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Abstract 28 

Background: Rapid and thorough quality assessment of sequenced genomes in an ultra-high-29 

throughput scale is crucial for successful large-scale genomic studies. Comprehensive quality 30 

assessment typically requires full genome alignment, which costs a significant amount of 31 

computational resources and turnaround time. Existing tools are either computational expensive 32 

due to full alignment or lacking essential quality metrics by skipping read alignment. 33 

Findings: We developed a set of rapid and accurate methods to produce comprehensive quality 34 

metrics directly from raw sequence reads without full genome alignment. Our methods offer 35 

orders of magnitude faster turnaround time than existing full alignment-based methods while 36 

providing comprehensive and sophisticated quality metrics, including estimates of genetic 37 

ancestry and contamination.  38 

Conclusions: By rapidly and comprehensively performing the quality assessment, our tool will 39 

help investigators detect potential issues in ultra-high-throughput sequence reads in real-time 40 

within a low computational cost, ensuring high-quality downstream analysis and preventing 41 

unexpected loss in time, money, and invaluable specimens. 42 

 Keywords: 43 
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Findings 48 

Introduction 49 

Efficient and thorough quality assessment from deeply sequenced genomes in an ultra-50 

high-throughput scale is crucial for successful large-scale sequencing studies. Delay or failure in 51 

detecting contamination, sample swaps, quality degradation, or other unexpected problems in the 52 

sequencing or library preparation protocol can result in enormous loss of time, money, and 53 

invaluable specimens if, for example, hundreds or thousands of samples are found to be 54 

contaminated weeks or months later. Ensuring comprehensive quality control of sequence data at 55 

real-time speed will assure generation of high-quality sequence reads, and subsequently 56 

successful outcomes in the downstream analyses.   57 

Existing quality assessment or quality control (QC) tools mainly fall into two categories – 58 

pre-alignment and post-alignment methods – based on whether they require full alignment of the 59 

genome prior to the quality assessment. Pre-alignment methods, such as FASTQC[1], PIQA[2], 60 

and HTQC[3], produce read-level summary statistics that can be obtained from sequence reads, 61 

such as base compositions, k-mer distributions, base qualities, and GC bias levels. However, 62 

these pre-alignment methods do not estimate many key quality metrics required for 63 

comprehensive quality assessment. These missing metrics include mapping rate, depth 64 

distribution, fraction of genome covered, sample contamination, or genetic ancestry information. 65 

Other post-alignment methods, such as QPLOT[4], Picard[5], GotCloud[6], and verifyBamID[7], 66 

provide a subset of these key quality metrics but require full alignment of sequence reads, which 67 

typically takes hundreds of CPU hours for deep (e.g.,>30x) sequence genome. (Table 1) 68 

We describe FASTQuick, a rapid and accurate set of algorithms and software tools, to 69 

combine the merits of QC tools from both categories. By focusing on a variant-centric subset of 70 
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a reference genome(reduced reference genome), our methods offer up to 30~100-fold faster 71 

turnaround time than existing post-alignment methods for deeply sequenced genome, while 72 

providing a comprehensive set of quality metrics comparable with QPLOT and verifyBamID 73 

(full-alignment based results from these two tools together constitute most of the important QC 74 

metrics from GotCloud-based QC pipeline which we will compare against frequently later) with 75 

the help of statistical adjustments to account for the reduced reference genome.  76 

 77 

Table 1. Quality assessment metrics provided by different QC tools 

Metrics FASTQC PIQA HTQC QPLOT Picard verifyBamID2 FASTQuick 

Base Quality Per Cycle ✓ ✓ ✓ ✓ ✓   ✓ 

GC Bias       ✓ ✓   ✓ 

PCR Duplication Rate       ✓ ✓   ✓* 

Insert Size Distribution       ✓ ✓   ✓ 

Contamination Estimate         ✓ ✓ ✓ 

Genetic Ancestry           ✓ ✓ 

% Mapped Reads       ✓ ✓   ✓**  

Depth Distribution       ✓ ✓   ✓ 

Total Number of Reads ✓     ✓ ✓   ✓ 

Read Length Distribution ✓   ✓ ✓ ✓   ✓ 

Full-Alignment not Required ✓ ✓ ✓       ✓ 
*The functionality of PCR Duplication Rate estimation is in testing and will be released soon.  
**Currently only recommended for whole genome sequencing dataset. 

