
Combinatorial Algorithms for Strain Level Metagenomic Microbial

Detection and Quantification

Kaiyuan Zhu1,2, Junyan Xu2, A. Funda Ergun1, Yuzhen Ye1, and S. Cenk Sahinalp2

1Department of Computer Science, Indiana University, Bloomington, IN, USA,
2Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health,

Bethesda, MD, USA

Abstract

Identifying and quantifying the microbial composition of a complex biological or environmental sample
is one of the primary challenges in microbiology. Many software tools have been developed to classify
metagenomic sequencing reads originating from a mixture of bacterial or viral genomes, and to estimate
the microbial abundance profile of the mixture. Unfortunately the accuracy of these tools significantly
degrade in the presence of large portions of shared content among the genomes in the mixture or the
genomic database in use. Here we introduce CAMMiQ, a novel combinatorial solution to the microbial
identification and abundance estimation problem, which improves all available tools with respect to the
number of correctly classified reads (i.e., specificity) by an order of magnitude and resolves possible
mixtures of similar genomes, possibly at the strain level. The key contribution of CAMMiQ is its use of
arbitrary length, doubly-unique substrings, i.e. substrings that appear in exactly two genomes in the
input database, instead of fixed-length, unique substrings. In order to resolve the ambiguity in the
genomic origin of doubly-unique substrings, CAMMiQ employs a combinatorial optimization formulation,
which can be solved surprisingly quickly. CAMMiQ’s index consists of a sparsified subset of the shortest
unique and doubly-unique substrings of each genome in the database, within a user specified length
range and as such it is fairly compact. In short, CAMMiQ offers more accurate genomic identification and
abundance estimation than the best known k-mer based and marker gene based alternatives through the
use of comparable computational resources.
Availability: https://github.com/algo-cancer/CAMMiQ

1 Introduction

Advances in high throughput sequencing (HTS) have made it possible to generate millions of short reads
from a metagemonic sample in a few hours. It is many times possible to identify the microbial species present
in the sample by searching each of these reads in a database of reference genomes for a significant match. In
the early days of metagenomics, reads were typically searched primarily in GenBank [1] through BLAST [2].
Unfortunately, the recent growth of HTS data and reference databases has made read search and alignment
using BLAST computationally infeasible. As a result, a number of novel computational methods have been
developed with the goal of identifying as well as quantifying species in a metagenomic sample faster (see [3]
for a summary of algorithmic approaches used for these purposes).

Among the available computational methods, some aim to use reduced size databases to achieve speed
up in read search. In particular, these methods may align reads only to marker genes, a relatively small
collection of clade-specific, single-copy genes, instead of the full reference genomes [4, 5], through the use
of available read mapping techniques. Note that these methods need to obtain the collection of marker
genes by employing information beyond what is offered by the database itself - which is not always possible.
Furthermore, since these methods identify and use only a handful of marker genes on each genome, many
of the reads in the HTS data can not be utilized, implying low specificity. As a consequence, species with
low abundance within the sample may not be easily identifiable (let alone correctly quantifiable) because
variation in HTS coverage may result in a few or no reads originating from the marker genes, leading to
many false negatives.

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Another set of metagenomic HTS analysis methods are “alignment-free”. There have been alignment free
methods for string comparison for a long time [6, 7, 8] and they have found applications in bioinformatics
workflows before the emergence of HTS [9, 10]. Applications of alignment-free methods to metagenomic HTS
data typically rely on k-mer “matches” to return a taxonomic assignment for every read. These applications
either assign a read to the lowest taxonomic rank possible (determined by the specificity of the read’s k-
mers) [11, 12, 13, 14], or to a pre-determined taxonomic level (typically species or genus levels) [15, 16]. In
contrast to marker gene based methods, k-mer based applications can usually assign the label of the relevant
taxonomic rank to each given read. As the value of k becomes larger, more reads can be assigned a unique
label at the desired taxonomic rank, however, with growing k, the space requirement of these methods grows
very quickly - which, in the worst case, can imply a factor k increase on the space requirements of the
original database. The large memory footprint maintaining the entire k-mer profile of each species can be
reduced through hashing or subsampling the k-mers [17, 18]; however this would result in loss of accuracy.
In addition to methods based on exact k-mer counts, it is also possible to assign metagenomic reads to
bacterial genomes by employing species specific sequence features (e.g. short k-mer distribution or GC
content) [19, 20, 21, 22, 23], although methods that employ this approach are typically not very accurate at
species or strain level assignment.

Note that neither the alignment free, k-mer based methods, nor the marker-gene based tools take into
consideration the distribution of the reads over the genome of the species they are assigned. In fact, the
alignment free methods do not even take into account the length of the genomes, but are based on (un-
normalized) read counts. In reality, the distribution of reads generated by current HTS techniques from a
given species should be roughly uniform. This principle is fundamental to a number of isoform abundance
estimation methods, which aim to solve a very similar problem [24, 25, 26]. Interestingly, this constraint is
under utilized in the context of metagenomic analysis. One exception is the network flow based approach
utilized by, e.g. [27], which (implicitly) establishes a reference guided assembly of the reads into the genomes
of the species involved. As such it is quite accurate but is very slow. Another method in this direction
considers the uniformity of coverage across k-mers with each genome to reduce false positive calls [28], which
improves the running time at a moderate loss of accuracy.

In contrast to the metagenomic species identification and quantification methods summarized above,
there are also tools to determine the likely presence of a long genomic sequence (e.g. the complete or partial
genome of a bacterial species) in a given metagenomic sample [29, 30, 31, 32]. Even though these tools solve
an entirely different problem, methodologically they are similar to the k-mer based species identification and
quantification tools such as [12, 16] in the sense that they build a succinct index on the database (this time
comprised of the the metagenomic read collection) and query this index without explicit alignment. And
because of their design parameters, these tools can not perform abundance estimation for a given species.

Our Contributions. In this paper we describe CAMMiQ (Combinatorial Algorithms for Metagenomic Micro-
bial Quantification), a new computational method to maintain/manage a collection of m (bacterial) genomes
S = {s1, . . . , sm}, each assembled into one or more strings/contigs, representing a species, a particular strain
of a species, or any other taxonomic rank. CAMMiQ’s data structure can answer queries of the following form:
given a query set Q of HTS reads obtained from a mixture of genomes, each from S, identify the genomes
in Q, and compute their relative abundance. Our data structure is not only very efficient in terms of its
querying time, but is also shown to be very accurate, through simulations. The key novel feature of our
data structure is its utilization of substrings which are present in at most c genomes (c > 1) in S. There are
alignment free methods that utilize unique k-mers in genomes for metagenomic analysis [12, 16, 28] already.
However our data structure is the first to consider those substrings that are present in two or possibly more
genomes, for increasing the proportion of reads it can utilize and thus improving sensitivity. Because of this
novel feature, our data structure can accurately identify genomes at subspecies/strain level.

In order to assign each read in Q that includes an “almost-unique” substring (i.e. present in at most c
genomes) to a genome, our data structure solves an integer linear program (ILP) - that simultaneously infers
which genomes are preset in Q and their relative abundances. Specifically, the objective of the ILP is to
identify a set of genomes, in each of which the coverage of the almost-unique substrings is (approximately)
uniform.

One novel feature of our data structure is its use of shortest substrings (present in at most c genomes)
- rather than fixed length “k-mers”. This feature also increases the number of reads utilized by our data

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

structure since some reads may include no almost-unique k-mer but instead longer substrings that are
almost-unique. It also reduces the number of substrings and thus features (not to be confused with the
number of reads) to be handled by the ILP: this is because, rather than considering multiple overlapping
(almost-)unique k-mers, our data structure uses a single shorter substring shared by all of them. The ILP
formulation further reduces the number of almost-unique substrings it considers by maintaining a maximally
sparsified set of substrings which guarantee any potential read from a genome in S that is almost-unique
includes one such substring. In the remainder of the paper, we set the value of c to 2, so as to consider not
only unique but also “doubly-unique” substrings of the genomes in S. Even though this choice turned out
to be sufficiently powerful for the datasets we experimented with, it is easy to generalize our approach to
c > 2 (i.e. to triply-unique, etc. substrings).

As a final contribution, we provide sufficient conditions to identify and quantify genomes in a query
correctly, through the use of unique substrings/k-mers, provided the reads are error free. Although this is a
purely theoretical result, to the best of our knowledge it is the first of its kind for metagenomic data analysis,
and is valid for CAMMiQ for the case c = 1 and other unique substring based methods such as CLARK and
KrakenUniq. CAMMiQ’s use with c = 2 is primarily advised for cases where these conditions are not satisfied.

2 Algorithmic Formulation

The input to CAMMiQ is a set of m genomes S = {si}mi=1, not necessarily all from the same taxonomic level
(each genome here may be associated with a genus, species, subspecies or strain) to be indexed. Although
we describe CAMMiQ for the case where each si ∈ S is a single string, we do not assume that the genomes are
fully assembled into a single contig; rather the string representing a genome could simply be a concatenation
of all contigs from species i and their reverse complements with a special symbol $i between each contig. We
call S the input database and i ∈ {1, · · · ,m} the genome ID of string si.

A query for CAMMiQ involves a set of reads Q = {rj}nj=1 representing a metagenomic mixture. For
simplicity we describe CAMMiQ for reads of length L, however our data structure can handle reads of varying
length. Given Q, the goal of CAMMiQ is to identify a set of genomes A = {s1, · · · , sa} ⊂ S and their respective
abundances p1, · · · , pa which “best explain” Q. This is achieved by assigning (select) reads rj to genomes
si such that the resulting “normalized coverage” pi of each genome si ∈ A is uniform across si.

In its simplest form, CAMMiQ builds a succinct index for input database S, so as to handle queries in the
following form. Given Q = {r1, . . . rn} find the smallest set of genomes A1 = {s1, · · · , sa1} ⊆ S, such that
the set of unique L-mers in A1 includes all reads in Q that are identical to a unique L-mer in S. For any
si ∈ S, call an L-mer in si unique in S if it does not appear in any other si′ . We denote by Ui,L, the set of
all unique L-mers in si. Then A1 = {si ∈ S | Q ∩ Ui,L 6= ∅}.

The above query type may not be powerful enough to identify in Q those genomes in S that are very
similar (with respect to sequence composition) to other genomes and thus do not include many unique L-
mers. Such a genome si would be especially problematic if it is low in abundance, since the chances of Q to
include any unique L-mer from Ui,L will be low. As a solution to this problem, CAMMiQ also features a second
type of query, which is more general since it involves both unique and doubly-unique L-mers of genomes si.
We call an L-mer doubly-unique in S if it appears in exactly two genomes si and si′ and denote the set of
doubly-unique L-mers in si by Di,L. Given query set Q, CAMMiQ’s more general query asks to compute A2,
the smallest subset of S which include all reads in Q identical to unique and doubly-unique L-mers in S.
Note that, necessarily A1 ⊆ A2. Also note that, by involving doubly-unique L-mers, this more general query
will have a chance to capture those genomes in Q which have low abundance and have a few unique L-mers.

Unfortunately, the index structure necessary to support the second type of queries is larger than that for
the first type of queries. Furthermore, this query type could still produce inaccurate results in the presence
of read errors. For handling read errors (at noise rates commonly observed in Illumina data) CAMMiQ finally
features a third type of query, which is even more general since it involves the “shortest” unique and doubly-
unique substrings of reads in Q. We call a substring of a genome si ∈ S a shortest unique substring, if it is
unique to si, has length in the range [Lmin, Lmax], and has no substring that is a shortest unique substring;
this definition can be extended to shortest doubly-unique substrings as well. This query thus asks to compute
the smallest subset A3 of S which include these substrings, with the constraint that the “coverage” of these
substrings in each genome si ∈ A3 is “uniform”. The query also asks to compute the relative abundance of

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

each genome in A3 as will be described later.
By considering shorter unique substrings, our most general query has a higher chance of observing them

within Q (since a substring of length L′ < L is included in L − L′ + 1 L-mers in the genome). This query
may also imply that a smaller fraction of unique or doubly-unique substrings in Q would be subject to read
errors (since it is likely that each read may include more than one such unique substring and it is likely that
at least one such unique substring will be error free). Furthermore the index structure necessary to maintain
the entire set of shortest unique and doubly-unique substrings of genomes in S is fairly large. As a result
of this, we build the index on a maximally sparsified set of shortest unique and doubly-unique substrings of
each si ∈ S which ensure that each read in Q that can be attributed to at most two genomes includes at
least one such substring (see the Supplementary Methods for more details).

