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 1 

Abstract 1 

 2 
Image synthesis is one of the key applications of deep learning in neuroimaging, which enables 3 

shortening of the scan time and/or improve image quality; therefore, reducing the imaging cost 4 

and improving patient experience. Given the multi-modal and large-scale nature of neuroimaging 5 

data, the synthesis task is computationally challenging. 2D image synthesis networks do not take 6 

advantage of multi-dimensional spatial information and the 3D implementation has 7 

dimensionality problem, negatively affecting the network reliability. These limitations hinder the 8 

research and clinical applicability of deep learning-based neuroimaging synthesis. In this paper, 9 

we proposed a new network that is designed and optimized for the application of multi-modal 10 

3D synthesis of neuroimaging data. The network is based on 3D conditional generative 11 

adversarial network (GAN), and employs spectral normalization and feature matching to stabilize 12 

the training process and ensure optimization convergence. We also added a self-attention 13 

module to model relationships between widely separated voxels. The performance of the 14 

network was evaluated by predicting positron emission tomography (PET) images, Fractional 15 

anisotropy (FA) and mean diffusivity (MD) maps from multi-modal magnetic resonance images 16 

(MRI) of 265 and 497 individuals correspondingly. The proposed network, called self-attention 17 

conditional GAN (SC-GAN), significantly outperformed conventional 2D conditional GAN and the 18 

3D implementation, enabling robust 3D deep learning-based neuroimaging synthesis.  19 

 20 

Keywords: 3D GAN, MRI, PET, image synthesis, self-attention, spectral normalization 21 

  22 
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 2 

Introduction 1 

Medical image synthesis is a technique to generate new parametric images from other 2 

medical image modalities that contain a degree of similarity or mutual information. Medical 3 

image synthesis can be used for a number of valuable applications, including shortening imaging 4 

time, data augmentation, enabling low dose contrast administration and even image 5 

enhancement (Hiasa et al., 2018; Nie et al., 2017; Roy et al., 2014; Shin et al., 2018; Wang et al., 6 

2018; Yi et al., 2019). For the last five years, the power of image synthesis has been proven in 7 

computer vision and image processing fields. In particular, generative adversarial networks (GAN) 8 

(Goodfellow et al., 2014) has been shown to be an effective and reliable technique for image 9 

synthesis (Huang et al., 2018). Variants of GAN like Conditional GAN (Mirza and Osindero, 2014) 10 

and Cycle GAN (Zhu et al., 2017) also have been proposed to generalize GAN to different tasks 11 

and circumstances, including medical image synthesis.  12 

 13 

Medical image synthesis with deep convolutional neuronal networks are often implemented 14 

using encoder-decoder networks, GAN or its variants. For example, Nie et al (Nie et al., 2018) 15 

proposed a deep convolutional adversarial network to synthesize Computer Tomography (CT) 16 

images from magnetic resonance images (MRI), and also to synthesize 7T MRI from 3T images. 17 

Chen et al (Chen et al., 2019) implemented encoder-decoder convolutional neural network to 18 

synthesis positron emission tomography (PET) from ultra-low dose PET and MRI. Ouyang et al 19 

(Ouyang et al., 2019) used conditional GAN with task specific perceptual loss to synthesize PET 20 

from ultra-low dose PET. These techniques used 2-dimensional (2D) or 2.5D network 21 

implementations. For a 2D network implementation, image slices along one of 3D anatomical 22 

planes (i.e. axial, coronal and sagittal) are trained independently and then combined or 23 

ensembled in decoding step. Employing a 2D approach on a 3D data is suboptimal and inefficient 24 

because it does not incorporate the 3D spatial information in the image, and/or it requires 25 

multiple independent implementation of a same network along different image axes. 26 

 27 

3D networks were proposed to address the limitations of the 2D and 2.5D networks for the 28 

purpose of image synthesis. Wang et al (Wang et al., 2019) proposed a 3D conditional GAN 29 
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 3 

network for PET synthesis from low dose input, which resulted to improved network 1 

performance in comparison with the 2D implementation. Liu et al (Liu, 2019) showed that 3D 2 

GAN performance can be improved further by incorporating an attention gate module to 3 

generate synthesis results, which they used as the input of a segmentation task. Given that the 4 

aim of image synthesis is to generate a new image from the existing images of the same individual, 5 

we anticipate that a self-attention module could further improve the performance of GAN. The 6 

3D implementation of self-attention GAN however, with no specific modification/addition to 7 

network elements and optimizers, creates inconsistency problem due to the large differences of 8 

feature distributions (Wang et al., 2019), negatively affecting the network reliability and 9 

sometimes fails to converge. In order to improve GAN performance and to address these 10 

limitations, we developed a new 3D GAN and optimized it for neuroimaging synthesis.  11 

 12 

Proposed 3D Self-attention Conditional GAN (SC-GAN) is constructed as follow: First, we 13 

extended 2D conditional GAN into 3D conditional GAN. Then, we added 3D self-attention module 14 

to 3D conditional GAN to generate 3D images with preserved brain structure and reduced 15 

blurriness within the synthesized images. We also introduced spectral normalization (Miyato et 16 

al., 2018), feature matching loss (Wang et al., 2018) and brain area root mean square error (RMSE) 17 

loss to stabilize training and prevent overfitting. SC-GAN is an end-to-end medical image 18 

synthesis network that can be applied on high-resolution input images (e.g. 256 x 256 x 256). SC-19 

GAN can also be applied on multi-modal input data and is designed using 3D convolutional layers.  20 

 21 

The novelties and contributions of this technique are as follows. 22 

I. For the first time, combining 3D self-attention module into 3D conditional GAN to 23 

generate high accuracy synthesis results with stable training process. A smooth training 24 

was achieved by using a series of stabilization techniques and modified loss function.  25 

II. SC-GAN was tested on multiple datasets across different synthesis tasks and enables 26 

multi-model input, which can be generalized to other image synthesis applications.  27 