 78 

Computational Efficiency 79 

The primary goal of FASTQuick is to achieve comprehensive QC with much less 80 

computational cost than full-alignment-based QC procedures. A large fraction of the 81 

computational gains come from the usage of the reduced reference genome and filtering of 82 
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unalignable reads through mismatch-tolerant spaced k-mer hashing(Figure 1A)[8]. Compared to 83 

alignment to the full human reference genome, aligning a 3x HG00553 genome on the reduced 84 

reference genome reduced the run time by 34.9-fold (94,020 vs. 2,697 seconds) using the same 85 

algorithm. Using hash table built from mismatch-tolerant spaced k-mers, more than 90% of 86 

unalignable reads can be filtered out with very few loss (Table S1) of alignable reads, when 3 or 87 

more hits are required (default parameter) for a read to be considered as alignable, saving 88 

additional 65% of computational time (Figure 1B). Putting them together, the alignment step of 89 

FASTQuick (with default parameters) was 100-fold faster (94,020 vs. 939 seconds) than the full 90 

genome alignment. We observed that >99% of unalignable reads could be filtered out with a 91 

more stringent threshold (7 or more hits) at the expense of 0.01% loss of alignable reads. 92 

However, the additional computational gain was only 14% (939 vs. 811 seconds). 93 

We also evaluated the overall computational efficiency between FASTQuick and the 94 

GotCloud-based QC pipeline (typical sequence processing pipeline based on full genome 95 

alignment as in 1000 genome project and TOPMed project) on the high-coverage genome (38x) 96 

and low-coverage (3x) genomes from the 1000 Genomes Project (Table 2). The results 97 

demonstrate that FASTQuick produces a comparable set of QC metrics to GotCloud with a 98 

30~100-fold faster turnaround time.  99 

Table 2. Running time comparison (in hours) 

# of Thread 
FASTQuick Time GotCloud QC Time (with BWA) 

HG00553(3X) NA12878(38X) HG00553(3X) NA12878(38X) 

1 1.03h 5.48h 30.95h 369.56h 
2 0.53h 2.46h 21.53h 230.85h 
4 0.33h 1.76h 15.83h 154.91h 
8 0.24h 1.75h 12.74h 131.85h 

Running time is evaluated as wall-clock elapsed time on a machine with Intel(R) Xeon(R) CPU (X7560 
@ 2.27GHz). Reference indexing time is independent of the input sequence dataset and not included. (It 
takes 3min20s to index human genome under default settings.) 

 100 
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QC Metrics Produced by FASTQuick 101 

FASTQuick can automatically generate and visualize the QC metrics listed in Table S2. 102 

Briefly, FASTQuick generates three types of generic QC summary statistics – per-base, per-read, 103 

and per-variant summary statistics. Per-base summary statistics inform mapping rate, depth 104 

distribution, GC-bias, and base quality. Per-read summary statistics allow us to estimate insert 105 

size distribution adjusted to account for pair-end alignment bias due to the reduced reference 106 

genome. Per-variant summary statistics allow us to estimate DNA contamination rate and genetic 107 

ancestry. These summary statistics are combined, jointly analyzed, and visualized into an 108 

interpretable and user-friendly quality report shown as in Item S1 and Item S2. 109 

 110 

Accuracy of QC Metrics 111 

We compared the distribution of QC metrics generated from FASTQuick with those from 112 

GotCloud on multiple sequenced genomes. The QC metrics shared between FASTQuick and 113 

GotCloud are listed in Table S2. The visualization QC metrics such as base quality recalibration 114 

(Figure 1E), normalized mean depth by GC content (Figure 1F), and depth distribution are very 115 

close between FASTQuick and GotCloud. For example, the two-sample Kolmogorov-Smirnov 116 

(KS) test statistics, which quantifies the maximum differences between two empirical cumulative 117 

distributions of depth was D = 0.040. Similarly, the Wasserstein-1D Distance, which quantifies 118 

the average distance between two cumulative distributions of depth, was W= 0.0038. The 119 

