rate of 290 bpm prior to physical separation into two tissues. Additional cluster plots of leading 4 

pacemaker sites on a beat-to-beat basis for are shown for all studied five separated rat hearts before and 5 

after separation in Supplementary Fig. 2. 6 

 7 

Effects of Pharmacological Intervention on the Failing Rat SAN  8 

We also investigated SAN activity in end-stage failing rat hearts induced by adolescent aortic constriction 9 

(Fig. 3a). It was found that only one of the two pacemaker regions appears to be active in all failing hearts 10 

(n = 6), despite changes of heart rate by autonomic stimulation (Fig 3b-e). As seen in Supplementary Fig. 11 

6 and Supplementary Table 3, clear significant anatomical differences in heart weights and inner/outer 12 

dimensions were observed between normal and failing rats. However, there were no differences in in vivo 13 

heart rates (Supplementary Fig. 6) or ex vivo  sinus node recovery time (SNRT) values (Supplementary 14 

Fig. 7) between the two groups). A prolonged SNRT is often coupled to SAN dysfunction, but this feature 15 

was not evident in the failing rats that were created for this study. Though this initially suggested that the 16 

rat SAN was not detrimentally affected by the severe and aggressive form of heart failure, our mapping 17 

data shows complete dominance of the sSAN in four out of six of hearts, even during ACh administration. 18 

Conversely, two failing hearts displayed complete dominance of the iSAN (Supplementary Fig. 8).  19 

 20 

RNA Sequencing of Rat sSAN and iSAN 21 

To examine regional differences in gene expression, RNA sequencing was performed on tissues from 22 

additional age-matched rat hearts which were not used for functional experiments (n = 4). RNA was isolated 23 

and sequenced from four regions: sSAN, iSAN, RA, and LA (left atrium) (Fig. 4a). Quantification of 24 

differentially expressed genes (DEGs, padj < 0.05) identified that both the sSAN and iSAN contain more 25 

up-regulated than down-regulated DEGs when compared to the RA (Fig. 4b). Gene ontology (GO) analysis 26 
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of up-regulated DEGs (padj < 0.01, FC > 3) in sSAN and iSAN versus RA are displayed in Fig. 4c and span 1 

molecular functions, biological processes, and cellular components. Regulation of fatty acid metabolic 2 

processes, blood circulation, small molecule catabolic processes, and hormone secretion were among the 3 

most significantly enriched gene ontologies for the sSAN. Regulation of blood circulation, angiogenesis, 4 

wound healing, and skeletal system morphogenesis were among the most significantly enriched gene 5 

ontologies for the iSAN. Additionally, there is a high overall prevalence of metabolic genes in the sSAN, 6 

which agrees with previous studies showing the SAN’s unique ability to recover from severe hypoxic 7 

conditions that irreversibly damage the working myocardium21, and it further explains the ability of the 8 

sSAN in this study to readily recover with high heart rates, even after rendered silent by ACh administration. 9 

 10 

Cluster analysis was performed to categorize expression levels particular cardiac genes of interest into four 11 

main groups: 1) cardiac ion channels, 2) cardiac receptors, 3) neural proteins, and 4) transcription factors 12 

(Fig. 4d). These cardiac genes of interest were selected from a thorough literature review22–27, including the 13 

most recent “novel” SAN genes identified and published by van Eif et al.28 and Goodyer et al.29 The full 14 

list of the genes of interest can be found in Supplementary Table 1, and the complete heatmap with labeled 15 

genes for the rat can be found in Supplementary Fig. 3a-d. Differential expression patterns are observed 16 

between the sSAN and iSAN, with significant differences identified for the cardiac receptor group from 17 