An index on this sparsified set of shortest unique and doubly-unique substrings is sufficiently powerful
for CAMMiQ to answer all three types of queries, i.e. it can efficiently compute the sets A1, A2 and A3. For all
three query types CAMMiQ first identifies for each read rj all unique and doubly-unique substrings it includes;
it then assigns rj to the one or two genomes from which these substrings can originate from. To compute A1

CAMMiQ can simply return the collection of genomes which receive at least one read assignment. To compute
A2 CAMMiQ needs to solve the “set cover” problem, or more precisely, its dual, the “hitting set” problem
where genomes form sets and indexed strings that appear in query reads form the items to be covered.
To compute A3 CAMMiQ solves the combinatorial optimization problem that asks to minimize the variance
among the number of reads assigned to each indexed substring of each genome - the solution indicates the
set of genomes in A3 along with their respective abundances.

Details on the composition as well as the construction process for CAMMiQ’s index are discussed in Section
2.1. The query processing of CAMMiQ, which proceeds in two stages are discussed in Sections 2.2 and 2.3: The
first stage assigns reads to specific genomes - which is sufficient for computing sets A1 and A2. See Section
2.2 for the criteria we use for assigning a read to a genome, based on the indexed substrings it includes.
The second stage introduces the combinatorial optimization formulation to compute A3 as a response to the
most general query type. See Section Section 2.3 for details.

2.1 Index Construction

In order to respond to the three types of queries described above, we preprocess unique and doubly-unique
substrings of genomes in S to form an index structure as follows. Let U = ∪mi=1Ui and D = ∪mi=1Di where Ui
and Di are the substrings from genome si whose lengths are within the range than [Lmin, Lmax ≤ L], such
that each u ∈ U is present in at most one genome and each d ∈ D is present in at most two genomes in S.
See below for a detailed definition for the uniqueness of a substring. If our goal is to compute A1 or A2 only
(i.e. respond to the first and second type of queries), we can simply set Lmin = 0, Lmax = L and maintain
the corresponding substring collections U and D in our index. For computing A3 (i.e. responding to the
third type of queries - in addition to the first and second types), we actually use the length constrained
definitions of substrings for computing U and D. As mentioned earlier, we then sparsify U and D as much
as possible by maintaining only one representative substring among those that are in close proximity within
a genome, and discarding the rest (see “Subsampling unique substrings” below for details). We start with
formal definitions and some notation.

Notation and definitions. Let s = s1$1 ◦ · · · ◦ sm$m denote the string obtained by concatenating the
input reference genomes si ∈ S and let M = |s| =

∑
i |si| denote its length. A substring of s is a string in the

form s[l..r] = s[l]s[l+1] · · · s[r]. With a slight abuse of notation we denote by si[l..r] not the actual substring
of si including its lth to rth symbols, but rather the substring of s including its lth to rth symbols, with the
provision that all these symbols are within the representation of si in s. We denote by an `-mer a string of
length `. The suffix of s that starts at position i is denoted suf[i] = s[i, · · · ,M]. In what follows, we use the
generalized enhanced suffix array of s which is composed of three parts. (i) The suffix array SA of s, which is
comprised of the positions 1, 2, · · · ,M , sorted in increasing lexicographical order of the corresponding suffixes
suf[i], i = 1, 2, · · · ,M . That is, SA[i] = j indicates that suf[j] is the i-th smallest suffix in lexicographical
order. In addition, we denote SA−1[j] = i if SA[i] = j. (ii) The longest common prefix array, LCP, contains in
its i-th position the length of the longest common prefix of suf[SA[i]] and suf[SA[i− 1]], for 2 ≤ i ≤M (and
LCP[1] = 0). (iii) Finally, the generalized suffix array GSA contains the genome ID of each suffix suf[SA[i]]. It

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

is well known that all of the above arrays can be constructed in linear time. The first linear time constructed
data structure that can determine whether a given substring is unique to a “document” (i.e. a genome in our
context) in a collection of documents, and compute the shortest unique substring of a document that ends
in a particular position, in time proportional to the substring length is the augmented suffix tree of Matias
et al. [33]. Once an augmented suffix tree is computed, it can be trivially reduced to the above described
enhanced suffix array in O(M) time - which can also be constructed without the use of suffix trees to achieve
a constant factor improvement in memory [34].

We denote by ui(l, r) the substring si[l..r] that is unique to genome si; formally, this indicates that there
exists no substring uj(l

′, r′) on any genome sj 6= si such that ui(l, r) = uj(l
′, r′). We call ui(l, r) an shortest

unconstrained unique substring, if none of its substrings are unique. Similarly, we denote by di(l, r) the
substring si[l..r] that is doubly-unique to genome si and one other genome, say sj ; formally, this indicates
that there is exactly one genome sj which includes the substring dj(l

′, r′), i.e., si[l..r] = sj [l
′..r′] for some

l′, r′. Clearly, any superstring of a unique substring is still unique and any superstring of a doubly-unique
substring is either unique or doubly-unique. We call di(l, r) a shortest unconstrained doubly-unique substring
of si and some other genome sj , if none of its substrings are doubly-unique.

For our purposes we need to constrain the shortest unique and doubly-unique substrings with length
upper bound Lmax and lower bound Lmin. Under these constraints, we call any shortest unconstrained
unique substring ui(l, r) a shortest unique substring if Lmax ≥ r − l + 1 > Lmin. We also call a unique
substring ui(l, r) a shortest unique substring if r− l+1 = Lmin. Similarly, we call any shortest unconstrained
doubly-unique substring di(l, r) a shortest doubly-unique substring if Lmax ≥ r − l + 1 > Lmin. Again, we
call a doubly-unique substring ui(l, r) a shortest doubly-unique substring if r − l + 1 = Lmin as well. We
say an L-mer si[l..l + L− 1] includes a unique substring si[l

′..r′], or, conversely, a unique substring si[l
′..r′]

covers an L-mer si[l..l+L− 1] if l′ ≥ l and r′ ≤ l+L− 1. As such, we call an L-mer unique if it includes a
unique substring. We can generalize these definitions to the notion of an L-mer including a doubly-unique
substring, or conversely, a doubly-unique substring covering an L-mer, and thus making the L-mer itself
doubly-unique - provided that it is not unique.

Algorithmic framework to compute shortest unique substrings. It is quite simple to compute the
shortest unique and doubly-unique substrings in S in O(M) time by using the augmented suffix tree described
in [33]. A similar running time can also be achieved through the use of a suffix array, as discussed by [35] for
a single document (i.e. genome). We slightly generalize this to handle multiple genomes as follows. The key
observation we use is that given a position l, the shortest unique or doubly-unique substring of si that starts
at l (i.e. ui(l, r) or di(l, r)) is the shortest unique, or respectively doubly-unique prefix of suf[l]. In this way
the problem can be reduced to searching for the longest common prefix of suf[l] with any other suffix from
another genome (i.e., any genome with ID 6= GSA[SA−1[l]]) for each 1 ≤ l ≤M . Specifically, we define

LCPu[i] = max
1≤j≤M ;GSA[i] 6=GSA[j]

lcp(suf[SA[i]], suf[SA[j]]) (1)

and
LCPd[i] = max

1≤j≤M ;GSA[i]6=GSA[j],GSA[j′]
lcp(suf[SA[i]], suf[SA[j]]) (2)

where suf[j′] is any suffix with GSA[i] 6= GSA[j′] that maximizes lcp(suf[SA[i]], suf[SA[j′]]) (if there is more
than one solution for j′ then one of them can be chosen arbitrarily), where lcp(x, y) denotes the longest
common prefix of two suffices x and y. CAMMiQ maintains an array SU (of length M) such that SU[r] = l if
ui(l, r) is a shortest unique substring. In order to compute SU, each of its entries is initially set to 0 and for
each i = 1, . . .M , one entry of SU is updated as

SU[SA[i] + LCPu[i]]← max{SU[SA[i] + LCPu[i]], SA[i]} (3)

Similarly, CAMMiQ maintains an array SD (again of length M) such that SD[r] = l if di(l, r) is a shortest
doubly-unique substring. Again each entry of SD is initially set to 0 and then for each i = 1, . . .M , one entry
of SD is updated as

SD[SA[i] + LCPd[i]]← max{SD[SA[i] + LCPd[i]], SA[i]}. (4)

See Supplementary Section 5.1 for further details.

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Computing LCPu and LCPd. Given a subarray GSA[i1, · · · , i2], let dGSA(i1, i2) be the number of distinct
genomes the entries in this subarray belong to, i.e. dGSA(i1, i2) = |{GSA[i1], · · · , GSA[i2]}|. We can now
compute LCPu and LCPd in linear time as follows.

LCPu[i] = max


min

i−<x≤i
LCP[x], where i− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 2

min
i<x≤i+

LCP[x], where i+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 2

(5)

LCPd[i] = min



max


min

i−<x≤i
LCP[x], where i− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 2

min
i<x≤i2+

LCP[x], where i2+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 3

max


min

i2−<x≤i
LCP[x], where i2− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 3

min
i<x≤i+

LCP[x], where i+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 2

(6)

Note that to introduce a minimum length constraint Lmin on unique and doubly-unique substrings, each
LCPu[i] is (re)set to max{Lmin−1, LCPu[i]} and respectively each LCPd[i] is (re)set to max{Lmin−1, LCPd[i]}.
Then, to ensure that each shortest doubly-unique substring occurs in exactly two genomes (and not one),
we set LCPd[i] =∞ in case the above procedure ends up with LCPd[i] = LCPu[i]. See Supplementary Section
5.2 for the proof of correctness and a running time analysis for the computation of LCPu and LCPd.

Subsampling unique substrings. As defined above, the array SU maintains the indices of all shortest
unique substrings; some of these substrings may have large overlaps with others and thus are redundant
in assessing the uniqueness of a read in the query. Let Ui be the collection of all unique substrings on
genome si. Then, in order to reduce the index size, CAMMiQ aims to compute a subset U ′i of Ui, consisting
of the minimum number of shortest unique substrings that cover every unique L-mer on si. CAMMiQ also
aims to compute a subset D′i of Di, consisting of the minimum number of shortest doubly-unique substrings
that cover every doubly-unique L-mer on si. This is all done by greedily maintaining only the rightmost
shortest unique or doubly-unique substring in any L-mer of a genome in S. In the remainder of the paper
we denote the number of unique substrings in subset U ′i by nui (= |U ′i |) and respectively the number of
doubly-unique substrings in subset D′i by ndi (= |D′i|); we denote the number of unique L-mers on si by nuLi
and respectively the number of doubly-unique L-mers on si by ndLi . As we prove in Supplementary Section
5.3, this greedy strategy we employ can indeed obtain the minimum number of shortest unique substrings
to cover each unique L-mer, provided that each substring in Ui occurs only once si.

Index Organization. Consider the set of unique substrings Let h = minui∈U |ui| be the minimum length
of all shortest unique substrings (h is automatically set to Lmin if the minimum length constraint is imposed).
CAMMiQ maintains a hash table which maps a distinct h-mer w to a bucket containing all unique substrings
ui which have w as a prefix. Within each bucket, the remaining suffices of all unique substrings ui, i.e.
ui[h+1..|ui|], are maintained in a trie so that each leaf contains the corresponding genome ID. For each read
rj in the query, CAMMiQ considers each substring of length h and it’s reverse complement and computes its
hash value (in total time linear with L through Karp-Rabin fingerprinting). If the substring has a match in
the hash table, then CAMMiQ tries to extend the match until a matching unique substring is found, or finds
no match. (Note that the processing for doubly-unique substrings is identical to that for unique substrings.)
See Figure 1 for an overview of the index structure. Also see Section 2.2 below for the use of unique and
doubly-unique substrings identified for each read to answer the query.

2.2 Query Processing Stage 1: Preprocessing the Reads

Given the index structure on the sparsified set of shortest unique and doubly-unique substrings of genomes
in S, we handle each query Q in two stages. In Stage 1, we preprocess each read rj ∈ Q as follows. Consider
the set of genomes associated with each unique and doubly-unique subtring in the read rj . If the intersection
of these sets are empty we discard the read since these substrings are “conflicting” (see below for a short

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Figure 1: Overview of CAMMiQ’s index structure. Strings in blue are unique substrings and those in green
are doubly-unique substrings.

discussion on these conflicts). If the intersection is non-empty, for each unique substring ui and each doubly-
unique substring di in rj , we increase the associated counter c(ui) and respectively c(di) we maintain. These
counters indicate the number of “conflict-free” reads that include each such substring in Q. As described
below, these counters will be essential to actual query processing in Stage 2.