Wasserstein distance is a widely used metric to evaluate the similarity between two distributions 120 

in Generalized Adversary Network[9]. Even though such differences are statistically significant 121 

(mainly because of the very large number of observations), it is arguably a small amount 122 

difference typically observed between different QC tools on the same sequence data.         123 
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 One challenge in quality assessment based on the partial alignment of sequence reads to 124 

the reduced reference genome is the estimation of insert size distribution. To systematically 125 

correct for biased estimation of insert sizes, we statistically integrated the observed insert sizes 126 

across all contigs inverse probability weighting based on the Kaplan-Meier curve[10] (See 127 

Methods). Applying our correction produces estimated insert size distribution much closer to that 128 

from the full alignment (Figure 1G). The KS-test statistic and the Wasserstein-1D distance were 129 

D = 0.60 and W = 0.0591 when using 500bp contigs only, but they reduced to D = 0.18 and W = 130 

0.0170 when using both 500bp and 2,000bp contigs when comparing the insert size distributions 131 

between FASTQuick and GotCloud. When adjusting the insert-size distribution using a Kaplan-132 

Meier estimator, they substantially reduced to D = 0.017 and W = 0.0066.  133 

 To evaluate the estimation accuracy of contamination rate and genetic ancestry, we 134 

prepared artificially contaminated 1000 Genomes samples in-silico (see Methods). Then we 135 

compare the estimated contamination rate and genetic ancestry from FASTQuick with the 136 

estimation from the full-alignment QC pipeline-based result. Our results demonstrate that 137 

FASTQuick can estimate contamination rate (Figure 1H) and genetic ancestry (Table S3) as 138 

accurate as the standard method VerifyBamID2 relying on the full-alignment result. 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.10.143768doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.143768
http://creativecommons.org/licenses/by-nd/4.0/


 147 

Figure 1 Illustration of FASTQuick. A) Spaced k-mer hash filter design with the tolerance of mismatches for each 32-mer. B) 148 

Effect of minimum spaced k-mer hits to be considered for BWA alignment on the overall runtime, fraction of total reads filtered, 149 

and fraction of falsely filtered alignable reads. k = 3 was used in our experiment. C) Procedure to build FASTQuick indices with a 150 

reduced reference genome for spaced k-mer hash and the BWA algorithm. D) Procedure to process sequence reads and produce 151 

QC metrics using FASTQuick. E) Comparison of visualizations of reported base qualities (in Phred scale) and empirical base 152 

qualities between QPLOT and FASTQuick for a 38x genome. F) Comparison of visualization of GC bias (in normalized mean 153 

depth) between QPLOT and FASTQuick for a 38x genome. G) Comparison of estimated insert size distributions between QPLOT 154 

and FASTQuick (after Kaplan-Meier adjustment) for a 38x genome.  H) Comparison of estimated contamination rates in an in-155 

silico contaminated 1000G samples between verifyBamID2 and QPLOT. Purple diagonal dot line is y=x. 156 

 157 

Methods 158 

Overview of FASTQuick 159 

FASTQuick first constructs a reduced reference genome from a set of flanking sequences 160 

surrounding known SNPs and build a BWT index[11] and mismatch tolerant k-mer hash 161 

table(Figure 1C). Once the indices are built, FASTQuick rapidly filters out unalignable reads 162 

whose first 96-bp have less than 3 hits (out of 18 potential hits, among which 6 hits per 32-mer) 163 
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against the spaced k-mer hash indices, and align filtered sequence reads to the reduced reference 164 

genome using the BWT index (Figure 1D). The small fraction of filtered aligned reads will be 165 

stored in binary Sequence Alignment/Map format (BAM) [12]. Next, all the summary statistics 166 

that are generated from the aligned reads are collected and jointly analyzed to form various QC 167 

metrics that are reported in a user-friendly report in HTML (Item S1). 168 

 169 

Construction of Reduced Reference Genome using Flanking Sequences of SNPs 170 

FASTQuick constructs a reduced reference genome based on well-alignable flanking 171 

sequences around known common SNPs to enrich the reads that are informative both for genetic 172 

inference (e.g., contamination and ancestry) and other genomic quality metrics that require reads 173 

alignment. Starting from an arbitrary set of known SNPs, FASTQuick randomly selects a 174 

designated number of SNPs from known common (MAF>5%) SNP set, such as HapMap3[13], 175 

while excluding SNPs near hard-to-align regions (e.g., 1000 genome project strict mask region). 176 