GSEA analysis (Supplementary Fig. 3e), consistent with functional differences observed in sSAN vs. 18 

iSAN during autonomic stimulation Specific up-regulated DEGs from each category of the heatmap are 19 

shown for the sSAN and iSAN in Fig. 4e, with overlapping genes listed in the center column. Comparisons 20 

of common cardiac ion channels and transcription factors are shown for the rat sSAN, iSAN, RA, and LA 21 

in Fig. 4f. 22 

 23 

Effects of Pharmacological Intervention on Human SAN Activity  24 

Similar to the intact ex vivo rat SAN experiments, we surgically isolated and cannulated three human RA 25 

preparations containing SAN, stained the tissues with voltage-sensitive dye and optically mapped them to 26 
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identify changes in leading pacemaker locations based on 50% action potential upstroke amplitude (AP50) 1 

(Fig. 5a). Unlike rat, human RA requires coronary perfusion, which limited our experimental protocol 2 

including its duration, i.e. making it impossible to dissect the sSAN from the iSAN without causing severe 3 

ischemia. In this study, the average ex vivo human intact SAN heart rate at baseline was 71.45 ± 2.9 bpm, 4 

which decreased to 63.52 ± 9.9 bpm with 500 nM  ACh and increased to 101.2 ± 25.2 with 100 nM ISO (n 5 

= 3) (Fig. 5b). The spatial distribution of leading pacemaker sites fit into two binary logistic regression 6 

curves when plotted against their corresponding heart rate. Unlike the rat heart, the human heart did not 7 

display the same preferential sSAN activity with adrenergic stimulation or iSAN activity with muscarinic 8 

stimulation. We observed an even distribution of leading pacemaker activity from both sites under both 9 

conditions. This was presumably due to our inability to cover the entire frequency range of human heart 10 

rates. Still, regional dominance of the iSAN was identified in situations of low heart rates (< 66 bpm) and 11 

the sSAN at high heart rates (> 81 bpm). Representative optical activation maps are shown in Fig. 5c and 12 

a novel schematic indicating the physiological presence of both a superior and inferior pacemaker region 13 

in the human heart is displayed in Fig. 5d. Like the rat heart, the human also exhibits two functionally 14 

distinct leading pacemaker regions that anatomically cluster to the iSAN or sSAN near IVC and SVC, 15 

respectively. 16 

 17 

RNA Sequencing of Human sSAN and iSAN 18 

RNA sequencing was performed on human tissues that were not used for functional experiments in an 19 

additional 3 hearts for SAN tissue and 5 hearts for myocardial tissue (Supplementary Table 2). While 20 

there were no DEGs between the sSAN and iSAN alone, the sSAN possessed four-fold as many up-21 

regulated DEGs and two-fold as many down-regulated DEGs (padj < 0.05) than the iSAN when compared 22 

to RA genes (Fig. 5e). Even with more stringent statistical boundaries (padj < 0.01, FC > 3), there were still 23 

hundreds of observed DEGs for both regions (Fig. 5f). Leukocyte migration, positive regulation of cytokine 24 

production, and cell chemotaxis, and response to lipopolysaccharides were among the most significantly 25 

enriched gene ontologies for both the human sSAN and iSAN (Supplementary Fig. 4a). In observing a 26 
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heatmap of genes known to play a role in cardiac function (Fig. 4g and Supplementary Fig. 5), GSEA 1 

analysis found no significant differences between the sSAN and iSAN in any of the four gene sets examined 2 

(data not shown). Comparisons of common cardiac ion channels and transcription factors are shown for the 3 

human sSAN, iSAN, RA, and LA in Fig. 5h.  4 

 5 

Discussion 6 

Here, we show that the denervated ex vivo rat and human RA exhibits two distinct clusters of pacemaker 7 

cells located near SVC and IVC, which preferentially control high and low heart rates, respectively. 8 