1. Identify the set Uj = {uj,1, . . . uj,`} ⊂ U of unique substrings in rj ; similarly identify the set Dj =
{dj,1, . . . dj,`′} ⊂ D of doubly-unique substrings in rj .

2. (a) If Uj = Dj = ∅ then discard rj .

(b) If Uj 6= ∅ but it includes a pair of unique substrings uj,i and uj,i′ which originate from different
genomes, then discard rj .

(c) If Uj 6= ∅ and all its unique substrings originate from the same genome sk, however Dj includes
a substring dj,i which can not originate from sk, then again discard rj .

(d) If Uj = ∅ and the intersection of the set of genomes from where the substrings in Dj can originate
is empty, then also discard rj .

(e) If on the other hand,

i. Uj 6= ∅, all its unique substrings originate from the same genome sk, and each doubly-unique
substring dj,i′ ∈ Dj can originate from sk, or

ii. Uj = ∅, however the intersection between the genomes where the doubly-unique substrings of
rj can originate from is comprised of only one genome, sk, or

iii. Uj = ∅ and dj is comprised of doubly-unique substrings that can only originate from the same
pair of genomes sk and sk′ , then

then increase c(uj,i) by 1 for each uj,i ∈ Uj and c(dj,i) by 1 for each dj,i ∈ Dj .

The above counters are sufficient to compute the set A1 as well as A3, the answer to our most general
query type. For computing A2, CAMMiQ additionally maintains a counter d(sk, sk′) for each pair of genomes
sk, sk′ , indicating the number of reads in Q that can originate both from sk and sk′ ; the value of this counter
needs to be increased for each pair of involved genomes by 1 in case (iii) above.

The preprocessing stage described above eliminates those reads that include conflicting unique or doubly-
unique substrings - conflicting in the sense that they are associated with different genomes. There are two
main reasons for observing such conflicts: (i) read errors, (ii) the presence of genomes in the query that are
not in S. By eliminating these conflicting reads, we reduce the chances of mis-identifying the genomes they
may originate from.

In short, the read preprocessing stage produces two vectors cui = (c(ui,1), · · · , c(ui,nui)) and cdi =
(c(di,1), · · · , c(di,ndi)) which indicate the number of (conflict-free) reads that include each unique and doubly-
unique substring on each genome si. One can use these vectors to compute A1 = {si :

∑nui
l=1 c(ui,l) > 0}.

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Additionally, through the use of the counter d(sk, sk′) maintained for each pair of genomes sk, sk′ one can
compute A2 = arg min |A′ ⊂ S| such that (i) si ∈ A′ if

∑nui
l=1 c(ui,l) > 0 and (ii) ∃si ∈ A′, if d(sk, sk′) > 0

then either i = k or i = k′. This is basically the solution to the hitting set problem we mentioned earlier,
whose formulation as an integer linear program (ILP) is well known [36]. From this point on, our main focus
will be computing A3 (as well as the relative abundances of the genomes in A3) for which we introduce an
ILP formulation described below.

2.3 Query Processing Stage 2: ILP Formulation

CAMMiQ computes the list of genomes in the query as well as their abundances through an integer linear
program (ILP) described below. Let δi = 0/1 be the indicator for the absence or presence of the genome si
in Q. The ILP formulation assigns a value to each δi and also computes for each si its abundance pi in the
range [pmin, pmax].

Minimize
∑
i

(
1

nui

nui∑
l=1

|c(ui,l)− e(ui,l)|+
1

ndi

ndi∑
l=1

|c(di,l)− e(di,l)|)

Subject to e(ui,l) = (L− |ui,l|) · pi ·
1

L
· (1− êrr)|ui,l| ∀i, l, s.t. 1 ≤ l ≤ nui

(7)

e(di,l) = (L− |di,l|) · (pi + pj) ·
1

L
· (1− êrr)|di,l| ∀i, l s.t. 1 ≤ l ≤ ndi

(8)

pi ≤ δi · pmax ∀i (9)

δi = 0 ∀i, s.t. si /∈ E(Q)
(10)

pi ≥ δi ·min{L ·
nui∑
l=1

c(ui,l) ·
1

nuLi
, L ·

ndi∑
l=1

c(di,l) ·
1

ndLi
} · (1− ε) ∀i, s.t. si ∈ E(Q)

(11)∑
i

|si| · pi ≤ n · L (12)

The objective of the ILP is to minimize the sum of absolute difference between the expected and the actual
number of read to cover a unique or doubly-unique substring. Since each genome may have different number
of unique and doubly-unique substrings, this difference is normalized w.r.t. nui or ndi. Constraints (7) and
(8) define the expected number of reads to cover a particular unique substring ui,l or doubly-unique substring
di,l - here pj is the abundance of genome sj which also includes di,l. Here we denote by êrr the estimated read
error (specifically substitution) rate per nucleotide, and denote by |w| the length of a substring w. Constraint
(9) ensures that the abundance pi of a genome is 0 if δi = 0. Constraint (10) ensures that the solution to
the above ILP excludes those genomes whose counters for unique and doubly-unique substrings add up to a
value below a threshold - so as to reduce the size of the solution space. More specifically, given a threshold
value α, the constraint excludes those genomes si which are not in the set of genomes E(Q) whose counters
for its unique substrings add up to a value above α · nuLi , and doubly unique substrings add up to a value

above α · ndLi . More formally, E(Q) = {si ∈ S |
∑nui
l=1 c(ui,l) ≥ α · nuLi } ∩ {si ∈ S |

∑ndi
l=1 c(di,l) ≥ α · ndLi }.

Constraint (11) enforces a lower bound on the coverage (and thus the abundance) of each genome si in the
solution to the above ILP (namely, with δi = 1), which must match the coverage (L ·

∑nui
l=1 c(ui,l) ·

1
nuLi

and
∑ndi
l=1 c(di,l) ·

1
ndLi

) resulted from the number of reads in Q that include a unique and doubly-unique

substring respectively, i.e., it must be at least (1 − ε) times the smaller one above for a user defined ε.
Constraint (12) enforces an upper bound on the coverage (and thus the abundance) of each genome si in
the solution to the above ILP, through making the sum (over each si) of the number of reads produced
on si based on pi not exceed the total number of reads n. Collectively, the last two constraints ensure
that the abundance pi computed from the ILP matches what is (i.e., the coverage based on read counts)

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

given by Q. Note that the absolute values in the objective can be removed by introducing a new variable
d(ui,l) ≥ max{c(ui,l)− e(ui,l), e(ui,l)− c(ui,l)}.

2.4 When to use Unique Substrings - the Error Free Case

We now provide a set of sufficient conditions to guarantee the (approximate) performance that can be
obtained (with high probability) in metagenomic identification and quantification by the use of unique
substrings only. These conditions apply to CAMMiQ when c = 1, as well as CLARK, KrakenUniq and other
similar approaches. In case these conditions are NOT met, it is advisable to use CAMMiQ with c ≥ 2.

Suppose that we are given a query Q composed of n error free reads of length L, sampled independently
and uniformly at random from a collection of genomes A = {s1, · · · , sa} according to their abundances
p1, · · · , pa. More specifically, suppose that our goal is to answer query Q by computing A1, along with an
estimate for the abundance value pi for each si ∈ A1, calculated as the weighted number of reads assigned to
si according to the procedure described in Section 2.2. Then, the L1 distance between the true abundance
values and this estimate will not exceed a value determined by n (number of reads), a, and qmin, the minimum
(normalized) proportion of unique L-mers among these genomes. For a given failure probability δ and an
upper bound on L1 distance ε, this translates into sufficient conditions on the values of n, a and qmin to
ensure acceptable performance by the computational method in use.

Theorem 1. Let Q = {r1, · · · , rn} be a set of n error-free reads of length L, each sampled independently and
uniformly at random from all positions on a genome si ∈ A = {s1, · · · , sa}, where s1, · · · , sa is distributed

according to their abundances p1, · · · , pa > 0. Let p′i =
pi·nLi∑a

i′=1
p′
i′ ·n

L
i′

be the corresponding “unnormalized”

abundance of pi for i = 1, · · · , a, where nLi denotes the total number of L-mers on si. Let q1, · · · , qa > 0 be
the proportion of unique L-mers on s1, · · · , sa respectively; pmin = min{p1, · · · , pa}; qmin = min{q1, · · · , qa}.
Then,

• (i) With probability at least 1− δ, each si can be identified through querying Q if n ≥ 2(a+1)+ln(1/δ)
(pminqmin)2

• (ii) With probability at least 1 − δ, the L1 distance between the predicted abundances p̂1, · · · , p̂a by

setting p̂i = ci/qi
n and the true (unnormalized) abundances p′1, · · · , p′a is at most ε if n ≥ 2(a+1)+ln(1/δ)

(εqmin)2 .

• (iii) Given n such reads in a query, with probability at least 1−δ, the L1 distance between the predicted

abundances p̂1, · · · , p̂a by setting p̂i = ci/qi
n and the true (unnormalized) abundances p′1, · · · , p′a is

bounded by
√

2[ln(1/δ)+(a+1)]
nq2min

.

where ci denotes the number of reads assigned to si.

See Supplementary Methods for a proof.

3 Results

In order to benchmark the overall running time performance, memory utilization and accuracy of CAMMiQ, we
have created a large, “species-level” dataset consisting of all complete bacterial genomes in NCBI’s RefSeq
[37] Database (downloaded on 06/16/2019). We (randomly) selected one representative genome per species
out of 13737 reference genomes representing 4122 distinct species. This resulted in a total of m = 4122
genomes with a total length of M = 3.4 ∗ 1010 (including the reverse complement contigs). On this bacterial
genome dataset, CAMMiQ was compared against the state of the art k-mer based and marker-gene based
metagenomics analysis tools, specifically Kraken2 [38] (the latest version of Kraken [12]), KrakenUniq [28],
CLARK [16] and MetaPhlAn2 [39] (these four tools provide very similar functionality to CAMMiQ such as
read level classification and abundance estimation).

In addition, we composed a smaller, “strain-level” dataset consisting only of 614 Human Gut related
genomes according to [40] to evaluate CAMMiQ’s strain level identification and quantification performance.
All of our experiments were run on a Linux server equipped with 40 Intel Xeon E7-8891 2.80 GHz processors,

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Figure 2: (A) Proportion of L-mers (for L = 100) that include a unique substring (plotted in red), a doubly-
unique substring (plotted in green), or either a unique or a doubly-unique substring (plotted in yellow) in
the large dataset of 4122 bacterial genomes from NCBI RefSeq database; these L-mers, when presented as
reads are utilizable by CAMMiQ (when Lmax = 100). Also included are the proportion of L-mers that include
a unique k-mer (k = 30) and thus are utilized by CLARK. For each plot, the genomes are independently
sorted with respect to the corresponding proportionality in ascending order. (B) The expected number of
reads (of length L = 100) needed to capture one read containing a unique substring (in blue) as well as one
read containing a doubly-unique substring (in green) in the 50 genomes with the lowest proportion of unique
L-mers. Also included are the range for each value within the corresponding standard deviation. Note that
for this figure Lmax = 50.

with 2.5 TB of physical memory and 30 TB of disk space. The ILP solver used by CAMMiQ is IBM ILOG
CPLEX 12.9.0.

Below, Section 3.1 demonstrates the advantage CAMMiQ can offer by utilizing doubly-unique, in addition
to unique substrings, and considering shortest such substrings instead of fixed length k-mers as per CLARK.
Section 3.2 gives an overview of the sets of queries we used to benchmark CAMMiQ’s performance. Section 3.3
and 3.4 then demonstrate CAMMiQ’s performance on these query sets on both our species-level and strain-level
datasets, compared with the state of the art metagenomics analysis tools. Finally Section 3.5 compares the
computational resources required by these tools.

3.1 Comparative Utility of Variable-Length and Doubly-Unique Substrings

First, we demonstrate the theoretical advantage offered by CAMMiQ in comparison to other tools, due to its
unique utilization of not only unique k-mers (as per CLARK), but substrings of any length, which are unique
or doubly-unique - within the species-level dataset we constructed. For that we compared the proportion of
L-mers from each genome si in this dataset (for L = 100) that are unique or doubly-unique (and thus can
be utilized by CAMMiQ) with the proportion of L-mers that include a unique k-mer (that can be utilized by
CLARK) for k = 30.