III. SC-GAN source code is made available at https://github.com/Haoyulance/SC-GAN  28 

 29 
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 4 

Theory and Method 1 

Here we introduce the 3D Self-attention Conditional GAN (SC-GAN) theory and the mathematical 2 

formulation of its components.  3 

 4 

3D conditional GAN 5 

For the main body of the SC-GAN, we used conditional GAN, which is shown to be the optimum 6 

choice of GAN for medical image synthesis and reconstruction with paired images (Wang et al., 7 

2019)(Ouyang et al., 2019)(Li et al., 2020)(Zhao et al., 2020). SC-GAN was then designed by adding 8 

additional modules to conditional GAN that are described in detail in the next sections. This 9 

section describes the conditional GAN, which was also used as the baseline for evaluating the SC-10 

GAN. 11 

 12 

In an unconditional GAN (Goodfellow et al., 2014), the generator learns the mapping from the 13 

latent space to target image space by adversarial learning to generate the fake outcome, without 14 

any label specify. Conditional GAN on the other hand learns to generate the outcome using a 15 

specific condition, allowing the application of supervised learning for image-to-image generation. 16 

Therefore, when ground truth data is available for training, conditional GAN is a powerful 17 

network to do image translation. Conditional GAN uses below loss function:  18 

 19 

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) =  𝔼(𝑥,𝑦)[log 𝐷(𝑥, 𝑦)] + 𝔼(𝑥,𝑧)[log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))]           (1) 20 

 21 

where 𝑥 is the input image and also the condition image, 𝑦 is the ground truth image and 𝑧 is the 22 

Gaussian noise. Notice 𝑧 is the sample in the latent space for unconditional GAN to generate 23 

stochastic results. As for image to image translation, condition image 𝑥 has enough variance so 24 

that generator would easily learn to ignore 𝑧 (Isola et al., 2017), (Ouyang et al., 2019). Therefore, 25 

in conditional GAN noise 𝑧  is no longer provided to the generator and the loss function is 26 

formulated as: 27 

 28 

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) =  𝔼(𝑥,𝑦)[log 𝐷(𝑥, 𝑦)] + 𝔼(𝑥)[log(1 − 𝐷(𝑥, 𝐺(𝑥)))]            (2) 29 
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 5 

 1 

We adopted pix2pix (Isola et al., 2017), a variant network of 2D conditional GAN, as the network 2 

structure of 3D conditional GAN. in our experiment, 3D conditional GAN has 8 layers generator, 3 

similar to U-net (Ronneberger et al., 2015), and uses PatchGAN classifier(Isola et al., 2017) as the 4 

discriminator. The objective function is:  5 

 6 

min
𝐺

(max
𝐷

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜇𝐿1(𝐺))                   (3) 7 

 8 

Where 𝐿1(𝐺) = 𝔼(𝑥,𝑦)(‖𝑦 − 𝐺(𝑥)‖1) is the 𝐿1  loss between the ground truth and generated 9 

image and 𝜇 is the regularization term for the 𝐿1 loss.  10 

 11 

Generator’s optimization aims to minimize the objective function. Only generator’s weights are 12 

updated in each iteration of the optimization. Discriminator’s optimization aims to maximize the 13 

objective function and therefore only discriminator’s weights are updated in each iteration. 14 

Generator and discriminator forward and backward propagate alternately till the training process 15 

reaches Nash equilibrium and network converges (Nash, 1950).  16 

 17 

Feature matching loss 18 

To stabilize the training, we incorporated a feature matching loss (Wang et al., 2018). Feature 19 

matching loss is described as follow:  20 

 21 

𝐿𝐹𝑀(𝐺, 𝐷) = 𝔼(𝑥,𝑦) ∑
1

𝑁𝑖
‖𝐷𝑖(𝑥, 𝑦) − 𝐷𝑖(𝑥, 𝐺(𝑥))‖

1
𝑇
𝑖=1                  (4) 22 

 23 

where 𝐷𝑖  is the 𝑖𝑡ℎ layer’s feature map; 𝑇 is the total number of layers of discriminator and 𝑁𝑖 is 24 

the number of elements in 𝑖𝑡ℎ layer’s feature map.  25 

 26 

Feature matching loss was added only to the generator loss, because only the 𝐿𝐹𝑀 is required to 27 

be minimized at generator’s optimization. The objective function with feature matching loss is: 28 

 29 
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 6 

min
𝐺

(max
𝐷

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜇𝐿1(𝐺) + 𝜆 𝐿𝐹𝑀(𝐺, 𝐷))              (5) 1 

 2 

where regularization term (𝜆) controls the importance of the feature matching loss.  3 

 4 

Brain area RMSE loss  5 

Error calculation was done on brain voxels and the background was excluded. We calculated root 6 

mean square error (RMSE) between masked 𝐺  and masked 𝑦 , then added the RMSE to the 7 

generator loss. We obtained the brain area (𝑚𝑎𝑠𝑘𝑦) from the ground truth 𝑦, then, which was 8 

used to calculate brain area RMSE (B-rmse) loss: 9 

 10 

𝐿𝐵−𝑟𝑚𝑠𝑒(𝐺) = √
1

𝑁
∑ (𝑚𝑎𝑠𝑘𝑦(𝑦)𝑖 − 𝑚𝑎𝑠𝑘𝑦(𝐺(𝑥))

𝑖
)2𝑁

𝑖=1                   (6)  11 

 12 

where 𝑚𝑎𝑠𝑘𝑦(𝑦)𝑖 is the 𝑖𝑡ℎ voxel of  𝑚𝑎𝑠𝑘𝑦(𝑦) and 𝑁 is the number of total voxels. Objective 13 

function of B-rmse loss is: 14 

 15 

min
𝐺

(max
𝐷

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜇𝐿1(𝐺) + 𝜆 𝐿𝐹𝑀(𝐺, 𝐷) + 𝛾𝐿𝐵−𝑟𝑚𝑠𝑒(𝐺))            (7) 16 