Previous reports from the mouse,30 rabbit,31 and dog32 hearts have demonstrated that leading pacemaker 9 

sites generally move towards an inferior location of SAN during muscarinic stimulation (e.g. ACh) and 10 

conversely towards a more superior location during adrenergic stimulation (i.e. ISO). Our lab has also 11 

previously shown that the sSAN of canine and human hearts is coupled through multiple conduction 12 

pathways with the RA33,34. In the current study, we were able to more completely characterize the site of 13 

origin of the mammalian SAN through the application of state-of-the-art optical mapping techniques on a 14 

beat-to-beat basis. We observed a new phenomenon: two distinct RA pacemaking regions over the entire 15 

range of SAN-initiated physiological heart rates in the rat heart (ranging from 102.9 to 502.1 bpm) and 16 

from a normal physiological range of heart rates in the human heart (ranging from 52.5 to 118.4 bpm). 17 

From these functional studies, the pacemaker complex does not appear to show gradual shifting capabilities 18 

when the intrinsic heart rate is altered, but rather it possesses two discrete anatomical regions of 19 

automaticity.   20 

 21 

Overall, the sSAN appears to dominate when the intrinsic heart rate of the ex vivo denervated healthy SAN 22 

falls within a window in the resting in vivo heart rate range, such as during high sympathetic stimulation. 23 

The iSAN thus serves as a “back-up” pacemaker, only taking over when the heart rate falls towards a lower 24 

band of normal physiological range, such as during vagal stimulation. Still, when surgically separated from 25 

the sSAN, the iSAN alone appears to robustly support almost the entire range of physiological heart rates. 26 
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These findings agree with previously held notions that the “latent” pacemaker can serve as a “dominant” 1 

pacemaker when cells with higher automaticity have been suppressed or removed.9 The findings from our 2 

study add to this body of knowledge by identifying regional clusters of dominant and latent pacemaker cells 3 

within the intact SAN which are located close to the IVC. Furthermore, under baseline conditions of the 4 

denervated and unstimulated RA, we found that electrical activity can initiate from either the sSAN or 5 

iSAN. This nuanced behavior agrees with the classically observed low intrinsic heart rates of denervated 6 

ex vivo hearts. Intrinsic bradycardia observed when the heart is removed from the body could explain the 7 

occasional initiation of the heartbeat from the iSAN under baseline conditions. A holistic view of 8 

pacemaking activity and the resulting cluster preferentiality for all studied rat hearts under high 9 

parasympathetic and sympathetic stimulation can be appreciated in Supplementary Fig. 1. 10 

 11 

In looking at pacemaking activity of failing rat hearts, it was found that the leading pacemaker site of the 12 

SAN did not shift with stimulation from either ACh or ISO, even though the SAN temporally responded to 13 

these drugs just as well as the normal, healthy rat SAN. Instead, there was a tight cluster of electrically 14 

active tissue in one spatial location of each failing SAN so that that only one SAN maintains activity in this 15 

model of heart failure. This data shows that while LV hypertrophy may not affect the range of 16 

physiologically possible heart rates in the rat heart, the SAN can still undergo functional changes in end-17 

stage heart failure. 18 

 19 

To better understand characteristics of the sSAN and iSAN, we examined the gene expression for specific 20 

cardiac ion channels known to play a predominant role in pacemaking activity. We observed a number of 21 

up-regulated DEGs in each of the two SAN tissues, relative to the RA (padj < 0.05). As shown in Fig. 4e, 22 

both the sSAN and iSAN in the rat heart contain significantly higher expression levels of the 23 

hyperpolarization-activated cyclic nucleotide-gated channels HCN1 and HCN4, the calcium channel 24 

Cacna1a (CaV2.1), the potassium channels Kcnd1 (Kv4.1), Kcnk1 (TWIK-1), Kcnk5 (TASK-2), Kcnn3, 25 

the sodium channels Scn3a (NaV1.3) and Scn4b (NaVβ4), and the gap junctions Gja5 (Cx40) and Gjd3 26 
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(Cx30.2) (note: Gjc1 (Cx45) was not in the reference library used in this study). Interestingly, there are a 1 

number of DEGs that are sSAN-specific or iSAN-specific relative to the RA. Specifically, the sSAN alone 2 

shows markedly higher expressions of Kcna5 (Kv1.5) and Kcnb1 (Kv2.1), while the iSAN shows higher 3 

expressions of Cacnb3 (CaVβ3), Itpr3, Scn2b (NaVβ2), Scn3b (NaVβ3), Scn4b (NaVβ4), Scn7a (NaV2.1), 4 

and Scn9a (NaV1.7). As observed in Supplementary Fig. 4b, both the sSAN and iSAN of the human heart 5 

contain significantly higher expression levels of Kcne4 (MIRP3), while only the sSAN expresses Kcnk2 6 