Figure 2A summarizes our findings: on the horizontal axis, the genomes are sorted with respect to the
proportion of unique and doubly-unique L-mers they have; the vertical axis depicts this proportionality
(from 0.0 to 1.0). The four plots we have are for the proportion of unique L-mers, doubly-unique L-mers,
the combination of unique and doubly-unique L-mers (all utilized by CAMMiQ), and the L-mers that include
a unique k-mer (utilized by CLARK). As can be seen, roughly three quarters of all genomes in this dataset
(and thus many of the bacterial species) are easily distinguishable since a large fraction of their L-mers
include a unique k-mer. However, roughly a quarter of the genomes in this dataset can benefit from the
consideration of doubly-unique substrings, especially when their abundances are low. In particular, 66 of
these 4122 genomes/species have extremely low proportion of (≤ 1%) unique 100-mers. In fact, the species
Francisella sp. MA06-7296 does not have a single unique 100-mer and the species Rhizobium sp. N6212
does not have any 100-mer that include a unique 30-mer (in fact any substring of length ≤ Lmax = 50).
These two species cannot be identified by CLARK in any microbial mixture, independent of the abundance
values.

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Query Set Related Dataset Read Length (L) Num. Reads (n) Err Rate

Least-20-uniform-e.f. 100 4.8M 0
Least-20-uniform 100 4.8M 0.01

Least-quantifiable-20-uniform-e.f. 100 5.0M 0
Least-quantifiable-20-uniform Selected 100 5.0M 0.01
Least-20-genera-uniform-e.f. complete 100 4.0M 0

Least-20-genera-uniform bacteria 100 4.0M 0.01
Least-20-genera-lognormal genomes 100 4.0M 0.01

Random-20-uniform 100 4.4M 0.01
Random-20-lognormal 100 5.0M 0.01

Random-20-lognormal-a.g. 100 1.1M 0.01
Random-100-uniform 100 21.5M 0.006

HumanGut-least-25 Human Gut 100 2.0M 0.01
HumanGut-random-100-1 related 100 8.0M 0.01
HumanGut-random-100-2 bacteria 125 8.0M 0.01

HumanGut-all genomes 100 20.0M 0.01

Table 1: Synthetic metagenomes generated to benchmark CAMMiQ’s performance against the best available
metagenomic classification and abundance estimation tools. The top collection of queries involve genomes
from our species-level dataset consisting of 4122 distinct bacterial species. The bottom collection were
sampled from our strain-level dataset of 617 gastrointestinal associated bacteria (possibly incompletely as-
sembled) provided in [40].

Figure 2B depicts the inverse proportionality of doubly-unique L-mers in comparison to unique L-
mers among 50 genomes that have the lowest proportion of unique L-mers - for L = 100. The inverse-
proportionality of unique or doubly-unique L-mers for a genome corresponds to the number of reads to be
sampled (on average) from that genome to guarantee that the sample includes one read that is guaranteed to
be assigned to the correct genome. In the absence of read errors, this guarantees the correct identification of
the corresponding genome in the query. Note that, in half of these 50 genomes, almost all L-mers are doubly-
unique. This implies that any query involving one or more of these genomes would unlikely to be resolved
with CLARK. Yet this query could be handled by CAMMiQ since if a read contains a unique or doubly-unique
substring, then it can be correctly assigned to the corresponding species as described in Section 2.2.

Note that 3296 of the 4122 species in our species-level dataset have ≥ 90% of their 100-mers as unique.
Only a few of these unique substrings do not include a unique 30-mer and thus will be missed by CLARK.
This implies that from the accuracy point of view on these genomes, CLARK’s use of k-mers instead of
the shortest substrings does not put it at a disadvantage on these genomes - when k = 30 and L = 100.
However, as it will become clear later (see Table 5) CAMMiQ’s use of shortest substrings, combined with its
subsampling strategy gives it an advantage over CLARK (as well as KrakenUniq) with respect to the size
of the index structure - despite the fact that CAMMiQ needs to index not only unique but also doubly-unique
substrings from each genome.

3.2 Simulated Metagenomes for Querying CAMMiQ

In order to systematically compare the performance of CAMMiQ and other metagenomic profiling tools, we
generated several simulated metagenomes as query sets, summarized in Table 1. The upper part of the
table corresponds to simulated data from our species-level dataset and the lower part corresponds to our
strain-level dataset.

The first set of simulated metagenomes aim to assess how well CAMMiQ identifies species in a query. For
that we simulated a metagenome consisting of the 20 genomes that have the lowest number of unique L-mers
in our species-level dataset. Each genome in the mixture was simulated to have similar read coverage. The
very first query we generated from this mixture (denoted Least-20-uniform-e.f.) had no read errors. The
second query (denoted Least-20-uniform) had i.i.d. substitution errors occurring at a rate of 1%. Note that

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

the 20 genomes we used in this mixture are intrinsically difficult to be identified by CLARK and other tools
we compared. However since these genomes have many doubly-unique L-mers - which are sometimes shared
with multiple other genomes, they could be identified by CAMMiQ (see Supplementary Methods and Figure 4
for a more detailed explanation).

The second set of metagenomes we simulated aim to assess the species-level quantification performance
of CAMMiQ. This simulated metagenome consisted of the 20 genomes which are among the 50 genomes in our
species-level dataset with the lowest proportion of unique L-mers, but had the highest proportion of doubly-
unique L-mers, making them somewhat easier to identify in comparison to the simulated metagenome above,
but difficult to quantify by tools other than CAMMiQ. We again generated two simulated read collections
from this mixture, one with no sequencing errors (denoted Least-quantifiable-20-uniform-e.f.) and another
with i.i.d. substitution rate of 1% (denoted Least-quantifiable-20-uniform). The ability of CAMMiQ’s ILP
formulation to simultaneously determine the presence and abundance of genomes in these queries help it
outperform the alternatives. (See Supplementary Methods and Figure 4 for a more detailed explanation.)

Even though RefSeq identifies each genome in our species-level dataset to represent a distinct species,
a few of them have “unclassified” lineages at the species level. (Some of the genomes in the above queries
are among them; see Figure 4 in the Supplementary Methods.) For example, Rhizobium sp. N1314 with
Taxonomy ID: 1703961, NCBI BLAST name: a-proteobacteria, has Rank: species; however its Lineage is
noted as unclassified Rhizobium. Because of this ambiguity, we generated a third set of metagenomes, again
consisting 20 of those 50 genomes with the lowest proportion of unique L-mers, this time making sure that
each of these 20 genomes represent a distinct genus. We generated 3 queries from this set of genomes. The
first one had uniform coverage and had no sequencing errors (denoted Least-20-genera-uniform-e.f.). The
second and third both had i.i.d. substitutions at a rate of 1%; the second had a uniform read coverage
(denoted Least-20-genera-uniform), while the third had lognormal distribution (denoted Least-20-genera-
lognormal).

In addition to the above particularly challenging queries, we simulated a number of additional read
collections from 20 to 100 randomly chosen genomes from our species-level dataset. Unlike the above queries,
all these read collections had i.i.d. substitution errors; the first three queries at a rate of 1% and the last query
at a rate of 0.6%. Among them, the first simulated query (denoted Random-20-uniform) included reads from
20 genomes, each with similar read coverage. The second (denoted Random-20-lognormal) again included
reads from 20 genomes, this time with coverages obeying a log-normal distribution. The third (denoted
Random-20-lognormal-a.g.) included reads from 20 genomes, again with log-normal coverage distribution;
what makes this query unique is that 10% of the reads were from an additional genome (denoted in the
dataset name as a.g.) not included in our species-level dataset and thus is not part of CAMMiQ’s index.
The fourth (denoted Random-100-uniform) included reads from 100 randomly chosen genomes from our
species-level dataset, all with similar coverage.

In order to assess CAMMiQ’s performance in strain level identification and quantification, we simulated
queries involving genomes from a database of 614 strains of human gastrointestinal bacteria [40]1 from 409
species. We again simulated multiple queries, the first one involving reads from 25 strains with the smallest
number of unique L-mers (denoted HumanGut-least-25), next two involving reads from randomly selected
100 strains, the first with L = 100 as per the remainder of the queries (denoted HumanGut-random-100-1),
and the second with L = 125 (denoted HumanGut-random-100-2), and the final involving reads sampled
from 409 randomly picked strain level genomes (denoted HumanGut-all), each representing a distinct species
in the dataset. Note that none of these queries included more than one strain per species since two distinct
strains from a species are not likely to be simultaneously present in a metagenomic sample.

The index we built to respond to these queries consisted of all the 614 strain level genomes described
above. The majority of these genomes are not complete and is comprised of multiple contigs; we filtered out
any contig with length < 10KB and built the index on the remaining contigs. This resulted in seven strains
without a single unique 100-mer and one strain without a single unique or doubly unique 100-mer. This last
genome of Bacillus andreraoultii was excluded from our queries since it contains no indexable substring.

1The complete set of genomes in this database is 617 but only 614 can be downloaded from RefSeq.

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Performance
Query Set CAMMiQ Kraken2 KrakenUniq CLARK MetaPhlAn2

Measure

A. Precision

Least-20-uniform-e.f. 1.0 0.014 0.952 1.0 -
Least-20-uniform 0.974 0.001 0.009 0.006 -

Least-quantifiable-20-uniform-e.f. 1.0 0.043 0.936 1.0 -
Least-quantifiable-20-uniform 0.989 0.012 0.086 0.064 -
Least-20-genera-uniform-e.f. 1.0 0.027 0.978 1.0 -

Least-20-genera-uniform 0.993 0.005 0.047 0.028 -
Least-20-genera-lognormal 0.993 0.005 0.049 0.033 -

Random-20-uniform 0.997 0.783 0.981 0.994 -
Random-20-lognormal 0.998 0.933 0.991 0.995 -

Random-20-lognormal-a.g.* 0.998 0.900 0.998 0.997 -
Random-100-uniform 0.998 0.968 0.965 0.997 -

Least-20-uniform-e.f. 1.72M 25226 664 675 76483
Least-20-uniform 1.57M 220721 62189 94632 70605

Least-quantifiable-20-uniform-e.f. 3.18M 79408 6307 5844 120199
Least-quantifiable-20-uniform 2.81M 246877 62617 81575 115959

B. Num. Least-20-genera-uniform-e.f. 2.89M 33523 1844 1763 67625
Assigned Least-20-genera-uniform 2.58M 170506 36286 57764 64204

Reads Least-20-genera-lognormal 2.53M 183709 41681 59679 73433
Random-20-uniform 3.84M 3.33M 3.88M 3.81M 80633

Random-20-lognormal 4.48M 3.84M 4.43M 4.39M 19484
Random-20-lognormal-a.g. 0.91M 0.93M 0.97M 0.97M 28328

Random-100-uniform 19.5M 17.0M 19.4M 18.7M 0.4M

Least-20-uniform-e.f. 20/20 16 17 18 13
Least-20-uniform 20/28 16 17 18 13

Least-quantifiable-20-uniform-e.f. 20/20 19 19 20 18
C. Num. Least-quantifiable-20-uniform 20/27 19 19 20 18
Correctly Least-20-genera-uniform-e.f. 20/20 18 18 18 12
Identified Least-20-genera-uniform 20/24 18 18 18 12
Genomes Least-20-genera-lognormal 20/33 17 17 18 12

Random-20-uniform 20/20 18 20 20 11
Random-20-lognormal 20/21 20 20 20 9

Random-20-lognormal-a.g.* 20/20 19 20 20 13
Random-100-uniform 100/100 100 100 100 76

D. L1 Err.

Least-20-uniform-e.f. 0.0790 - - 0.8846 0.8171
Least-20-uniform 0.0929 - - 0.9124 0.8180

Least-quantifiable-20-uniform-e.f. 0.0375 - - 0.5774 0.5722
Least-quantifiable-20-uniform 0.0278 - - 0.5659 0.5956
Least-20-genera-uniform-e.f. 0.0626 - - 0.7156 0.9153

Least-20-genera-uniform 0.0591 - - 0.7067 0.9533
Least-20-genera-lognormal 0.0439 - - 0.5701 1.0083

Random-20-uniform 0.0113 0.4139 0.1446 0.2042 0.8257
Random-20-lognormal 0.0038 0.2843 0.1217 0.1496 1.7367

Random-20-lognormal-a.g.* 0.1262 0.2412 0.1173 0.1861 0.5578
Random-100-uniform 0.0096 0.2364 0.1327 0.2063 0.7801

Table 2: Performance evaluation of CAMMiQ, Kraken2, KrakenUniq, CLARK and MetaPhlAn2 on queries from the
species level dataset. Precision: the proportion of reads correctly assigned to a genome among the set of reads
assigned to some genome (correctly or incorrectly). Number of assigned reads: the total number of reads assigned to
some genome. Number of correctly identified genomes: for CAMMiQ we report both the number of correctly identified
genomes (true positives) and the total number of genomes returned by its ILP formulation (false positive); for
Kraken2, KrakenUniq, CLARK and MetaPhlAn2 we only report the number of correctly identified genomes (true
positives). Note that we consider MetaPhlAn2 to have a correct identification even if it reports the genus that this
genome belongs to. L1 error: the L1 distance between the true relative abundance values (between 0 and 1) and the
predicted abundance values for each genome in the query (i.e. positives). We made an exception for MetaPhlAn2,
where we measured the genus level L1 distance. Note that we converted the true abundance values reported by
Kraken2, KrakenUniq and CLARK by dividing the predicted abundance value for each genome by its length and
then normalizing these values by the total abundance value of all genomes. In each of the four measures, the best
performing tool’s results are highlighted.
*: 10% reads in the query Random-20-lognormal-a.g. are from a genome not in the index; any assignment of these
reads are necessarily incorrect by all tools except MetaPhlAn2 - which uses its own index, that happens to include
this genome.