 17 

where 𝛾 controls the regularization term for the brain area rmse loss.  18 

In the ablation study, we found that B-rmse loss contributed to the improvement of the network 19 

performance and improved the synthesis accuracy. Notice that B-rmse loss is not the only loss 20 

for the generator, there are combination of 𝐿1 loss, B-rmse loss and feature matching loss for 21 

generator. 𝐿1 loss focuses on the difference of whole output and target and B-rmse loss focuses 22 

on the only brain area’s difference of output and target. 23 

 24 

3D self-attention 25 

Self-attention allows GAN to efficiently model relationships between widely separated spatial 26 

regions (Zhang et al., 2018), so that generated images contain realistic details. The image feature 27 

map 𝑥 𝜖 𝑅𝐶×ℎ∗𝑤∗𝑑  from one intermediate hidden layer of 3D cGAN was transformed into 2 28 
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 7 

feature spaces 𝑓(𝑥) = 𝑊𝑓𝑥 and 𝑔(𝑥) = 𝑊𝑔𝑥 to calculate the attention. Then, the third feature 1 

space ℎ(𝑥) = 𝑊ℎ𝑥 was used to calculate attention feature map. Since the purpose of utilizing 2 

self-attention is to measure the similarity of each voxel with target voxel, we used the similarity 3 

scores (attentions) as weights to calculate the weighted sum represent of each target voxel. 3D 4 

self-attention module structure is presented in Figure 1. 5 

 6 

Similarity score (attention) was calculated as follow:  7 

𝛽𝑗,𝑖 =
exp (𝑆𝑗,𝑖)

∑ exp (𝑆𝑗,𝑖)𝑁
𝑖=1

,     𝑤ℎ𝑒𝑟𝑒 𝑆𝑗,𝑖 = 𝑓(𝑥𝑗)
𝑇

𝑔(𝑥𝑖)               (8) 8 

 9 

in which, 𝛽𝑗,𝑖  is voxel 𝑗’s attention to voxel 𝑖. We then calculated attention feature for each voxel 10 

𝑗 by: 11 

 12 

𝑂𝑗 = 𝑣 (∑ 𝛽𝑗,𝑖
𝑁
𝑖=1 ℎ(𝑥𝑖)) , 𝑤ℎ𝑒𝑟𝑒 𝑣(𝑥) = 𝑊𝑣𝑥               (9) 13 

 14 

The final output of attention layer is: 15 

 16 

𝑦𝑗 = 𝛼𝑂𝑗 + 𝑥𝑗                 (10) 17 

 18 

In the above formulations 19 

 20 

𝑊𝑓𝜖𝑅𝐶̅×𝐶 ,       𝑊𝑔𝜖𝑅𝐶̅×𝐶 ,       𝑊ℎ𝜖𝑅𝐶̅×𝐶 ,       𝑊𝑣𝜖𝑅𝐶×𝐶̅ , 𝑂𝜖𝑅𝐶×ℎ∗𝑤∗𝑑            (11) 21 

 22 

𝑊𝑓,  𝑊𝑔, 𝑊ℎ, 𝑊𝑣 are learned weight matrices by 1 × 1 × 1 3D convolutions; 𝐶 is the number of 23 

original channels; 𝐶̅ equals to 𝐶/8 for memory efficiency; ℎ ∗ 𝑤 ∗ 𝑑 is the number of voxels in 24 

one feature map; 𝛼 is a learnable scalar and it is initialized as 0.  25 

 26 

 27 
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 8 

In our network, self-attention is implemented in both generator and discriminator as shown in 1 

Figure 2. Generator for conditional GAN is the same as U-net (Ronneberger et al., 2015) structure. 2 

When comparing our results with U-net, we added self-attention at both encoder and decoder 3 

of U-net to improve the synthesis performance. 4 

 5 

Spectral normalization 6 

Spectral normalization is implemented in each layer 𝑔: ℎ𝑖𝑛 → ℎ𝑜𝑢𝑡  of the neural networks to 7 

normalize the weight matrix between two connected layers by controlling the Lipschitz constant. 8 

By definition, Lipschitz norm ‖𝑔‖𝐿𝑖𝑝  = 𝑠𝑢𝑝ℎ𝜎(∇𝑔(ℎ)), where 𝜎(∙) is the spectral norm (the 9 

largest singular value). 10 

Suppose a neural network 𝑓(𝑥, 𝑊, 𝑎) = 𝑊𝐿+1𝑎𝐿(𝑊𝐿(𝑎𝐿−1(𝑊𝐿−1(… 𝑎1(𝑊1𝑥) … )))) , where 11 

{𝑊1，𝑊2, … , 𝑊𝐿+1}  is the weights set, {𝑎1，𝑎2, … , 𝑎𝐿}  is the element-wise non-linear 12 

activation functions. For the linear layer 𝑔(ℎ) = 𝑊ℎ, the norm is given by: 13 

 14 

‖𝑔‖𝐿𝑖𝑝 = 𝑠𝑢𝑝ℎ𝜎(∇𝑔(ℎ)) = 𝑠𝑢𝑝ℎ𝜎(W) = 𝜎(W)             (12) 15 

 16 

If the Lipschitz norm of the activation function ‖𝑎𝐿‖𝐿𝑖𝑝  is equal to 1, based on the Cauchy-17 

Schwarz inequality ‖𝑔1 ∘ 𝑔2‖𝐿𝑖𝑝 ≤ ‖𝑔1‖𝐿𝑖𝑝 ∙ ‖𝑔2‖𝐿𝑖𝑝, the following bound can be derived: 18 

 19 

‖𝑓‖𝐿𝑖𝑝 ≤ ‖𝑔𝐿+1‖𝐿𝑖𝑝 ∙ ‖𝑎𝐿‖𝐿𝑖𝑝 ∙ ‖𝑔𝐿‖𝐿𝑖𝑝 ∙∙∙ ‖𝑎1‖𝐿𝑖𝑝 ∙ ‖𝑔1‖𝐿𝑖𝑝 = ∏ ‖𝑔𝑙‖𝐿𝑖𝑝

𝐿+1

𝑙=1
= ∏ 𝜎(𝑊𝑙)