(TREK-1) and Kcnn4 with significance. The human iSAN does not appear to possess any cardiac-related 7 

up-regulated DEGs that are unique to the iSAN alone; any genes which are more expressed in the iSAN are 8 

also more expressed in the sSAN. Taken together, these results support the hypothesis that both the rat and 9 

human iSAN possess almost all of the appropriate gene expression to function as entirely independent 10 

pacemakers, similar to sSAN. 11 

 12 

A possible explanation for the two spatially distinctive functional pacemaker regions, sSAN vs. iSAN, that 13 

are seen in the rat and human RA could be the relative differences in expression levels of certain cardiac 14 

receptors, neural-related genes, and transcription factors. For instance, in the rat sSAN, Adra2b (alpha 2B 15 

adrenergic receptor), Chrm3 (a cholinergic muscarinic receptor), Chrnb4 (a cholinergic nicotinic receptor), 16 

and Th (the rate-limiting enzyme in catecholamine biosynthesis) are differentially expressed, while in the 17 

rat iSAN, Adrb2 (beta2 adrenergic receptor gene) and Chrna7 (a cholinergic nicotinic receptor) are cardiac-18 

specific differentially expressed genes to this region alone. In the human, a distinct expression of adrenergic 19 

and cholinergic receptor densities does not appear to be weighted higher for either the sSAN or iSAN, but 20 

rather is comparable in each group. We hypothesize that with older age (mean human heart age in this study 21 

was 51 years), expression levels between the two SAN regions become more commensurate with each 22 

other, and the stark differences observed in younger hearts (mean rat age in this study was 10 weeks) might 23 

be a remnant of the developmental transcription program.  24 

 25 
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While the denervated human hearts in this study also displayed two spatially different pacemaking regions, 1 

preference for sSAN or iSAN initiation did not appear to solely depend on pharmacological intervention, 2 

since the human sSAN could sometimes initiate in the presence of ACh and the iSAN could sometimes 3 

initiate in the presence of ISO. Likely, this was due to an insufficient washout limited by the short lifetime 4 

of the perfused preparation, leaving residual “opposing” pharmacological stimuli effects in the tissue prior 5 

to the onset of the pharmacological stimulus. This would explain the observation of SAN tissues sometimes 6 

exhibiting relatively high heart rates in the presence of ACh, or low heart rates in the presence of ISO. 7 

Additionally, pathophysiology appears to negatively affect at least one of the SAN regions. We observed 8 

irregular spatial functioning of the SAN in our model of failing rat hearts, even though there were no ECG 9 

indicators of compromised SAN activity (i.e. heart rates and SNRT values were not different between 10 

healthy and failing rats). The human donor hearts taken for optical mapping studies in our lab are 11 

prescreened for underlying heart conditions, but there are numerous reasons for heterogeneous functioning 12 

of human SAN tissues (e.g. age, gender, comorbidities, downtime, etc.). Still, there is a clearly evident 13 

spatial preference of two distinct pacemakers, sSAN and iSAN in the human heart which control different 14 

ranges of normal physiological heart rate. These results agree with observations from the healthy rat heart.  15 

 16 

Conclusions 17 

Overall, in addition to contributing to basic biomedical science, our results presented here shed new light 18 

on the functionality of the heterogeneous pacemaking complex and over a more complete understanding of 19 

the origin of the heartbeat. These findings are particularly important for elucidating, and thus potentially 20 

overcoming, pathological conditions such as SAN dysfunction, ectopic beats during atrial arrhythmias, 21 

junctional rhythm, and heart rate variability related to sudden cardiac death. Future studies should look at 22 

other potential pacemaker regions located near orifices of the coronary sinus and pulmonary veins using 23 

single-cell RNA sequencing and single-cell electrophysiology techniques. These studies should be also 24 

carried out in human hearts with a history of atrial arrhythmias, which tend to originate from these regions.  25 