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

3.3 Classification and Quantification Performance - Species Level

We tested CAMMiQ on read collections sampled from the species-level dataset and compared its practical
performance with the select metagenomic analysis tools. Perhaps the most widely-used performance measures
to benchmark metagenomic classifiers are the proportion of reads correctly assigned to a genome among (i)
the set of reads assigned to some genome, i.e. precision, and (ii) the full set of reads in the query, i.e.
sensitivity [16]. In Table 2A we report the precision values for all tools we benchmarked with the exception
of MetaPhlAn2, since it does not report individual read assignments. In Table 2B, instead of reporting
sensitivity, we report the total number of reads assigned to a genome, since the main goal of Kraken2,
KrakenUniq and CLARK are to classify as many reads as possible, correctly. The number of reads assigned
to a genome (part B of the Table) multiplied by precision (part A of the table) indeed gives this number,
i.e. that of correctly classified reads. Note that any read assigned to a taxonomic level higher than (and
not including) species level by Kraken2 or KrakenUniq are considered to be not assigned. (In a way, this
increases their reported precision but decreases their number of assigned reads.) Also note that CAMMiQ’s
primary goal is not to classify each read but rather identify and quantify genomes in a query. Nonetheless, we
still report its intermediate output as follows. CAMMiQ considers certain reads as conflicting; here we consider
them as not assigned. It assigns certain reads to a single genome; we consider each such read assigned, and
if the assignment is correct, also correctly assigned. CAMMiQ then assigns each remaining read ambiguously
to two potential genomes.2 We consider this read assigned, and in case one of these two genomes are correct,
also correctly assigned. Finally since MetaPhlAn2 has an index based on a predetermined database, it is not
easy to evaluate this tool’s precision, since the IDs of the genomes indexed by the other four tools do not
always correspond to MetaPhlAn2’s genome IDs. As a result we only report its number of assigned reads
but not its precision.

We benchmarked CAMMiQ using its default parameter setting of Lmin = 26 and Lmax = 50, against
Kraken2, KrakenUniq and CLARK, with all three using k-mer length of 26. All four of these tools used the
same genomes for establishing their index. As can be seen in Table 2, CAMMiQ demonstrated the best precision
for read classification in all of the 11 simulated query sets. With respect to the total number of assigned reads
(correctly or incorrectly) on the first 7 queries, i.e. those involving the 20 genomes with the least number of
unique L-mers (Least-20-uniform-e.f. and Least-20-uniform), those that are the least quantifiable (Least-
quantifiable-20-uniform-e.f. and and Least-quantifiable-20-uniform), and those are composed of genomes
each from a distinct genus (Least-20-genera-uniform-e.f., Least-20-genera-uniform and Least-20-genera-
lognormal), CAMMiQ improves over the alternatives not only in terms of precision but also the number of reads
assigned, sometimes by an order of magnitude or more. The only exceptions are on those “hypothetical”
error-free queries, on which not only CAMMiQ and but also CLARK achieves 100% precision. For the above
7 queries Kraken2 has the lowest precision; KrakenUniq has improved precision but only to a degree. In
return, the number of assigned reads by KrakenUniq are typically the lowest.

On the next four queries, which are easier to identify and quantify, CAMMiQ’s peformance is still the
best overall. Its precision is the best for all four of these queries while the number of assigned reads are
slightly worse than KrakenUniq in two queries. This is likely due to the fact that KrakenUniq produces
some incorrect assignments, especially for the Random-20-uniform query on which KrakenUniq has a lower
precision. The precision of CAMMiQ is identical to KrakenUniq on Random-20-lognormal-a.g. query, where
10% of the reads are sampled from an additional genome not indexed. This is despite that the number of
assigned reads from this query are higher for KrakenUniq and CLARK, demonstrating that the introduction
of un-indexed species impacts the performance of CAMMiQ similarly to the other tools.

We next evaluated the number of correctly identified genomes (for MetaPhlAn2, correctly identified
species) in each query, as well as the L1 distance between the true abundance profile and the predicted
abundance profile by all five tools on the 11 queries involving our species level dataset. The results can be
found in Table 2, parts C and D and Figure 3. Note that CAMMiQ and MetaPhlAn2 automatically incorporate
a normalization with respect to genome lengths, while Kraken2, KrakenUniq and CLARK simply report the
number of reads assigned to each taxonomy rank (for our queries, species) as their abundance profile. In
order to compute L1 distances correctly, we converted the true abundance profiles of Kraken2, KrakenUniq
and CLARK by dividing the predicted abundance value of each genome by its length and then normalizing

2This happens if the read includes one or more doubly unique substrings from the same pair of genomes but no unique
substring.

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Query Set Lmin Precision
Num.
Assi-

Num. Identified Species L1 Err.

gned
Reads

α = 0.001 α = 0.0001 α = 0.001 α = 0.0001

Least-20-uniform
21 0.887 1.69M 20/21 31/32 0.0835 0.0836
26 0.974 1.57M 20/21 28/29 0.0929 0.0929
31 0.980 1.49M 20/20 22/23 0.1064 0.1060

Least- 21 0.967 2.85M 20/20 29/31 0.0423 0.0400
quantifiable 26 0.989 2.81M 20/20 27/29 0.0294 0.0278
-20-uniform 31 0.992 2.70M 20/20 24/26 0.0344 0.0326
Least-20- 21 0.974 2.61M 20/20 25/26 0.0706 0.0715
genera- 26 0.993 2.58M 20/20 24/26 0.0585 0.0591
uniform 31 0.995 2.48M 20/20 23/24 0.0688 0.0683
Least-20 21 0.974 2.56M 19/19 34/35 0.0394 0.0418
genera- 26 0.993 2.53M 19/19 33/34 0.0416 0.0439
lognormal 31 0.995 2.43M 19/19 32/33 0.0355 0.0374
Random-20- 21 0.993 3.83M 20/20 20/20 0.0220 0.0220
uniform 26 0.997 3.84M 20/20 20/20 0.0113 0.0113

31 0.998 3.69M 20/20 20/20 0.0294 0.0294
Random-20- 21 0.996 4.50M 20/20 21/21 0.0432 0.0431
lognormal 26 0.998 4.48M 20/20 21/21 0.0039 0.0038

31 0.998 4.32M 20/20 21/21 0.0062 0.0058
Random-20- 21 0.989 0.92M 17/17 20/20 0.1492 0.1268
lognormal- 26 0.998 0.91M 16/16 20/20 0.1631 0.1262
a.g.* 31 0.999 0.87M 16/16 20/20 0.1658 0.1298
Random-100- 21 0.996 19.5M 100/100 100/100 0.0176 0.0176
uniform 26 0.998 19.5M 100/100 100/100 0.0096 0.0096

31 0.999 19.0M 100/100 100/100 0.0104 0.0104

Table 3: Performance of CAMMiQ as a function of minimum unique/doubly-unique substring length Lmin =
21, 26, 31, and minimum relative read count threshold α = 0.001, 0.0001 to report a genome. Precision:
the proportion of reads correctly assigned to a genome among the set of reads assigned to some genome,
correctly or incorrectly. Number of assigned reads: the total number of reads assigned to some genome.
Number of identified genomes: the number of genomes returned by CAMMiQ’s ILP formulation v.s. the
number of genomes that have sufficient read assignments (determined by α). L1 error: the L1 distance
between the true relative abundance values (between 0 and 1) and the predicted abundance values for each
genome in the corresponding query.
*: 10% reads in the query Random-20-lognormal-a.g. are from a genome not in the index; any assignment
of such a read to a genome is necessarily incorrect.

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

these values by the total abundance value of all genomes.
As can be seen in Table 2 panels C and D, as well as Figure 3, CAMMiQ clearly offers the best performance

in both identification and quantification. It correctly identified all genomes present in each one of the 11
queries and was not impacted by the additional genome we introduced in the Random-20-lognormal-a.g.
query. As importantly, it only returned very few false positive genomes for the most challenging Least-20-
uniform, Least-quantifiable-20-uniform and Least-20-genera-uniform as well as Least-20-genera-lognormal
queries, and at most one false positive genome for the remaining 7 queries. Other tools had varying levels
of false negatives in these 11 queries. Among them CLARK offered the best false negative performance:
it only reported false negatives in the queries involving a genome without a single unique k-mer. As can
be expected, MetaPhlAn2 had the worst performance with respect to false negatives, very likely due to the
incompleteness of its marker gene list3. This also led to a larger L1 distance than the other tools, even for
the relatively easy queries. Kraken2 and KrakenUniq were also prone to have a few false negatives, though
less than MetaPhlAn2. Furthermore their predicted abundances are smaller than the true abundance values,
because they may assign reads to higher taxonomic ranks than the species level; see Figure 3. This is
especially evident in the in the first 7 (difficult) queries: even though Kraken2 and KrakenUniq identified
the majority of the genomes correctly, the abundance values they reported on these genomes were all close
to 0 and thus the L1 distances turned out to be very close to 1 (see Figure 3). As a result, these values
are not reported in Table 2D. Note that we do not report the number of false positive genomes returned by
each tool on these 11 queries. This is primarily because of the fact that CLARK, Kraken2 and KrakenUniq
are not designed to identify genomes in a query mixture and thus do not “care” whether the false positive
assignments are distributed across many genomes (which would result in a large number of false positives)
or are concentrated in a few genomes (resulting in a few false positives). MetaPhlAn2 aims to identify
genomes however it can do so in any taxonomic level. As such, all these four tools return a very large
number of false positives, especially for the first 7 queries, but since we felt that this could be unfair due to
the above reasons, we decided to report only the false positives reported by CAMMiQ, noting that its genome
identification performance is significantly better than the other tools. We ignore the false positive calls also
in the L1 measure since it is calculated only on the true positive genomes. This explains the single query
and measure for which CAMMiQ seems to have performed worse than an alternative, namely KrakenUniq: on
Random-20-lognormal-a.g. KrakenUniq’s L1 distance is slightly better than CAMMiQ. We remind that in this
query, 10% of the reads are sampled from a genome not in the index. Since these reads can not be assigned
through any means, the relative abundances of the other genomes will be overestimated by ∼ 10%, provided
that there are no false positive genomes as per CAMMiQ. However, KrakenUniq’s false positive calls (there are
several) reduces its relative abundance estimates for the true positive genomes, and gives a seemingly better
L1 distance. This can be observed in Figure 3, which depicts for each query, relative abundance estimate
for each genome by each one of the tools we benchmarked. As can be clearly seen, CAMMiQ’s individual
abundance estimates are just on the mark for each one of the genomes even for the most difficult queries.

We finally evaluated the impact of two important parameters for CAMMiQ: α, the minimum relative read
count threshold for reporting a genome, and Lmin, the minimum unique or double-unique substring length
(values larger than the default value of 50 for Lmax did not have a big impact and thus are not reported here).
In Table 3 we report the results for each possible combination of Lmin = 21, 26, 31 and α = 0.001, 0.0001,
on 8 of the 11 queries, omitting the 3 error free queries (on which the impact on precision is minimal).
As we increase Lmin, CAMMiQ’s precision improves, however its read assignment performance deteriorates.
Interestingly, its predicted abundance values did not change much with increasing Lmin. As a result we set
the default Lmin to 26 in CAMMiQ. On the other hand, increasing the value of α, decreased the number of
false positives in CAMMiQ’s output, particularly in the most difficult queries. However, as a result of this, for
the queries Least-20-genera-lognormal and Random-20-lognormal-a.g., those genomes with low abundance
values were disregarded by CAMMiQ, leading to false negatives. CAMMiQ allows the user to set the parameter α
with prior knowledge on the reads to be queried (e.g., the expected read coverage or the number of genomes
in the query); we set its default value to 0.0001.