𝐿+1

𝑙=1
 20 

                  (13) 21 

The spectral normalization normalizes the spectral norm of the weight matrix 𝑊𝑙 to get 𝑊𝑆𝑁 =22 

𝑊𝑙/𝜎(𝑊𝑙). Thus, if 𝑊𝑙  is normalized as 𝑊𝑆𝑁 , then ‖𝑓‖𝐿𝑖𝑝 ≤ ∏ 𝜎(𝑊𝑆𝑁)𝐿+1
𝑙=1 = 1  which means 23 

‖𝑓‖𝐿𝑖𝑝 is bounded by 1. Miyato et al (Miyato et al., 2018) have shown the importance of Lipschitz 24 

continuity assuring the boundness of statistics. We utilized Spectral normalization in both 25 

generator and discriminator of SC-GAN. 26 

 27 
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 9 

Regularization 1 

In order to prevent overfitting, we added L2 norm regularizations to generator and discriminator, 2 

resulting to a final objective function of: 3 

 4 

min
𝐺

(max
𝐷

(𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) − 𝜈𝐷𝐿2(𝐷)) + 𝜇𝐿1(𝐺) + 𝜆 𝐿𝐹𝑀(𝐺, 𝐷) + 𝛾𝐿𝐵−𝑟𝑚𝑠𝑒(𝐺) + 𝜈𝐺𝐿2(𝐺))    (14) 5 

 6 

where 𝜈𝐷  and 𝜈𝐺  control the importance of 𝐿2 regularization. Since during the training process 7 

we minimize the negative discriminator loss for the discriminator training, the above objective 8 

function uses −𝜈𝐷𝐿2(𝐷)  to regularize discriminator. Note that 𝐿2(𝐷)  and 𝐿2(𝐺)  are the 9 

constraints on trainable values of discriminator and generator, however, 𝐿1(𝐺) is the 𝐿1 distance 10 

between generated output and ground truth.  11 

12 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.09.143297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.143297
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

Experiments 1 

Study data  2 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 3 

Neuroimaging Initiative 3 (ADNI-3) database (http://adni.loni.usc.edu) (Weiner et al., 2017). We 4 

downloaded MRI and PET data from ADNI-3 participants. All available from ADNI-3 at the time of 5 

this study were used for this study (ADNI-3 is an ongoing project). For PET synthesis task 265 6 

images were used (training set = 207, testing set = 58). For FA and MD synthesis tasks 497 images 7 

were used (training set = 398, testing set = 99). For MRI, T1-weighted (T1w) and fluid-attenuated 8 

inversion recovery (FLAIR) structural magnetic resonance image (MRI) and diffusion-weighted 9 

MRI were used. For PET, we used amyloid PET data. For PET synthesis, dataset with complete 10 

T1w, FLAIR and amyloid PET sessions with acceptable quality, based on ADNI guidelines were 11 

included in the analysis. For diffusion-weighted MRI synthesis, dataset with complete T1w, FLAIR 12 

and diffusion-weighted MRI sessions were used (all images were visually inspected).  13 

 14 

MRI data collection and preprocessing 15 

MRI imaging of the ADNI-3 was done exclusively on 3T scanners (Siemens, Philips, and GE) using 16 

a standardized protocol. 3D T1w with 1 mm3 resolution was acquired using an MPRAGE sequence 17 

(on Siemens and Philips scanners) and FSPGR (on GE scanners). For FLAIR images, a 3D sequence 18 

with similar resolution as T1w images was acquired, which provided the opportunity for accurate 19 

intrasubject intermodal co-registration. MPRAGE T1w MRI scans were acquired using the 20 

following parameters: TR = 2300 ms, TE = 2.98 ms, FOV = 240  256 mm2, matrix = 240  256 21 

(variable slice number), TI = 900 ms, flip angle = 9, effective voxel resolution = 1  1  1 mm3. The 22 

FSPGR sequence was acquired using sagittal slices, TR = 7.3 ms, TE = 3.01 ms, FOV = 256  256 23 

mm2, matrix = 256  256 (variable slice number), TI = 400 ms, flip angle = 11, effective voxel 24 

resolution = 1  1  1 mm3. 3D FLAIR images were acquired using sagittal slices, TR = 4,800 ms, 25 

TE = 441 ms, FOV = 256  256 mm2, matrix = 256  256 (variable slice number), TI = 1650 ms, flip 26 

angle = 120, effective voxel resolution = 1  1  1.2 mm3.  27 
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 11 

T1w preprocessing and parcellation was done using the FreeSurfer (v5.3.0) software package, 1 

which is freely available (Fischl, 2012), and data processing using the Laboratory of Neuro Imaging 2 

(LONI) pipeline system (http://pipeline.loni.usc.edu) (Dinov et al., 2010, 2009; Moon et al., 2015; 3 

Torri et al., 2012), similar to (Sepehrband et al., 2018; Sta Cruz et al., 2019). Field corrected, 4 

intensity normalized images were filtered using non-local mean filtering to reduce the noise, and 5 

the outputs were used for the analysis. FLAIR images of each individuals were corrected for non-6 

uniform field inhomogeneity using N4ITK module (Tustison et al., 2010) of Advanced 7 

Normalization Tools (ANTs) (Avants et al., 2009). FLAIR images were then co-registered to T1w 8 

images using antsIntermodalityIntrasubject ANTs module.  9 

 10 

Diffusion MRI is a quantitative modality and contain microstructural information about brain 11 

tissue (Le Bihan et al., 2001; Sepehrband et al., 2017, 2015). Therefore, it was used as a 12 

challenging synthesis target from T1 and FLAIR, which are mainly qualitative maps. Diffusion MRI 13 

data was acquired using the following parameters: 2D echo-planar axial imaging, with sliced 14 

thickness of 2mm, in-plane resolution of 2mm2 (matrix size of 1044 x 1044), flip angle of 90°, 48 15 

diffusion-weighted images with 48 uniformly distributed diffusion-encodings with b-value=1000 16 

s/mm2 and 7 non-diffusion-weighted images. Diffusion MRI preprocessing and diffusion tensor 17 

imaging (DTI) fitting were performed were as described in (Sepehrband et al., 2019b, 2019a). In 18 

brief, images were corrected for eddy current distortion and for involuntary movement, using 19 