 26 
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Figures 1 

 2 

Figure 1: Functional evidence of superior and inferior sinoatrial nodes (SAN) in the isolated ex vivo 3 

rat heart. a) Left: Schematic of the posterior view of the rat heart with the “textbook” location of the SAN 4 

located near the junction of the superior vena cava (SVC) and right atria (RA) Middle: Schematic of the 5 

endocardial view of the isolated RA. Right: Representative image of an isolated RA preparation of the rat 6 

heart overlaid with optical action potentials (OAPs, time 100 ms). The leading pacemaker site is identified 7 

as the location within the preparation which displays the earliest activation time as identified during the 8 

upstroke by 50% of the OAP amplitude (AP50) (LA: left atria; RV: right ventricle; IVC: inferior vena cava; 9 

CT: crista terminalis; AVN: atrioventricular node). b) Representative OAPs for 10 consecutive beats over 10 

a 2-second optical recording. Points are re-plotted onto a new y-axis along the CT from the IVC to the SVC 11 

and normalized between 0 and 1. c) Left: Intrinsic heart rates of in vivo (8-11 weeks old, n = 7) rat hearts 12 
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and ex vivo (8-11 weeks old, n = 8) rat SANs. Middle: Heart rate changes caused by the administration of 1 

ACh or ISO in all rats (n = 8). Right: Normalized y-axis (from 0 to 1 between IVC and SVC) locations of 2 

leading pacemaker sites under baseline conditions (black), ACh (blue), and ISO (red) plotted against 3 

corresponding heart rates. Points were assigned to one of two cluster locations (superior or inferior) and 4 

fitted with logistic regression curves using K-means clustering analysis (gray dashed line) and a normal 5 

probability distribution (µ = mean, σ = standard deviation). d) Representative activation maps of an isolated 6 

RA tissue preparation during baseline sinus rhythm, high parasympathetic stimulation (100µM ACh), and 7 

high sympathetic stimulation (500nM ISO). Points are re-plotted onto the new axis on a beat-to-beat basis 8 

and color-coded according to corresponding condition (baseline = black, ACh = blue, ISO = red). e) New 9 

schematic of the posterior view of the rat heart with two spatially unique pacemakers: superior (sSAN) and 10 

inferior (iSAN). 11 
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 1 

Figure 2: Functional and molecular characterization of the physically separated rat sSAN and iSAN.  2 

a) Schematic of the rat RA preparation surgically cut to isolate the sSAN and iSAN. b) Heart rate responses 3 

of ex vivo intact and physically separated SANs under baseline conditions (black) and after exposure to 4 

high parasympathetic stimulation (100 µM ACh, blue) and high sympathetic stimulation (500 nM ISO, red) 5 

(n = 5). Right: Box plots display the distribution of y-axis locations of leading pacemaker sites under each 6 

of the three experimental conditions after the physical separation of the SAN (n = 5). c) Representative 7 

optical activation maps of a cut RA tissue preparation during baseline sinus rhythm, high parasympathetic 8 

stimulation, and high sympathetic stimulation. Corresponding heart rates are listed next to each map, and 9 

the earliest time of activation (i.e. leading pacemaker site) for each condition is depicted by a white star. 10 