FASTQuick then constructs reduced reference genome using short flanking sequences of the 177 

majority of SNPs (e.g., 90%) and long flanking sequences of the remained SNPs.  178 

 179 

Filtering Unalignable Reads with Mismatch-tolerant Hash 180 

Because the reduced reference genome is a small subset of the whole genome sequence, 181 

we expect that only a small fraction of reads will be alignable. However, attempting to align all 182 

the reads is still computationally expensive. FASTQuick builds a hash-based index to rapidly 183 

filter out the reads that are unlikely to be aligned to the reduced reference genome. To make the 184 

hash robust against sequencing errors, FASTQuick builds six locally sensitive hash tables of 16-185 
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mers for each 32-mer (Figure 1A), so that 32-mers with 2 or fewer mismatches can still be 186 

guaranteed to match to at least one of the hash tables[8].  187 

FASTQuick partitions each sequence read into multiple 32-mers and performs hash 188 

lookups for each possible 16-mers. For example, for a 100-bp read, eighteen 16-mers (6 per 32-189 

mer) across three 32-mer will be matched to the hash table. For reads longer than 96-bp reads, 190 

only the first 96-bp reads are used. FASTQuick will decide to filter out a read or not based on 191 

whether the number of matching 16-mers is less than a certain threshold k. For example, if k is 3, 192 

reads with less than 7 mismatches are guaranteed to pass the filter, and many other reads with 193 

more mismatches will pass the filter. If k is 10, reads with less than 3 mismatches are guaranteed 194 

to pass the filter. We chose k=3 based on our experiment based on empirical observations (see 195 

Findings).The remained reads will then be aligned by the optimized BWA-like algorithms to the 196 

reduced reference genome. 197 

 198 

Generating Base-level, Read-level, and Variant-Level QC Metrics 199 

Using the reads aligned to the reduced reference genome, FASTQuick generates a full list 200 

of base-level, read-level, and variant-level QC metrics (Table S2). Base-level metrics, such as 201 

base quality, and sequencing cycle, are recorded directly without using the alignment 202 

information. Because the reads spanning the end of flanking sequences may be poorly aligned, 203 

FASTQuick produces metrics only on the fully alignable portion of flanking sequences. Let the 204 

length of the flanking sequence be w, and the read length be r, then only 2*(w-r) +1 bases 205 

spanning the variant site will be considered when calculating base-level summary statistics. 206 

Read-level QC metrics, such as the fraction of mapped reads, insert size distribution are 207 

estimated and reported based on reads alignment result. Variant-level metrics are collected after 208 
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alignment result become available and are reported as pile-up bases, estimation of contamination 209 

level, and genetic ancestry.  210 

 211 

Bias-Corrected Estimation of Insert Size Distribution 212 

The insert size distribution is typically estimated from distances between the aligned pairs 213 

of reads from the fully aligned reads. When using a reduced reference, a large proportion of 214 

paired reads may not be fully mapped, and the read pairs that have shorter insert sizes are more 215 

likely to be mapped in both ends. As a result, estimating insert size distribution based only on the 216 

reads where both ends are mapped will result in biased estimates of insert sizes, as empirically 217 

demonstrated using the 38x genome in Figure S1.  218 

We first attempted to resolve this challenge by extending 10% of the variant-centric 219 

contigs to be sufficiently long (2000bp), and by estimating insert size only from the reads 220 

mapped to longer contigs. This way, we prevent the reduced reference genome from becoming 221 

too large to achieve computational efficiency and keep the insert size estimation less biased at 222 

the same time. But due to the limited number of long-flanking variants, bias and fluctuations still 223 

exist in the estimated insert size distribution. (Figure S2)  224 

To infer insert size distribution more accurately, FASTQuick further corrects for the bias 225 

nonparametrically using the Kaplan-Meier estimator. Due to the limited length of flanking 226 

sequences in the reduced reference, the observed distribution of insert sizes obtained from the 227 

reads that both ends are mapped will be biased towards smaller values. To recover the full 228 