FSL TOPUP and EDDY tools (Andersson et al., 2012, 2003).  DTI was then fitted to diffusion data 20 

using Quantitative Imaging Toolkit (Cabeen et al., 2018). Fractional anisotropy (FA) and mean 21 

diffusivity (MD) maps were used for the synthesis task.  22 

 23 

PET data collection and preprocessing  24 

Amyloid PET analysis was performed according to UC Berkeley PET methodology for quantitative 25 

measurement (Baker et al., 2017; Landau et al., 2015, 2014; Schöll et al., 2016). Participants were 26 

imaged by Florbetapir (18 F-AV-45, Avid), or 18 F-Florbetaben (NeuraCeq, Piramal). Six five-minute 27 

frames of PET images were acquired 30 to 60 minutes post injection. Each extracted frame is co-28 

registered to the first extracted frame and then combined into one image, which lessens the 29 
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subject motion artifacts. The combined image had the same image resolution of the original PET 1 

image (2mm isotropic voxels). All PET images were co-registered on T1w MRI. Quantitative 2 

measurement was done based on Standard Uptake Value ratio (SUVR). The brain mask was, 3 

obtained from T1w analysis was applied on co-registered. T1w, FLAIR and PET images. Examples 4 

of a set of input and target images are presented in Figure 3.  5 

 6 

Implementation, baseline models 7 

In order to rigorously assess the performance of the SC-GAN, we have compared it with current 8 

well-developed medical image synthesis networks, including: 2D cGAN, 3D cGAN and Attention 9 

cGAN (Att cGAN). 2D cGAN was adopted from Ouyang et al (Ouyang et al., 2019), which proposed 10 

it for PET synthesis task. 3D cGAN was firstly proposed by Wang et al (Wang et al., 2019) for PET 11 

image synthesis from low dose PET images. Attention cGAN was designed based on the attention 12 

module proposed by Oktay et al (Oktay et al., 2018), which incorporated the 3D attention module 13 

in the U-net architecture for the application of pancreas segmentation (assisted by image 14 

synthesis task). The same 3D attention module was also adopted by Liu et al(Liu, 2019) in Cycle-15 

GAN medical image synthesis network. For a fair comparison, we incorporated aforementioned 16 

3D attention module in conditional GAN, here referred to as Att-GAN, and compared it with SC-17 

GAN. Note that the self-attention module has a different mechanism compared with attention 18 

module. Unlike the attention module, the self-attention exploits the dependencies of each pair 19 

of positions in the same feature map to get attention matrix, then use attention matrix to 20 

reconstruct representation and combine it with the same input data. All 3 baseline models and 21 

SC-GAN were implemented using TensorFlow (1.12.2) and deployed training on an NVIDIA GPU 22 

cluster equipped with eight V100 GPUs (Cisco UCS C480 ML). All four sets of results are used to 23 

analyze and compare different networks’ performance.  24 

 25 

Image preparation prior to training 26 

For the PET synthesis task, 207 pairs of T1W and FLAIR images were used as training data and 58 27 

pairs of T1w and FLIAR images were used as test data. For the DTI-MD and DTI-FA synthesis tasks, 28 

398 pairs of T1W and FLAIR images were used as training data and 99 pairs of T1w and FLIAR 29 
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images were used as test data. PET and DTI were upsampled to have the same resolution as the 1 

T1 and FLAIR, i.e. 256 x 256 x 256. We implemented Z-score normalization for all four tasks, then 2 

applied min-max rescaling to scale the voxels’ intensity between 0 to 1 prior to the training. 3 

Synthesis methods could be improved with intensity normalization, but are robust to the choice 4 

of the normalization (Reinhold et al., 2019). 5 

 6 

Training and testing 7 

2D cGAN was implemented similar to (Ouyang et al., 2019). We utilized pix2pix structure (U-net 8 

generator and patch GAN discriminator) with feature matching loss and regularization. 3D cGAN 9 

was implemented similar to (Wang et al., 2019) and Att cGAN was implemented similar to (Liu, 10 

2019; Oktay et al., 2018). We performed 5-fold cross validation during the hyperparameter 11 

tuning phase for all four networks to get the optimum hyperparameters.  12 

SC-GAN network architecture is illustrated in Figure 2 and the loss function formulation was 13 

described in equation 14. The optimum result was obtained with the following hyperparameters: 14 

𝜇 = 200, 𝛾 = 200, 𝜆 = 20, 𝜈𝐺 = 0.001, 𝜈𝐷 = 0.001, batch size=1. Learning rate starts as 0.001 15 

and cosine decay was used to continuously shrink the learning rate during the training process. 16 

 17 

Evaluation criteria  18 

Three image quality metrics were used to evaluate the performance of the synthesis task: 19 

normalized root mean square error (NRMSE), peak signal-to-noise ratio (PSNR) and structural 20 

similarity (SSIM). NRMSE reflects the normalized error without being affected by the range of the 21 

voxel values. Thus, NRMSE could be used to compare the performances of the network on 22 

different tasks directly. To enable a direct comparison between 2D cGAN and 3D networks, we 23 

evaluated the 3D output of the 2D network directly. 24 

 25 

Ablation study  26 

In order to analyze the contribution of each component of SC-GAN, we performed an ablation 27 

study. Five ablation tests were conducted for the proposed network, namely: SC-GAN 1) without 28 
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self-attention module, 2) without adversarial learning, 3) without brain area rmse loss, 4) without 1 

spectral normalization, and 5) without feature matching loss.  2 

 3 

Evaluating synthesized PET  4 

A secondary analysis was performed to compare SC-GAN results against ground truth PET. 5 