Right: Sites are re-plotted onto the new axis on a beat-to-beat basis and color-coded according to 11 

corresponding condition (baseline = black, ACh = blue, ISO = red), with box plots showing distribution of 12 

leading pacemaker locations (n = 1).  13 
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1 
Figure 3: Functional evidence of only one pacemaking region in the failing rat heart. a) Schematic of 2 
the posterior view of a failing rat heart created by ascending aortic constriction. a) Intrinsic heart rates of 3 
in vivo (8-11 weeks old, n = 11) failing rats and ex vivo (10-11 weeks old, n = 6) failing rat SANs under 4 
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baseline conditions (black), 100 µM ACh (blue), and 500 nM ISO (red). c) Heart rate changes caused by 1 
the administration of ACh and ISO in all ex vivo failing rat hearts (n = 6). d) Representative activation maps 2 
of two isolated RA tissue preparation from heart failure rats during baseline sinus rhythm, high 3 
parasympathetic stimulation (100 µM ACh), and high sympathetic stimulation (500nM ISO). Points are re-4 
plotted onto the new axis on a beat-to-beat basis and color-coded according to corresponding condition 5 
(baseline = black, ACh = blue, ISO = red). e) Four hearts displayed pacemaking activity from the sSAN 6 
alone during all treatment conditions, and two hearts displayed pacemaking activity from the iSAN alone 7 
during all treatment conditions.  8 
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 1 

Figure 4: Molecular characterization of the rat sSAN and iSAN. a) Tissue segments of healthy rat hearts 2 

were dissected for RNA sequencing from the sSAN, iSAN, RA, and LA. b) Venn diagrams depict the 3 

number of up- and down-regulated differentially expressed genes (DEGs, padj < 0.05) for the sSAN and 4 

iSAN as compared to the neighboring RA. c) Most enriched Gene Ontology (GO) terms for up-regulated 5 

DEGs (padj < 0.01, FC > 3) in the sSAN (top) and iSAN (bottom) as compared to the RA. d) Heatmap 6 

showing the expression patterns of four categories of genes of interest for the different tissue regions. Genes 7 
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within each category were subject to hierarchical clustering. GSEA analysis of the four gene sets found 1 

significant differences between sSAN and iSAN in the cardiac receptor group (data not shown). e) List of 2 

up-regulated cardiac-specific DEGs (padj < 0.05) for the sSAN and iSAN, as compared with the RA. f) 3 

Fragments Per Kilobase of transcript per Million mapped reads (FPKM) of rat tissues for genes typically 4 

associated with SAN-specificity. 5 
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 1 

Figure 5: Functional and molecular characterization of the human sSAN and iSAN. a) Schematic of 2 

the endocardial view of the isolated human RA as well as a representative image of an isolated RA 3 

preparation with spatially overlaid optical action potentials (OAPs). b) Left: Intrinsic heart rates ex vivo 4 

human SANs under baseline conditions and pharmacological stimulation (n = 3). Right: Normalized y-axis 5 

locations of leading pacemaker sites under baseline conditions (black), ACh (blue), and ISO (red) plotted 6 
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against corresponding heart rates. Points were assigned to one of two cluster locations (superior or inferior) 1 

and fitted with logistic regression curves using K-means clustering analysis (gray dashed line) and a normal 2 

probability distribution. c) Representative optical activation maps of an isolated human RA preparation 3 

during baseline sinus rhythm, high parasympathetic stimulation (500 nM ACh), and high sympathetic 4 

stimulation (100 nM ISO). Leading pacemaker sites are marked with a star. d) Schematic of the posterior 5 

view of the human heart with the two spatially unique pacemakers: superior (sSAN) and inferior (iSAN). 6 

e) Venn diagrams depicting the number of up- and down-regulated differentially expressed genes (DEGs, 7 

padj < 0.05) for the sSAN and iSAN as compared to the neighboring RA. f) Volcano plots for the sSAN 8 

and iSAN as compared to RA (padj < 0.01, FC > 3). g) Heatmap showing the expression patterns of four 9 

categories of genes of interest for four different tissue regions. Genes within each category were subject to 10 

hierarchical clustering. GSEA analysis of the four gene sets found no significant differences between sSAN 11 

and iSAN in any category. h) Fragments Per Kilobase of transcript per Million mapped reads (FPKM) of 12 

human tissues for genes typically associated with SAN-specificity. 13 
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