3Here we used the latest set of marker genes mpa v20 m200 in MetaPhlAn2.

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Figure 3: Comparison of CAMMiQ’s relative abundance estimates to that of the existing methods for all 11
queries involving the species level dataset. The horizontal axis in the top 8 plots represent the species (i.e.,
genomes) in an arbitrary order and the vertical axis represent the relative abundance values. The bottom 3
plots are for the queries with log-normal distributions, where the horizontal axis represent the true abundance
values while the vertical axis represent the estimated abundance values, both in log-scale.

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Query Set
CAMMiQ MetaPhlAn2

Num. Identified Strains L1 Err. Num. Identified Strains L1 Err.

HumanGut-least-25 24/26 0.1130 ≥ 18/19 0.2910
HumanGut-random-100-1 100/101 0.0209 ≥ 74/83 0.3260
HumanGut-random-100-2 100/102 0.0256 ≥ 67/72 0.5066

HumanGut-all 404/407 0.0517 ≥ 279/305 0.4439

Table 4: CAMMiQ’s quantification performance at strain level, compared to MetaPhlAn2. Number of identified
strains: the number of true positive strains/the total number of strains identified. L1 error: the L1 distance
between the true relative abundance values and the predicted abundance values, across all strains in the
query.

3.4 Quantification Performance - Strain Level

We finally evaluated CAMMiQ’s performance on queries composed from our strain-level dataset that consists of
614 Human Gut related genomes (strains) from 409 species [40] as described in Section 3.2. Three of the tools
we evaluated, namely CLARK, Kraken2 and KrakenUniq, simply aim to perform read classification, which
we evaluated in Section 3.3. They are not designed to identify or quantify genomes, especially at the strain
level. On the other hand MetaPhlAn2’s index have strain level information and through that it attempts to
identify and quantify strains. As a result we report on the performances of both CAMMiQ and MetaPhlAn2
in Table 4. As can be seen, CAMMiQ managed to identify and accurately quantify all strains in the queries
HumanGut-random-100-1 and HumanGut-random-100-2, and > 98% strains in the query HumanGut-all,
with almost no false positives. Here we only report the strain level calls made by MetaPhlAn2 (it made
additional calls at the species level or higher), based on our best attempt to match its calls to the strain IDs
available to us. It may be possible to slightly increase the true positive values (the first value) reported here.

3.5 Computational Resource

We compared the running time and memory use of CAMMiQ, Kraken2, KrakenUniq, CLARK and MetaPhlAn2
in responding to the queries. We do not report the time for building the index or loading it into memory,
since this is performed only once - all tools roughly need a couple hours to construct the index on the species
level dataset. When it comes to querying time, CAMMiQ is outperformed only by Kraken2, typically by a
factor of 3. This is primarily due to the fact that Kraken2’s index is much smaller than that of CAMMiQ

since it consists of a small subset of unique k-mers. This compact index structure substantially impacts
its performance, which is improved by KrakenUniq, through its consideration of all unique k-mers. The
resulting index size of KrakenUniq is comparable to that of CAMMiQ (CAMMiQ’s is slightly higher as it also
includes doubly-unique substrings), however its running time is almost twice as much, even though it does not
solve an ILP. CAMMiQ owes its superior identification and quantification performance to its ILP formulation,
however it is not time-wise penalized by it. The best memory footprint is achieved by MetaPhlAn2 through
the use of its own index, however both its run time and its identification/quantification performance is below
the others.

4 Discussion

We have introduced CAMMiQ, a new computational approach to solve a computational problem that has
not been exactly addressed by any available method: given a set S of distinct genomic sequences (of any
taxonomic rank), build a data structure so as to identify and quantify genomes in a any query, composed of
a mixture of reads from a subset of genomes from S. CAMMiQ is particularly designed to handle genomes that
lack unique features; for that, it reduces the identification and quantification problems to a combinatorial
optimization problem that assigns substrings with limited ambiguity (i.e. doubly unique substrings) to
genomes so that each genome is “uniformly covered”. Because each such substring has limited ambiguity,
the resulting combinatorial optimization problem can be very efficiently solved through existing integer
program solvers such as IBM CPLEX (and thus are branch-and-bound based, whose run-time performance

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Performance
Query Set CAMMiQ Kraken2 KrakenUniq CLARK Metaphlan2

Measure

Least-20-uniform 151.7s 52.2s 286.5s 402.5s 608.8s
Least-quantifiable-20-uniform 180.5s 50.8s 284.1s 416.0s 569.6s

A. Read Least-20-genera-uniform 143.5s 53.0s 273.4s 285.2s 438.9s
Assignment Least-20-genera-lognormal 153.6s 61.8s 268.8s 289.4s 442.7s

Time Random-20-uniform 198.4s 48.1s 284.0s 315.1s 516.7s
Random-20-lognormal 167.8s 48.8s 294.5s 367.6s 569.3s

Random-20-lognormal-a.g. 49.8s 14.7s 78.9s 75.2s 188.9s
Random-100-uniform 906.0s 215.4s 1261.5s 1536.2s 2401.4s

B. Memory

Least-20-uniform 94.6G 11.4G 67.9G 81.3G 1.3G
Least-quantifiable-20-uniform 93.3G 11.4G 77.1G 81.3G 1.3G

Least-20-genera-uniform 92.6G 11.4G 81.4G 81.0G 1.3G
Least-20-genera-lognormal 93.3G 11.4G 77.8G 81.0G 1.3G

Random-20-uniform 95.4G 11.4G 92.7G 81.3G 1.3G
Random-20-lognormal 95.7G 11.4G 89.3G 81.3G 1.3G

Random-20-lognormal-a.g. 94.3G 11.3G 51.9G 80.3G 1.3G
Random-100-uniform 111.9G 11.9G 143.3G 85.7G 1.4G

C. Index Size - 8.94G 11.20G 155.22G 71.85G 1.11G

Table 5: Comparison of the computational resources required by CAMMiQ, Kraken2, KrakenUniq, CLARK
and MetaPhlAn2, when run on a single thread.

is determined by the fan-out at each decision point). Provided that the doubly-unique substrings of a given
genome are not all shared with one other genome, the use of doubly-unique substrings increases CAMMiQ’s
ability to identify and quantify this genome within a query. As mentioned earlier, in case the dataset to be
indexed involves several genomes with high level of similarity, CAMMiQ’s data structure and its combinatorial
optimization formulation can easily be generalized to include triply, quadruply ... unique substrings, without
much computational overhead.

References

[1] Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. Megan analysis of metagenomic data. Genome
research 17, 377–386 (2007).

[2] Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool.
Journal of molecular biology 215, 403–410 (1990).

[3] Elworth, R. et al. To petabytes and beyond: recent advances in probabilistic and signal processing
algorithms and their application to metagenomics. Nucleic Acids Research (2020).

[4] Liu, B., Gibbons, T., Ghodsi, M., Treangen, T. & Pop, M. Accurate and fast estimation of taxonomic
profiles from metagenomic shotgun sequences. Genome biology 12 (Suppl 2), S4 (2011).

[5] Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes.
Nature methods 9, 811 (2012).

[6] Lopresti, D. & Tomkins, A. Block edit models for approximate string matching. Theoretical computer
science 181, 159–179 (1997).

[7] Cormode, G., Paterson, M., Sahinalp, S. C. & Vishkin, U. Communication complexity of document
exchange. In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms, 197–206
(Society for Industrial and Applied Mathematics, 2000).

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

[8] Li, M., Chen, X., Li, X., Ma, B. & Vitányi, P. M. The similarity metric. IEEE transactions on
Information Theory 50, 3250–3264 (2004).

[9] Vinga, S. & Almeida, J. Alignment-free sequence comparison—a review. Bioinformatics 19, 513–523
(2003).

[10] Leimeister, C.-A. & Morgenstern, B. Kmacs: the k-mismatch average common substring approach to
alignment-free sequence comparison. Bioinformatics 30, 2000–2008 (2014).

[11] Ames, S. K. et al. Scalable metagenomic taxonomy classification using a reference genome database.
Bioinformatics 29, 2253–2260 (2013).

[12] Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact
alignments. Genome biology 15, R46 (2014).

[13] Břinda, K., Sykulski, M. & Kucherov, G. Spaced seeds improve k-mer-based metagenomic classification.
Bioinformatics 31, 3584–3592 (2015).

[14] Kawulok, J. & Deorowicz, S. Cometa: classification of metagenomes using k-mers. PloS one 10,
e0121453 (2015).

[15] Tu, Q., He, Z. & Zhou, J. Strain/species identification in metagenomes using genome-specific markers.
Nucleic acids research 42, e67–e67 (2014).

[16] Ounit, R., Wanamaker, S., Close, T. J. & Lonardi, S. Clark: fast and accurate classification of metage-
nomic and genomic sequences using discriminative k-mers. BMC genomics 16, 236 (2015).

[17] Luo, Y., Zeng, J., Berger, B. & Peng, J. Low-density locality-sensitive hashing boosts metagenomic
binning. In International Conference on Research in Computational Molecular Biology, 255 (Springer,
2016).

[18] Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using minhash. Genome
biology 17, 132 (2016).

[19] McHardy, A. C., Mart́ın, H. G., Tsirigos, A., Hugenholtz, P. & Rigoutsos, I. Accurate phylogenetic
classification of variable-length dna fragments. Nature methods 4, 63 (2007).

[20] Rosen, G., Garbarine, E., Caseiro, D., Polikar, R. & Sokhansanj, B. Metagenome fragment classification
using n-mer frequency profiles. Advances in bioinformatics 2008 (2008).

[21] Brady, A. & Salzberg, S. L. Phymm and phymmbl: metagenomic phylogenetic classification with
interpolated markov models. Nature methods 6, 673 (2009).

[22] Rosen, G. L., Reichenberger, E. R. & Rosenfeld, A. M. Nbc: the naive bayes classification tool webserver
for taxonomic classification of metagenomic reads. Bioinformatics 27, 127–129 (2010).

[23] Vervier, K., Mahé, P., Tournoud, M., Veyrieras, J.-B. & Vert, J.-P. Large-scale machine learning for
metagenomics sequence classification. Bioinformatics 32, 1023–1032 (2015).

[24] Lin, Y.-Y. et al. Cliiq: Accurate comparative detection and quantification of expressed isoforms in a
population. In International Workshop on Algorithms in Bioinformatics, 178–189 (Springer, 2012).

[25] Li, W., Feng, J. & Jiang, T. Isolasso: a lasso regression approach to rna-seq based transcriptome
assembly. Journal of Computational Biology 18, 1693–1707 (2011).

[26] Dao, P. et al. Orman: optimal resolution of ambiguous rna-seq multimappings in the presence of novel
isoforms. Bioinformatics 30, 644–651 (2014).

[27] Sobih, A., Tomescu, A. I. & Mäkinen, V. Metaflow: Metagenomic profiling based on whole-genome cov-
erage analysis with min-cost flows. In International Conference on Research in Computational Molecular
Biology, 111–121 (Springer, 2016).

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

[28] Breitwieser, F., Baker, D. & Salzberg, S. L. Krakenuniq: confident and fast metagenomics classification
using unique k-mer counts. Genome biology 19, 1–10 (2018).

[29] Solomon, B. & Kingsford, C. Fast search of thousands of short-read sequencing experiments. Nature
biotechnology 34, 300 (2016).

[30] Solomon, B. & Kingsford, C. Improved search of large transcriptomic sequencing databases using split
sequence bloom trees. In International Conference on Research in Computational Molecular Biology,
257–271 (Springer, 2017).

[31] Sun, C., Harris, R. S., Chikhi, R. & Medvedev, P. Allsome sequence bloom trees. In International
Conference on Research in Computational Molecular Biology, 272–286 (Springer, 2017).

[32] Ferdman, M., Johnson, R. & Patro, R. Mantis: A fast, small, and exact large-scale sequence-search
index. In Research in Computational Molecular Biology, 271 (Springer, 2018).

[33] Matias, Y., Muthukrishnan, S., Sahinalp, S. C. & Ziv, J. Augmenting suffix trees, with applications. In
European Symposium on Algorithms, 67–78 (Springer, 1998).

[34] Kasai, T., Lee, G., Arimura, H., Arikawa, S. & Park, K. Linear-time longest-common-prefix computation
in suffix arrays and its applications. In Annual Symposium on Combinatorial Pattern Matching, 181–192
(Springer, 2001).

[35] Ilie, L. & Smyth, W. F. Minimum unique substrings and maximum repeats. Fundamenta Informaticae
110, 183–195 (2011).

[36] Vazirani, V. V. Approximation algorithms (Springer Science & Business Media, 2013).