Amyloid-b (A) uptake were estimated from PET and synthesized PET. The A uptake values were 6 

then compared across clinically relevant regions. While the focus of the study was on proposing 7 

and optimizing a neuroimage synthesis technique, this evaluation was performed to examine 8 

whether the PET synthetization from MRI can substitute the PET imaging. Standard uptake value 9 

ratio (SUVR) of the A were calculated across subcortical and cortical regions of 10 randomly 10 

selected individuals from ADNI-3 cohort. SUVR values of 110 regions per participants were 11 

compared between PET and synthesized PET. SUVRs across these regions of interest were derived 12 

using the Desikan-Killiany atlas, which were parcellated on T1w images using FreeSurfer pipeline, 13 

as explained in B. MRI data collection and preprocessing section. PET images that were used for 14 

training were normalized using min-max normalization approach. Therefore, test PET images 15 

were also normalized using the same approach before comparison.  16 
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Results 1 

The learning curves of the GANs that were used for PET, FA and MD synthesis tasks are presented 2 

in the Figure 4. Learning curves demonstrate network performance across training epochs. 3 

Average performance of applying the trained network on the test data is presented in Figure 5, 4 

and the qualitative assessments are presented in Figures 6-8.  5 

 6 

Quantitative assessment  7 
The learning curves show that all networks were successfully optimized, reaching the plateau 8 

within the range of the study epochs (Figure 4). 3D cGAN and SC-GAN networks showed a smooth 9 

and stable pattern in their optimization curve, while 2D cGAN and att GAN demonstrated a 10 

degree of fluctuation during the learning. The pattern of the learning curves across tasks was 11 

similar in SSIM and NRMSE. However, the PSNR was slightly different across tasks, with PET tasks 12 

resulted to the highest PSNR (Figure 4). 13 

 14 

Regardless of the evaluation metric or the synthesis task, SC-GAN outperformed other networks, 15 

resulting to the lowest NRMSE and the highest PSNR and SSIM (Figure 5 and Table 1). The NRMSE 16 

results showed that error of SC-GAN was 18%, 24% and 29% lower compared to 2D cGAN across 17 

FA, PET and MD tasks, respectively. Across all tasks, the 2D network resulted to the lowest 18 

performance.  19 

 20 

All 3D networks outperformed the 2D network, highlighting the importance of incorporating 3D 21 

information into deep learning networks. SC-GAN outperformed 3D cGAN and att GAN in all three 22 

tasks across all evaluation metrics. The increased performance of the SC-GAN was more evident 23 

in the PET task, followed by FA and MD tasks. 24 

 25 

The ablation test showed that the major contributors to SC-GAN performance are the adversarial 26 

learning and the self-attention module, followed by B-rmse and spectral normalization modules 27 

(Figure 9 and Table 2). Spectral normalization contributed to the stabilization of the SC-GAN 28 
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training and feature matching loss contributed to generate synthesis result with more natural 1 

statistics at multiples scales.  2 

 3 

 4 

Qualitative assessment  5 
 6 
Figure 6-8 compare the studied networks qualitatively. To assess the quality of the synthesis 7 

images in 3D, images were view across different plans: Axial images for PET synthesis (Figure 6), 8 

coronal images for FA synthesis (Figure 7) and sagittal images for MD (Figure 8). Because 2D 9 

cGAN was trained on the sagittal images, the sagittal view of the synthesized result provided the 10 

best result for the 2D network (e.g. MD task: Figure 8), while the axial and coronal views 11 

presented visual discontinuity and distortion (e.g. PET and FA tasks: Figure 6 and 7). Even at 12 

sagittal view, 2D GAN generated sharp artificial boundaries (ventricle boundaries in Figure 8). 3D 13 

network did not suffer from either of these shortcomings, presenting stable results across image 14 

dimensions. 15 

 16 

SC-GAN results were visually closest to the ground truth data in comparison with other networks. 17 

In particular, SC-GAN was able to capture certain details in the image that were hidden to other 18 

networks. For example, structural boundaries at brain stem of the FA images were captured by 19 

SC-GAN (green dotted circle in Figure 7), but these details were smoothed out when other 20 

networks were used. Cingulum bundle (blue arrows, Figure 7) and superficial white matter (red 21 

arrow, Figure 7) were not generated with 3D cGAN and 2D cGAN, respectively. These details were 22 

successfully generated by SC-GAN. We also noted that att GAN failed to capture high intensity FA 23 

across the white matter (yellow arrows, Figure 7), whereas SC-GAN demonstrated a similar 24 

intensity profile as the ground truth. It should be noted that the SC-GAN also did not generated 25 

an exact match of the ground truth – artificial and incorrect features were observed. Results from 26 

MD synthesis (Figure 8) also showed that SC-GAN resulted to the generation of a map that is 27 

closest to the ground truth in comparison with other networks and contains higher degree of 28 

detail and less amount of artifact.  29 

  30 
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Discussion 1 

 2 
Here we presented an efficient end-to-end framework for multi-modal 3D medical image 3 

synthesis (SC-GAN) and validated it in PET, FA and MD synthesis applications. In order to design 4 

and optimize the network, we added a 3D self-attention module to the conditional GAN, which 5 

models the similarity between adjacent and widely separated voxels of the 3D image. We also 6 

employed spectral normalization and feature matching to stabilize the training process and 7 

ensure SC-GAN generate more realistic details (less artifacts). SC-GAN technique also allows 8 

multi-modal (multi-channel) 3D image input. We showed that SC-GAN significantly outperformed 9 

the state-of-the-art techniques, enabling reliable and robust deep learning-based medical image 10 

synthesis. SC-GAN is made available via https://github.com/Haoyulance/SC-GAN.  11 