distribution of insert sizes adjusting for the “censored” reads (i.e., reads with only one of the 229 

paired-ends aligned) enriched for large insert sizes, we adopted the Kaplan-Meier estimator as an 230 

inverse-probability-of-censoring weighted average[10] as described below.  231 
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Specifically, we define a tuple (𝑡", 𝑡#, 𝑡$) (Figure S3)for each mapped DNA segment (or 232 

read pair), where 𝑡" is the observed insert size, 𝑡#	is the maximal insert size of read 1, and 𝑡$ is 233 

the maximal insert size of read 2. The maximal insert size is defined as the distance between the 234 

leftmost/rightmost base of read 1/read 2 and the rightmost/leftmost base of the flanking region 235 

sequence, respectively. This tuple is fully specified only when a read pair is properly aligned, 236 

otherwise, for single-end mapped read pair(including partially mapped pair) only one of the two 237 

maximal insert sizes (𝑡#	or 𝑡$) is available and unobserved value is set to missing, the rest of the 238 

read pairs, such as read pairs that are mapped to different contigs, with low mapping quality, or 239 

in abnormal orientation, are discarded in the estimation of insert size distribution. Empirically, 240 

given 𝑁 properly aligned read pairs (i.e., tuples without missing values), we can estimate insert 241 

size by counting the frequency of different observed insert sizes, 𝑡", and the cumulative 242 

distribution of insert size hence becomes: 243 

𝐹(𝑡) =
1
𝑁,𝐼.𝑡",0 ≤ 𝑡2

3

045

 244 

However, as mentioned above, this direct estimation will be severely biased because of 245 

reads mapped only in a single end is more likely to have larger insert sizes. To correct for this 246 

bias, we use an approach analogous to the estimation of survival function as 𝑆(𝑡) = 1 − 𝐹(𝑡). 247 

We can view the leftmost/rightmost base on each flanking region as the start time point, the 248 

exact insert size 𝑡" as the time when it fails to observe the data point, and the maximal insert 249 

size, 𝑡# and 𝑡$, as the time when the data point is censored. Let the ordered observed time points 250 

𝑡" and censored time points 𝑡# (or 𝑡$) be 𝜏. Denote 𝑜: as the number of observed failure cases, 251 

i.e., the number of read pairs that have observed insert size less than or equal to 𝑡, and also 252 

denote 𝑐: as the number of censored cases at time t, i.e., the number of single-end mapped read 253 
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pairs have maximal insert size less than or equal to 𝑡, then let 𝐼.𝜏< ≥ 𝑡2 be indicator function if j-254 

th time point larger than certain time 𝑡(j-th insert size larger or equal to 𝑡). Then the risk set is: 255 

𝑌(𝑡) =,?𝑜< + 𝑐<A𝐼.𝜏< ≥ 𝑡2
B

<45

 256 

Then the Kaplan-Meier estimator 𝑆CDE  of 𝑆(𝑡): 257 

𝑆CDE (𝑡) = F G1 −
𝑛<

𝑌?𝜏<A
I

J<|LMN:O

	 258 

Satten et al.[10] proposed a simplified algorithm to iteratively estimate survival function 259 

for failure times and survival functions for censoring times, by which we conveniently estimate 260 

𝐹(𝑡).  261 

 262 

Estimation of Contamination Rates and Genetic Ancestry 263 

We also implemented the likelihood-based methods to estimate genetic ancestry and 264 

contamination rate in FASTQuick. The details of these methods will be fully described in 265 

VerifyBamID2[14]. In FASTQuick, to seamlessly integrated these methods into our ultra-fast QC 266 

procedure, we designed compatible variant-centric data structures and input/output interfaces 267 

that can directly deliver sequence information and estimated statistics from FASTQuick to 268 

modules that estimate contamination and genetic ancestry.  269 

 270 

Support for Target Sequencing Dataset 271 

FASTQuick also has provided options to incorporate target regions. We can conveniently 272 

use the exome region list for Exome-seq, and abundantly expressed gene list for RNA-seq as 273 

input information to only select markers within the list. We prepared the result generated by 274 
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FASTQuick for exome sequencing data of HG00553 from the 1000 genome project as a 275 