[37] Pruitt, K. D., Tatusova, T. & Maglott, D. R. Ncbi reference sequences (refseq): a curated non-redundant
sequence database of genomes, transcripts and proteins. Nucleic acids research 35, D61–D65 (2007).

[38] Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with kraken 2. Genome biology
20, 257 (2019).

[39] Truong, D. T. et al. Metaphlan2 for enhanced metagenomic taxonomic profiling. Nature methods 12,
902 (2015).

[40] Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic
analyses. Nature biotechnology 37, 186 (2019).

[41] Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S. & Weinberger, M. J. Inequalities for the l1
deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep (2003).

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

5 Supplementary Methods

5.1 Unique substrings from LCPu or LCPd

The pseudocode for the algorithm to compute arrays SU and SD according to equations (3) and (4) respec-
tively, given SA, LCPu and LCPd is given below. As can be seen, the algorithm runs in O(M) time.

Algorithm 1 ShortestUniqueFromLCP(SA, LCPu, LCPd, Lmax)

1: for i from 1 to M do //Initialize SU

2: SU[i]← 0
3: SD[i]← 0
4: end for
5: for i from 1 to M do //Update SU according to (3) and SD according to (4)
6: if LCPu[i] < Lmax then
7: SU[SA[i] + LCPu[i]]← max{SU[SA[i] + LCPu[i]], SA[i]}
8: end if
9: if LCPd[i] < Lmax then

10: SD[SA[i] + LCPd[i]]← max{SD[SA[i] + LCPd[i]], SA[i]}
11: end if
12: end for
13: return SU, SD

5.2 Computing LCPu and LCPd

In this section we show that SU and SD can be correctly constructed in O(M) time. We start by showing
that the definition of LCPu and LCPd in Equation (1) and Equation (2) can respectively lead to the shortest
substrings occurring in at most one genome or two genomes. Then we give CAMMiQ’s detailed implementation
of Equation (5) and Equation (6) to compute the LCPu and LCPd arrays. Finally we give a running time
analysis of this implementation.

First consider the content of SU at the end of procedure ShortestUniqueFromLCP. To see the substring
s[l..r] corresponds to the r-th entry SU[r] = l (where l 6= 0) in SU is unique, meaning it only occurs in genome
with ID GSA[SA−1[l]], assume that there is another genome si′ having the same substring s[l′, r′] = s[l..r] -
this leads to a contradiction, since it implies that lcp(suf[l], suf[l′]) ≥ r− l+ 1. However, due to the update
rule of SU and the definition of LCPu, lcp(suf[l], suf[l′]) ≤ r − l for any 1 ≤ l′ ≤ M satisfying suf[l] and
suf[l′] start on different genomes, namely GSA[SA−1[l]] 6= GSA[SA−1[l′]], which is a contradiction. Now, to see
s[l..r] is a shortest unique substring, i.e. no substring of s[l..r] is unique to genome GSA[SA−1[l]], we show
that any s[l..r′ < r] and s[l′ > l, r] occurs in one other genome si′ . The former case is due to the definition
of LCPu - there exists suf[l′] on genome i′ 6= GSA[SA−1[l]] such that lcp(suf[l], suf[l′]) ≥ r − l, implying a
substring s[l′..l′+(r− l)−1] identical to s[l, r−1]; the later case is due to the update rule of SU - if s[l′ > l, r]
is also unique to genome GSA[SA−1[l]], then SU[r] must be set to l′ instead of l. Therefore, s[l..r] is a shortest
unique substring (to genome with ID GSA[SA−1[l]]); on the other hand, if s[l..r] is a shortest unique substring,
then SU[r] will maintain l after SU is completely updated.

Now consider the content of SD at the end of procedure ShortestUniqueFromLCP. We follow the above
proof to show s[l..r] is a shortest doubly-unique substring (to genome ID GSA[SA−1[l]] and possibly another
genome i′). To see the substring s[l..r] corresponds to the r-th entry SD[r] = l (where l 6= 0) in SD occurs
in at most two genomes, with ID GSA[SA−1[l]] (and possibly i′, any genome that suf[l′] belongs to, giving
the largest lcp(suf[l], suf[l′])), we can assume there exists a thrid genome si′′ having the same substring
s[l′′, r′′] = s[l, r] = s[l′, r′] and similarly obtain a contradiction. Note that according to (2), it is possible
to have LCPd[SA

−1[l]] ≥ LCPu[SA−1[l]] and in this case s[l..r] is a unique substring which only occurs in
genome GSA[SA−1[l]]. If LCPd[SA

−1[l]] < LCPu[SA−1[l]] on the other hand, then s[l..r] must occur in exactly
two genomes, since SD is updated according to LCPd and we can find another suffix of s whose length-
(r − l + 1) (r − l + 1 ≤ LCPd[SA

−1[l]]) prefix is identical to s[l..r]. In addition, to see s[l..r] is a shortest
doubly-unique substring, meaning no substring of s[l..r] occurs only in genome GSA[SA−1[l]] and i′, we can

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

similarly show that any s[l..r′ < r] and s[l′ > l, r] can be found in a third genome si′′ , regardless whether
LCPd[SA

−1[l]] = LCPu[SA−1[l]] or LCPd[SA
−1[l]] < LCPu[SA−1[l]].

As a result of the above observations we can now formally state the following lemma.

Lemma 2. (i)After updating SU according to (3), SU[r] = l 6= 0 implies that s[l..r] is a shortest unique
substring to genome GSA[SA−1[l]];
(ii)After updating SD according to (4) SD[r] = l 6= 0 implies that s[l..r] is a shortest doubly-unique substring
to genome GSA[SA−1[l]] and i′ = GSA[SA−1[l′]] where suf[l′] gives the largest lcp(suf[l], suf[l′])).

Furthermore, it’s also clear that all unique substrings s[l..r] are stored in SU and all doubly-unique
substrings s[l..r] are stored in SD, as we have considered the suffix of s starting with every possible l.

Both LCPu and LCPd can be modified to incorporate the minimum length constraint Lmin on unique/doubly-
unique substrings. By setting LCPu[i] to max{Lmin − 1, LCPu[i]} for each entry 1 ≤ i ≤ M , the corre-
sponding substrings maintained in SU should also be unique, and with minimum length Lmin. One should
be careful however when dealing with LCPd: if LCPu[i] ≤ Lmin − 1, then the corresponding substring
s[SA[i], SA[i] + LCPu[i]] occurs in only one genome. Therefore we set LCPd[i] to ∞ (meaning it’s not con-
sidered) if LCPu[i] ≤ Lmin − 1 or LCPd[i] ≥ LCPu[i]; and to max{Lmin − 1, LCPd[i]} otherwise (this can be
done by first set each LCPu[i] to max{Lmin − 1, LCPu[i]} and LCPd[i] to max{Lmin − 1, LCPd[i]}, and then set
each LCPd[i] to ∞ if LCPd[i] ≥ LCPu[i]), which ensures the corresponding substrings maintained in SD are
doubly-unique, and with minimum length Lmin.

With the correctness of (3) and (4) in mind, our next concern is how to actually compute LCPu and
LCPd based on their definitions. In the following we show that (5) and (6) correctly implement (1) and
(2), without considering the borderline cases (i.e., for i = 1 or i = M ; to handle these cases we can set
GSA[0] = GSA[M + 1] = 0 and ignore i2− when i = 1 and i2+ when i = M).

Lemma 3. For any 1 ≤ i ≤M ,

(i)LCPu[i] = max


min

i−<x≤i
LCP[x], where i− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 2

min
i<x≤i+

LCP[x], where i+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 2

(ii)LCPd[i] = min



max


min

i−<x≤i
LCP[x], where i− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 2

min
i<x≤i2+

LCP[x], where i2+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 3

max


min

i2−<x≤i
LCP[x], where i2− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 3

min
i<x≤i+

LCP[x], where i+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 2

where dGSA(i1, i2) = |{GSA[i1], · · · , GSA[i2]}|.

Proof. Let lcp(i, j) denote lcp(suf[i], suf[j]) for short. We utilize the properties of SA and LCP array: (a)
the longest common prefix of two suffices suf[i] and suf[j] (assume suf[i] is lexicographically smaller than
suf[j]) is lcp(i, j) = min{LCP[x] | x ∈ [SA−1[i]+1, SA−1[j]]}; also we have (b) lcp(i, j) ≥ lcp(SA[SA−1[i]−1], j)
and lcp(i, j) ≥ lcp(i, SA[SA−1[j] + 1]). (i) follows immediately from these properties:

LCPu[i] = max{lcp(SA[i], SA[i+]), lcp(SA[i−], SA[i])}.

To see (ii), we consider three cases:

• If lcp(SA[i], SA[i+]) = lcp(SA[i−], SA[i]), then LCPd[i] = lcp(SA[i], SA[i+]) = lcp(SA[i−], SA[i]), due to (b).
(ii) holds in this case by applying (a).

• If lcp(SA[i], SA[i+]) < lcp(SA[i−], SA[i]), then LCPd[i] = max{lcp(SA[i], SA[i+]), lcp(SA[i2−], SA[i])} due to
(b). Also LCPd[i] ≤ lcp(SA[i−], SA[i]) = max{lcp(SA[i], SA[i2+]), lcp(SA[i−], SA[i])} since lcp(SA[i], SA[i2+])
≤ lcp(SA[i], SA[i+]) < lcp(SA[i−], SA[i]). (ii) therefore holds by applying (a).

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

• If lcp(SA[i], SA[i+]) > lcp(SA[i−], SA[i]), then we have similarly LCPd[i] = max{lcp(SA[i], SA[i2+]), lcp(SA[i−],
SA[i])} due to (b) and LCPd[i] ≤ lcp(SA[i], SA[i+]) = max{lcp(SA[i], SA[i+]), lcp(SA[i2−], SA[i])} since
lcp(SA[i2−], SA[i]) ≤ lcp(SA[i−], SA[i]) < lcp(SA[i], SA[i+]). Again we can see (ii) by applying (a), which
complete the proof.

Next we give the pseudocode for the algorithm to update LCPu and LCPd based on (5) and (6) respectively,
and show that they actually run in linear time.

Algorithm 2 LCPuFromLCP(GSA, LCP, Lmin)

1: LCPu ← array of length M
2: i← 1, minlcp ←M , next ← 0
3: while i < M do
4: while i < M and GSA[i + next] = GSA[i +

next + 1] do
5: next← next + 1
6: end while
7: for j from next to 0 do
8: minlcp ← min{minlcp, LCP[i+ j + 1]}
9: LCPu[i+ j]← minlcp

10: end for
11: i← i+ next + 1
12: minlcp ←M , next ← 0
13: end while
14: i←M , minlcp ←M , next ← 0
15: while i > 1 do

16: while i > 1 and GSA[i−next] = GSA[i−next−
1] do

17: next← next + 1
18: end while
19: for j from next to 0 do
20: minlcp ← min{minlcp, LCP[i− j]}
21: LCPu[i− j]← max{LCPu[i− j],minlcp}
22: end for
23: i← i− next− 1
24: minlcp ←M , next ← 0
25: end while
26: for i from 1 to M do
27: LCPu[i]← max{LCPu[i], Lmin}
28: end for
29: return LCPu

Lemma 4. Both LCPuFromLCP and LCPdFromLCP run in O(M) time.

Proof. Through a simple aggregate analysis, we can see that LCPuFromLCP visits each entry of GSA, LCP
and LCPu 2 times; LCPdFromLCP* visits each entry of GSA, LCP 3 times and each entry of LCP∗d 2 times for
either focus = +/−.

Combining the above lemmata, we concluse that

Theorem 5. Both SU and SD can be computed in in O(M) time.

5.3 Sampling unique substrings

Recall that Ui = {ui,1(l1, r1), ui,nui(lnui , rnui)} defines either the collection of all shortest unique substrings
or unique substrings with minimum length Lmin on a given genome si (sorted by lx, namely l1 ≤ · · · ≤ lnui).
In fact, the list of left indices l1, · · · , lnui are stored in the corresponding r1, · · · , rnui entries in SU array.
Due to the minimum length constraint, no substring ui,x ∈ Ui can be a substring of any other ui,y ∈ Ui if
they are not identical (in fact, there could be some {ui,x(lx, rx) = {ui,y(ly, ry) ∈ Ui for x 6= y). This makes
l1 < · · · < lnui and r1 < · · · < rnui . The goal of sampling unique substrings from Ui is to identify and
maintain the smallest number of unique substrings such that they cover the same set of unique L-mers on
si as Ui (if Lmax = L then the sampled unique substrings should cover all unique L-mers).