 12 

To obtain a generalized multi-modal 3D neuroimaging synthesis technique, SC-GAN incorporates 13 

adversarial learning, self-attention mechanism and stable learning strategy. SC-GAN network 14 

structure is demonstrated in Figure 2. The generator and discriminator are equipped with 3D self-15 

attention modules, which can capture both short-and-long range dependencies for each feature 16 

vector during the learning process.  17 

 18 

The self-attention feature makes SC-GAN a context-aware network, providing additional degree 19 

of freedom to the synthesis process. The ablation experiment conducted in this study showed 20 

that self-attention module contributed the most to the improvement of the conventional 3D 21 

GAN. Previous studies have shown that self-attention can be effective in other medical image 22 

analysis applications as well. Zhao et al (Zhao et al., 2020) combined object recognition network 23 

and self-attention guided GAN into one training process to handle tumor detection task. Li et al 24 

(Li et al., 2020) incorporated self-attention and auto encoder perceptual loss into convolutional 25 

neural network to denoise low dose CT. 26 

 27 

While adding attention module improved the 3D cGAN, it provided less accurate results in 28 

comparison with SC-GAN that uses self-attention module. Att cGAN employs attention gate that 29 

filters the features propagated through the skip connections to enhance the feature maps at the 30 
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upsampling phase. Since training process of Att cGAN is also guided by the attention gate module, 1 

network performance was better than 3D cGAN. Qualitative results also showed that Att cGAN 2 

can generated better results compared to 3D cGAN.  3 

 4 

3D Medical image processing tasks often face dimensionality challenges, and GAN is no exception 5 

(Lundervold and Lundervold, 2019). 3D cGAN resulted to oversmoothed images in FA synthesis 6 

task and generated a large amount of striping artifact that resulted to blurring of the edges at 7 

PET and MD synthesis tasks. SC-GAN utilizes a series of regularization and stabilization 8 

techniques, namely feature matching loss, spectral normalization loss, L1 loss and brain area 9 

RMSE loss, allowing stable training on high dimensional input data (e.g. the input image size of N 10 

x 256 x 256 x 256 x 2 was used in this study).   11 

 12 

The SC-GAN without adversarial learning resulted to a lower synthesis accuracy compared to the 13 

main implementation. SC-GAN without adversarial learning abandons the discriminator during 14 

the training phase. Since generator is a U-net like encoder-decoder (Çiçek et al., 2016; 15 

Ronneberger et al., 2015), the SC-GAN without adversarial learning is technically a 3D U-net with 16 

3D self-attention module. The synthesis results of SC-GAN with and without the adversarial 17 

learning showed that the adversarial learning empowers the training process and could extend 18 

the plateau of the learning curve.  19 

 20 

We incorporated a feature matching loss as part of the generator loss to stabilizes the training 21 

by forcing the generator to produce natural statistics at multiples scales. The discriminator takes 22 

target and synthesis images as inputs sequentially (Figure 2). Then, the cross-entropy loss is 23 

calculated to update the weights using a back-propagation approach. The feature matching loss 24 

uses the feature maps that are generated in the discriminator phase to produce similar output 25 

to the target image by minimizing the error associated with image spatial features.  26 

 27 

The spectral normalization was used to stabilize the training process and prevent training from 28 

collapsing. Spectral normalization utilizes the Lipschitz continuity concept to impose constraint 29 
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on the solution space (Hager, 1979) which stabilized SC-GAN training process (Miyato et al., 2018). 1 

Spectral normalization uses the Cauchy-Schwarz inequality on the Lipschitz continuity to bound 2 

the solution space, which stabilize the optimization.  3 

 4 

Several recent works have used adversarial learning strategy for medical image synthesis (Li et 5 

al., 2020; Liu, 2019; Lundervold and Lundervold, 2019; Ouyang et al., 2019; Wang et al., 2019; 6 

Zhao et al., 2020). Most of the medical image synthesis and reconstruction works have been 7 

implemented using 2D or 2.5D input images (Li et al., 2020; Ouyang et al., 2019; Zhao et al., 2020). 8 

One drawback of 2D GAN is that the network can only utilizes one 2D image of axial, coronal or 9 

sagittal each time, and therefore, the synthesis 3D images present visual discontinuity, which 10 

appears similar to stripping artifact (Figure 7 and 8). To evaluate the benefits of 3D 11 

implementation, we compared the performances of 2D cGAN and 3D networks. We observed 12 

intensity discontinuity and distortion in the synthesis results of the 2D cGAN, which highlights 13 

the importance of utilizing 3D neural network implementation for medical image applications. 14 

 15 

Recent works have shown that 3D GAN can be utilized to improve the accuracy of the medical 16 

imaging synthesis (Liu, 2019; Wang et al., 2019). To the best of our knowledge Wang et al first 17 

expanded the medical image synthesis GAN from 2D to 3D by utilizing 3D convolution and 18 

transposed convolution to achieve high-quality PET image estimation from low dose PET images 19 

(Wang et al., 2019). In order to rigorously assess SC-GAN, two existing 3D synthesis methods (3D 20 

cGAN and Att cGAN) were compared with SC-GAN. SC-GAN resulted to the highest performance 21 

and most stable learning curves (Figures 4-5). 22 

 23 

It should be noted that while neuroimaging synthesis has drastically improved over the past five 24 

years, we do not think that synthesis can entirely substitute a given modality that is different in 25 

nature (for example PET). To assess the performance of image synthesis for detecting pathology 26 

in a cross-modal application, we estimated regional Amyloid update from synthesis PET and 27 

compared it with the ground truth PET (Figure 10). We noted a significant correlation between 28 

PET and synthesis PET across subcortical and cortical regions (p<0.0001 across all ten tested 29 
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participants). Results were consistent across all test subjects, with correlation coefficient ranging 1 

from r=0.67 to r=0.95 (all with p<0.0001). While synthesis PET SUVR values were significantly 2 

correlated with those from ground truth PET, we observed that the error rate is higher when 3 