demonstration (Item S2). 276 

Discussion 277 

We described FASTQuick, which addresses computational challenges in quality control 278 

of ultra-high-throughput sequence data, by focusing on sequence reads mappable to an 279 

informative subset of the reference genome. Our results demonstrate that FASTQuick achieves 280 

with on average 30 ~ 100-fold faster turnaround time than methods based on full sequence 281 

alignment while producing comprehensive and accurate QC metrics. Compared to previous 282 

quality assessment methods that do not align sequence reads at all, FASTQuick provides more 283 

comprehensive QC metrics such as depth distribution, insert size distribution, contamination, and 284 

genetic ancestry.  285 

FASTQuick leverages several methods, such as spaced-kmer hash table and Kaplan-286 

Meier estimator, to enable rapid and accurate estimation of QC metrics. Interestingly, the 287 

computational time is much faster than the time required to convert and compress Illumina’s 288 

BCL formatted files into FASTQ files. Therefore, FASTQuick can work as a UNIX pipe during 289 

the conversion procedures to increase efficiency in the sequencing pipeline.  290 

There are potential drawbacks of only using the reduced (subset of) reference genome, 291 

but FASTQuick applies heuristics to avoid such drawbacks. For example, reads that originate 292 

from multiple homologous regions on the genome may be misaligned to the same contig on the 293 

reduced genome, which may affect variant-level quality metrics. FASTQuick addresses this issue 294 

by strictly selecting regions that are unique and easy to align (callable regions), and we 295 

demonstrated the effectiveness by showing that contamination and genetic ancestry estimates are 296 

almost identical to the estimation from full genome alignment result. Another issue could be the 297 
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excessive single-end alignment, for example, it will skew the estimation of insert size 298 

distribution toward smaller value. We applied Kaplan-Meier estimator to correct the estimation 299 

as described above. There are still limitations associated with the reduced reference genome. For 300 

example, a precise estimation of % mapped reads is challenging, especially for targeted 301 

sequencing reads, due to the lack of repetitive sequences. Analysis involving structural variation 302 

or comprehensive screening of GWAS variants may not be feasible under FASTQuick’s settings. 303 

Currently, FASTQuick is only suitable for short sequence reads. To enable an analysis of 304 

long sequence reads, additional alignment algorithms such as Minimap2 [15] could be 305 

incorporated. Extending FASTQuick to other types of sequence data, such as RNA-seq, ChIP-306 

seq, and ATAC-seq, should also be possible if the technology-specific characteristics are 307 

properly considered and accounted for. What’s more, FASTQuick can serve as a general down-308 

sampling step prior to analysis like sample-swap detection, kinship estimation with the help of 309 

alignment result on common variants. More broadly, although we demonstrated FASTQuick’s 310 

capability by using human genome analysis as an example, the whole pipeline is adaptable easily 311 

to other organisms provided with corresponding genomic databases. 312 

Unlike hardware-accelerated solutions achieve fast speed by introducing specialized 313 

hardware, such as DRAGEN[16] and Parabricks[17], FASTQuick gains its speed from optimized 314 

algorithms that are specially designed for the reduced genome setting. Compared to omni-315 

purpose proprietary tools like DRAGEN and Parabricks, FASTQuick is an open-source tool that 316 

does not require specific hardware such as GPU or FPGA devices and is specifically designed 317 

for quality assessment which can be critical to have rapid turnaround time in sequence analysis 318 

workflow and add a great value to the existing sequence analysis ecosystem. 319 

 320 
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 321 

 322 

Availability and requirements 323 

Project name: FASTQuick 324 

Project home page: https://github.com/Griffan/FASTQuick 325 

Operating system(s): Linux, MacOS 326 

Programming language: C++, Shell, R 327 

Other requirements: CMAKE, libhts, ggplot2, knitr 328 

License: MIT 329 

Any restrictions to use by non-academics: None 330 
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 389 

Supplementary Materials 390 

Experimental Data 391 

We selected a deeply sequenced genome of a publicly available sample (NA12878) from 392 

the Trans-Omics Precision Medicine (TOPMed) project for most evaluations. Also, we selected 393 

an exome-sequencing dataset of the same sample (NA12878) from the 1000 genome project 394 