Here we present the greedy sampling strategy implemented by CAMMiQ to sample unique substrings from
Ui. Denote by begini the beginning position of si in s and by U ′i the unique substrings already sampled
(initially U ′i is empty). Starting with begini, consider every L-mer of si from left to right; if it does not
include any unique substring, then ignore this L-mer; otherwise add its rightmost unique substring into U ′i
and move to the next L-mer which does not include this substring until reaching the L-mer that ends at

24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Algorithm 3 LCPdFromLCP(GSA, LCP, Lmin)

1: LCPd ← array of length M
2: LCPu ← LCPuFromLCP(GSA, LCP, M , Lmin)
3: LCPd′ ← LCPdFromLCP*(GSA, LCP, +)
4: LCPd′′ ← LCPdFromLCP*(GSA, LCP, −)
5: for i from 1 to M do
6: LCPd[i]← max{min{LCPd′ [i], LCPd′′ [i]}, Lmin}
7: if LCPd[i] ≥ LCPu[i] then
8: LCPd[i]←∞
9: end if

10: end for
11: return LCPd
12: function LCPdFromLCP*(GSA, LCP, focus=
{+,−})

13: LCP∗d ← array of length M
14: i← 1, minlcp ←M , next1 ← 0
15: if focus = + then
16: next2 ← 1
17: else
18: next2 ← 0
19: end if
20: while i < M do
21: while i < M and GSA[i+ next1] = GSA[i+

next1 + 1] do
22: next1← next1 + 1
23: end while
24: while focus = + and i < M and GSA[i +

next1 + next2] = GSA[i+ next1 + next2 + 1] do
25: next2← next2 + 1
26: end while
27: for j from next1 + next2 to 0 do
28: minlcp ← min{minlcp, LCP[i+ j + 1]}
29: if j ≤ next1 then
30: LCP∗d[i+ j]← minlcp
31: end if
32: end for
33: i← i+ next1 + 1
34: minlcp ←M , next1 ← 0
35: if focus = + then

36: next2 ← 1
37: else
38: next2 ← 0
39: end if
40: end while
41: i←M , minlcp ←M , next1 ← 0
42: if focus = − then
43: next2 ← 1
44: else
45: next2 ← 0
46: end if
47: while i > 1 do
48: while i > 1 and GSA[i − next1] = GSA[i −

next1− 1] do
49: next1← next1 + 1
50: end while
51: while focus = − and i > 1 and GSA[i −

next1− next2] = GSA[i− next1− next2− 1] do
52: next2← next2 + 1
53: end while
54: for j from next1 + next2 to 0 do
55: minlcp ← min{minlcp, LCP[i− j]}
56: if j ≥ next2 then
57: LCP∗d[i − j] ← max{LCP∗d[i −

j],minlcp}
58: end if
59: end for
60: i← i− next1− 1
61: minlcp ←M , next1 ← 0
62: if focus = − then
63: next2 ← 1
64: else
65: next2 ← 0
66: end if
67: end while
68: return LCP∗d
69: end function

begini + |si| − 1. At the and of this, add the sampled unique substrings in U ′i to the hash table described in
Section 2.1.

In the following we show that the above greedy strategy obtains the smallest number of unique substrings
that cover the same set of unique L-mers as Ui, provided that each unique substring in Ui occurs only one
time (i.e., any ui,x ∈ Ui is not identical to another ui,y ∈ Ui if x 6= y). As a result, the total number of
unique substrings in U ′ = ∪mi=1U ′i included in CAMMiQ index is also as small as possible.

Theorem 6. If ui,x ∈ Ui 6= ui,y ∈ Ui for x 6= y, then GreedySampling returns the smallest U ′i such that if
an L-mer includes some ui,x ∈ Ui, then it also includes at least one ui,x′ ∈ U ′i .

Proof. Consider U ′i = {u′i,1(l′1, r
′
1), · · · , u′i,|U ′i |(l

′
|U ′i |

, r′|U ′i |
)} that GreedySampling returns; also consider an

alternative sample U ′′i = {u′′i,1(l′′1 , r
′′
1), · · · , u′′i,|U ′′i |(l

′′
|U ′′i |

, r′′|U ′′i |
)} of Ui that covers the same set of L-mers;

assume both sets are sorted by the left indices (l′1 < · · · < l′|U ′i |
; l′′1 < · · · < l′′|U ′′i |

). First, observe that l′1 ≥ l′′1

25

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Algorithm 4 GreedySampling(Ui = {ui,1(l1, r1), ui,nui(lnui , rnui)}, L)

1: U ′i ← ∅
2: cur← begini // begini: the beginning position of si in s
3: ui,last(llast, rlast)← NIL

4: for x from 1 to nui do
5: if ui,last 6= NIL and rx ≥ cur + L then
6: U ′i ← U ′i ∪ {ui,last(llast, rlast)}
7: cur← llast + 1
8: end if
9: ui,last(llast, rlast)← ui,x(lx, rx)

10: end for
11: return U ′i

since u′i,1 is the rightmost unique substring in Ui which is fully included in the leftmost unique L-mer. As
a consequence we must have l′2 ≥ l′′2 (and so on). Otherwise, if l′1 = l′′1 then u′i,2(l′2, r

′
2) is not the rightmost

unique substring in the next unique L-mer whose left index is greater than l′1, and if l′1 > l′′1 then there
is some unique L-mer not covered by any unique substring in U ′′i . Therefore |U ′i | ≤ |U ′′i | since there is a
injection between the elements in U ′i and U ′′i until reaching the last unique L-mer on si.

Corollary 7. If ui,x ∈ Ui 6= ui,y ∈ Ui for x 6= y on each si, then U ′ = ∪mi=1U ′i is the smallest set of unique
substrings such that if an L-mer on si includes some ui,x ∈ Ui, then it also includes at least one ui,x′ ∈ U ′i .

We note that the greedy sampling strategy works in practice even if there are actually unique substrings
occurring more than once in a given genome, meaning ui,x = ui,y ∈ Ui for some y > x, leading to U ′i (and thus
U ′) being close to optimality, since these unique substrings would constitute a very small proportion (≤ 0.1%)
with the default minimum length Lmin = 26 of unique substrings. This gives significantly smaller indices
than alternative k-mer based tools, and results in an integer program with a small number of constraints.

We applied the above strategy to sample doubly-unique substrings in Di, to obtain the minimum size D′i
for each genome si so that the aggregate set of doubly-unique substrings D′ is at most twice the optimal,
provided that each doubly-unique substring occurs once in each of the corresponding genomes.

Corollary 8. If di,x ∈ Di 6= di,y ∈ Di for x 6= y on each si, then D′ = ∪mi=1D′i is at most twice as large as
the smallest set of doubly-unique substrings such that if an L-mer on si includes some di,x ∈ Di, then it also
includes at least one di,x′ ∈ D′i.

5.4 Proof of Theorem 1

We begin with the following theorem from Weissman et al. [41] that bounds the L1 distance between the
empirical distribution of a sequence of independent, identically distributed random variables and the true
distribution.

Theorem 9. Let P be a probability distribution on the set A = {1, · · · , a}. Let X1, X2, · · · , Xn be i.i.d.
random variables distributed according to P . Then, for any given ε > 0,

Pr[||P − P̄ ||1 ≥ ε] ≤ (2a − 2) exp(−nε2/2)

where P̄ is the empirical estimation of P defined as P̄ (i) =
∑n
j=1 ∆(Xi=j)

n , where ∆(e) = 1 if and only if e is
true and ∆(e) = 0 otherwise.

Now consider a collection of genomes A = {s1, · · · , sa} with relative abundances p1, · · · , pa and the set
Q = {r1, · · · , rn} of n reads (i.e., L-mers) sampled independently and uniformly at random from A according

to p1, · · · , pa. On each genome si let nLi denote the total number of L-mers and qi =
nuLi
nLi

be the proportion

of unique L-mers; then the probability of a read rj ∈ Q corresponds to a unique L-mer on si is
pin

L
i∑a

i′=1
pi′n

L
i′
·qi,

and the probability of a read rj ∈ Q does not correspond to any unique L-mers on si is
pin

L
i∑a

i′=1
pi′n

L
i′
· (1− qi).

26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Therefore r1, · · · , rj are i.i.d. distributed according to (
p1n

L
1∑a

i′=1
pi′n

L
i′
·q1, · · · , pan

L
a∑a

i′=1
pi′n

L
i′
·qa,

∑a
i=1

pin
L
i∑a

i′=1
pi′n

L
i′
·

(1−qi)) = (p′1q1, · · · , p′aqa,
∑a
i=1 p

′
i(1−qi)) where the last term corresponds to the reads that are not unique

to any si ∈ A.

Proof of Theorem 1. Let ci be the number of reads assigned to si. Also let p′ = (p′1, · · · , p′a). We

set p̂ = (p̂1, · · · , p̂a), by defining p̂i = ci/qi
n to be the predicted abundance of si based on the number of

reads assigned to it. Consider P = (p′1q1, · · · , p′aqa,
∑a
i=1 p

′
i(1 − qi)) and P̂ = (c1n , · · · ,

ca
n , 1 −

∑a
i=1

ci
n) =

(p̂1q1, · · · , p̂aqa, 1 −
∑a
i=1

ci
n); by definition, we have ||P − P̂ ||1 ≥

∑a
i=1 |p′i − p̂i|qi ≥ qmin ·

∑a
i=1 |p′i − p̂i| =

qmin · ||p′ − p̂||1. Then the following three theorem statements hold.

• (i) Given that n ≥ 2(a+1)+ln 1
δ

(pminqmin)2 , we have

Pr

[
||p′ − p̂||1 ≥ pmin

]
= Pr

[
qmin||p′ − p̂||1 ≥ pminqmin

]
≤ Pr

[
||P − P̂ ||1 ≥ pminqmin

]
≤ 2a+1 exp(−n(pminqmin)2/2)

≤ 2a+1 exp(−
2(a+ 1) + ln 1

δ

(pminqmin)2
(pminqmin)2/2)

=
2a+1

ea+1
δ

≤ δ.

This implies that with probability ≥ 1− δ the L1 distance between p′ and p̂ is upper bounded by pmin.
As a result we have p̂i > 0 for each p̂i, i.e. ci ≥ 0.

• (ii) The proof follows by simply replacing pmin with ε in the proof of (i).

• (iii) The proof follows by simply replacing pmin with

√
2(ln 1

δ+(a+1))

nq2min
in the proof of (i). Specifically,

Pr

[
||p′ − p̂||1 ≥

√
2(ln 1

δ + (a+ 1))

nq2
min

]
= Pr

[
qmin||p′ − p̂||1 ≥ qmin ·

√
2(ln 1

δ + (a+ 1))

nq2
min

]

≤ Pr

[
||P − P̂ ||1 ≥

√
2(ln 1

δ + (a+ 1))

n

]
≤ 2a+1 exp(−n

2
·

2(ln 1
δ + (a+ 1))

n
)

=
2a+1

ea+1
δ

≤ δ.

6 Supplementary Figures

Figure 4 presents 50 genomes in our species-level dataset with the least number of unique L-mers. In this
graph each node represents one such genome; each edge connects two nodes if they share a doubly-unique
substring. Solid black edges indicate a pair of nodes that share at least 30 doubly-unique substrings; the
remaining edges in grey indicate node pairs with fewer number of shared doubly-unique substrings. Notice
that there is a special node in the center, representing the union of all genomes not included in these 50-
genome subset. Any node connected to this special node by a single edge, or by a path, is identifiable and
quantifiable by CAMMiQ, provided that all edges in this path are black (22 of these 50 nodes are as such) or all
nodes in this path have sufficient abundance. Note that 20 of the genomes here are connected to this special
node by a black edge: these are the genomes that form the least-quantifiable-20 dataset in our experiments.

27

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

Figure 4: Shared doubly-unique substrings among the 50 genomes with the least number of unique L-mers
in our species-level dataset consisting of 4122 RefSeq bacteria genomes. Each node represents one of these 50
genomes, labeled with its NCBI taxID at species level. The central node specially represents the remaining
4072 genomes. An edge connecting two nodes indicate at least one doubly-unique substring shared between
them. A black edge indicates ≥ 30 doubly-unique substrings in CAMMiQ’s index shared between the two
corresponding genomes. All other edges in grey imply < 30 shared doubly-unique substrings. A blue-colored
node indicates one that is connected to the central node through a path of black edges. As such, they are
relatively easy to identify and quantify; 22 of these 50 nodes are blue. The remaining (red) nodes can be
identified by CAMMiQ provided they have “sufficient abundance” in the query.

28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.12.149245