(SRR098401) for target sequencing evaluation. To evaluate computational efficiency for the 395 

low-pass sequence genome, we also evaluated another sample (HG00553) from the 1000 396 

Genomes Project (ERR013170, ERR015764, and ERR018525). To evaluate the accuracy of 397 

contamination estimates we constructed 10 genomes with in-silico contamination by randomly 398 

sampling aligned sequence reads from samples in 1000 Genomes phase 3 project and then 399 

mixing reads from different samples proportional to the intended contamination rates α ∈400 

{0.01, 0.02, 0.05, 0.1, 0.2}, as described in VerifyBamID2[14].  401 

 402 

 403 
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Supplementary Tables 410 

Table S1. Impact of Mismatch Threshold on Kmer-Hash based Reads Filtering 
Mismatch Threshold K Total Reads Filtered Reads Remained Mappable Reads 

0 96240521 0 (0.0000%) 270405 (100.0000%) 

1 96240521 42200008 (43.8485%) 270405 (100.0000%) 

2 96240521 74965846 (77.8943%) 270405 (100.0000%) 

3 96240521 86900055 (90.2947%) 270405 (100.0000%) 
4 96240521 91827374 (95.4145%) 270403 (99.9993%) 

5 96240521 93920755 (97.5896%) 270397 (99.9970%) 

6 96240521 94865507 (98.5713%) 270381 (99.9911%) 

7 96240521 95392311 (99.1187%) 270371 (99.9874%) 

8 96240521 95635568 (99.3714%) 270197 (99.9231%) 
9 96240521 95756594 (99.4972%) 270105 (99.8891%) 

10 96240521 95828932 (99.5723%) 269643 (99.7182%) 

11 96240521 95872139 (99.6172%) 268304 (99.2230%) 

12 96240521 95898966 (99.6451%) 268160 (99.1698%) 

13 96240521 95941830 (99.6896%) 261835 (96.8307%) 
14 96240521 95961621 (99.7102%) 257046 (95.0596%) 

15 96240521 95969319 (99.7182%) 256664 (94.9184%) 

16 96240521 96026258 (99.7774%) 206014 (76.1872%) 

17 96240521 96031175 (99.7825%) 204101 (75.4797%) 

18 96240521 96033063 (99.7844%) 203998 (75.4417%) 

Mismatch threshold (number of kmer hits) experiments to evaluate the kmer-hash based reads filtering 
effectiveness 
 411 
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 418 

 419 

 420 

 421 

 422 

Table S2. Summary statistics and visualization items produced by FASTQuick 

Output File Name Visualization Description 

[output_prefix].AdjustedInsertSizeDist Y Adjusted Insert Size Distribution 

[output_prefix].DepthDist Y Depth distribution 

[output_prefix].EmpCycleDist Y Empirical Base Quality vs. Sequencing Cycle 

[output_prefix].EmpRepDist Y Empirical Base Quality vs. Reported Base Quality 

[output_prefix].GCDist Y GC Content Distribution 

[output_prefix].InsertSizeTable N Insert Size for Each Read Pair 

[output_prefix].Likelihood N Genotype Likelihood 

[output_prefix].Pileup N Pileup format information 

[output_prefix].RawInsertSizeDist Y Insert Size Distribution (Unadjusted) 

[output_prefix].bam N Reads Alignment 

 [output_prefix].Summary N General Summary Report  

[output_prefix].pdf Y Visualization file containing various QC metrics 

FinalReport.html Y Integrated report including statistics listed above 
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Table S3. Comparison of Genetic Ancestry Estimation between FASTQuick and VerifyBamID2. 
Simulated_Sample Tool PC1_mu PC1_sd PC2_mu PC2_sd 

HG00097_HG00464 FASTQuick -0.0102 0.0004 -0.0235 0.0029 
HG00097_HG00464 VerifyBamID2 -0.0104 0.0003 -0.0234 0.0033 
HG00097_NA19204 FASTQuick -0.0100 0.0001 -0.0251 0.0001 
HG00097_NA19204 VerifyBamID2 -0.0101 0.0001 -0.0250 0.0002 
HG00105_HG00463 FASTQuick -0.0101 0.0002 -0.0259 0.0017 
HG00105_HG00463 VerifyBamID2 -0.0104 0.0004 -0.0247 0.0027 
HG00105_NA19152 FASTQuick -0.0096 0.0004 -0.0265 0.0003 
HG00105_NA19152 VerifyBamID2 -0.0097 0.0003 -0.0267 0.0004 
HG00692_HG00107 FASTQuick -0.0167 0.0004 0.0299 0.0023 
HG00692_HG00107 VerifyBamID2 -0.0169 0.0005 0.0306 0.0022 
HG00692_NA19204 FASTQuick -0.0165 0.0005 0.0306 0.0014 
HG00692_NA19204 VerifyBamID2 -0.0166 0.0004 0.0306 0.0014 
HG00708_HG00101 FASTQuick -0.0165 0.0002 0.0312 0.0005 
HG00708_HG00101 VerifyBamID2 -0.0165 0.0002 0.0312 0.0004 
HG00708_NA19152 FASTQuick -0.0161 0.0004 0.0314 0.0003 
HG00708_NA19152 VerifyBamID2 -0.0166 0.0000 0.0312 0.0002 
NA19141_HG00107 FASTQuick 0.0355 0.0005 0.0042 0.0002 
NA19141_HG00107 VerifyBamID2 0.0354 0.0005 0.0042 0.0002 
NA19141_HG00464 FASTQuick 0.0353 0.0005 0.0038 0.0008 
NA19141_HG00464 VerifyBamID2 0.0355 0.0004 0.0039 0.0009 
NA19190_HG00101 FASTQuick 0.0338 0.0000 0.0038 0.0002 
NA19190_HG00101 VerifyBamID2 0.0339 0.0004 0.0042 0.0007 
NA19190_HG00463 FASTQuick 0.0341 0.0004 0.0045 0.0005 
NA19190_HG00463 VerifyBamID2 0.0340 0.0002 0.0040 0.0002 

Comparison of genetic ancestry estimation (via principal component coordinates) between FASTQuick and 
VerifyBamID2 using 60(12 pairs of datasets with 5 different mixing rate 0.01, 0.02, 0.05, 0.1, 0.2) simulated 
low coverage sequencing samples from 1000 genome project. FASTQuick or VerifBamID2 independently 
estimates the set of PC coordinates of each simulated sample. 
 423 
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Supplementary Figures 430 

 431 
Figure S1 Marginal distribution of max insert size and observed insert size in the reduced genome under 250bp(short) 432 

and 1000bp(long) flanking length configuration. Top) Marginal distribution of max insert size. Right) Marginal distribution of 433 

observed insert size(green), along with true insert size distribution (Blue) and adjusted insert size distribution(red) Bottom) 434 

Scatter plot of read pairs with max insert size and observed insert size being coordinates. Blue dots represent read pairs mapped 435 

to the long flanking region; purple dots represent read pairs mapped to the short flanking region. The band between the line 436 

“y=x” and line “y=x+150” are read pairs partially mapped. The line “y=2x-500” and line “y=2-2000” are the effective boundaries 437 

where read pairs have both ObservedInsertSize and MaxInsertSize for 250bp flanking region and 1000bp flanking region, 438 

respectively.  439 

 440 
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 441 

Figure S2 Biased insert size distribution in reduced genome under 250bp(short) or 1000bp(long) flanking length 442 

configuration. Each color represents one scenario of insert size estimation without correction. “Observed.LongRegion” (green) 443 

is when insert size distribution estimated only using reads mapped to the long flanking region; “Observed.ShortRegion”(blue) is 444 

when only using reads mapped to the short flanking region; “True” (purple) is insert size distribution estimated under full 445 

genome alignment; “Adjusted”(red) is insert size distribution estimated by FASTQuick. 446 
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 454 
Figure S3. Definition of Insert Size Tuple. The blue portion represents a reference genome backbone. The orange portion 455 

represents the extracted flanking region. The yellow portion represents a variant. The gray bars represent a pair of reads aligning 456 

to this flanking region. 457 
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Item S1. Detailed Quality Assessment Final Report of HG00553 Whole Genome Dataset (in separate supplementary 480 

materials).  481 

 482 

Item S2. Detailed Quality Assessment Final Report of HG00553 Exome Dataset (in separate supplementary materials).  483 

 484 
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