SUVR of the PET images are higher. These SUVR range corresponds to regions with high clinical 4 

value, reflecting neurodegenerative pathology (high A uptake). Therefore, our results suggest 5 

that synthesis PET cannot substitute PET imaging, because pathological and clinically relevant 6 

molecular information in PET may not be detected by synthesizing PET that is obtained from MRI 7 

(which are mainly contain structural information). Nevertheless, this limitation does not damper 8 

the significance of medical image synthesis but calls for a careful design/application when image 9 

synthesis is used. For example, studies have shown that incorporating low-dose PET as synthesis 10 

input, reliable transformation can be achieved (Chen et al., 2019; Ouyang et al., 2019; Wang et 11 

al., 2019) .  12 

 13 

The focus of this work was on enabling multi-modal 3D neuroimage synthetization with GAN. The 14 

proposed method for this multi-modal 3D neuroimage synthesis (SC-GAN) was evaluated on the 15 

challenging task of PET and DTI synthesis to aid rigorous optimization of the network. SC-GAN is 16 

not intended to substitute PET with MRI-based PET synthesis. SC-GAN was designed and assessed 17 

to enable robust and stable multi-modal 3D neuroimaging synthesis. Future work will explore SC-18 

GAN application. For example, SC-GAN may be used to combine MRI with low-dose PET to 19 

improve the efficacy of the existing techniques (Chen et al., 2019; Ouyang et al., 2019). We also 20 

expect that neuroimaging techniques with high number of repetitions such as functional and 21 

diffusion MRI (Ning et al., 2018) may benefit from SC-GAN, which is a future direction of our work. 22 

  23 
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 1 
Figure 1． 3D self-attention module. This Figure is a schematic view of the self-attention module 2 
of SC-GAN. The first layer represents the input data. Attention map exploit the similarity of each 3 
pair of convolved images and combine it with the input data to generate the output of the self-4 
attention module.  5 
 6 
 7 
 8 
 9 
 10 

 11 
Figure 2．SC-GAN structure with 3D self-attention module. The network structure of SC-GAN 12 
constitutes of two parts generator and discriminator. The generator is a Unet like 8 layers 13 
encoder-decoder with 3D self-attention module in the middle of encoder and decoder. The 14 
discriminator is a 5 layers patch GAN with 3D self-attention. Self-attention module empowers 15 
the both generator and discriminator in the adversarial learning strategy. 16 
 17 
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 1 
Figure 3. Multi-modal (multi-channel) input. Examples of different neuroimaging data from 2 
single individual are presented. T1-weighted (T1w) and fluid-attenuated inversion recovery 3 
(FLAIR) were used as input for different synthesis tasks. For each the study tasks a different target 4 
was used, which are shown as outputs 1-3: Mean Diffusivity (MD), Fractional Anisotropy (FA) and 5 

Amyloid-beta Positron Emission Tomography (A-PET). Data were preprocessed and co-6 
registered (see method section for detail), are shown from three anatomical views (from left to 7 
right: axial, coronal and sagittal). 8 
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 1 

 2 
Figure 4. Learning curves SC-GAN compared to other Synthesis GANs across different taks. Plots 3 
demonstrate learning curves of four CNN networks that were evaluated in this study: 2D GAN, 4 
3D GAN, 3D cGAN with Attention gate (Att cGAN) and SC-GAN. T1w and FLAIR were used for 5 
three tasks: 1) synthesizing Amyloid-beta PET (n=242, first column); 2) synthesizing fractional 6 
anisotropy (n=480, second column); 3) synthesizing mean diffusivity (n=480, third column). 7 
Three different evaluation metrics were used: First row shows normalized root mean square 8 
error (NRMSE); Second row shows peak signal-to-noise ratio (PSNR); Third row shows structural 9 
similarity (SSIM). Note that all networks reached their plateau around epoch=20.  10 
 11 

 12 
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 1 
Figure 5. Image quality metrics on test data across different tasks. Bar charts demonstrate 2 
normalized mean square error (NRMSE), peak signal-to-noise ratio (PSNR) and structural 3 
similarity (SSIM) among test images after the networks reached the plateau and the 4 
hyperparameters were optimized. T1w and FLAIR were used for three tasks: 1) synthesizing 5 
Amyloid-beta PET (n=242, A); 2) synthesizing fractional anisotropy (n=480, B); 3) synthesizing 6 
mean diffusivity (n=480, C). 7 
 8 
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 1 
Figure 6. Qualitative assessment of PET synthesis task. Images are results of applying different 2 
GANs on T1w and FLAIR input images to predict Amyloid-beta PET. Target PET is also illustrated 3 
for comparison. Target image is normalized to [0 1] range for training and an equal color range 4 
of [0 1] are used for visualization.  5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 

 14 
Figure 7. Qualitative assessment of fractional anisotropy (FA) synthesis task. Images are results 15 
of applying different GANs on T1w and FLAIR input images to predict FA. Target FA is also 16 
illustrated for comparison. An equal color range of [0 1] are used for visualization. Note that SC-17 
GAN were able to synthesize FA in more detail in comparison with other networks. The 2D 18 
network demonstrated continuous distortion (red arrow), 3D cGAN resulted to an oversmoothed 19 
image (see blue arrow showing partial volume effect between fiber bundles of cingulum and 20 
corpus callosum). Attention cGAN failed to capture high intensity FA across the white matter 21 
(yellow arrows). Green dotted circle shows that, unlike other networks, SC-GAN was able to 22 
capture brainstem details.  23 
 24 
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 1 
Figure 8. Qualitative assessment of mean diffusivity (MD) synthesis task. Images are results of 2 
applying different GANs on T1w and FLAIR input images to predict MD. Target MD is also 3 
illustrated for comparison. Target image is normalized to [0 1] range for training and an equal 4 
color range of [0 1] are used for visualization. Note that SC-GAN were able to synthesize MD in 5 
more detail in comparison with other networks. The 2D generated artificial sharp boundaries (red 6 
arrow) and 3D cGAN resulted to a large amount of striping artifact (blue arrow).  7 
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 1 
Figure 9. Ablation test across modules of SC-GAN. The SC-GAN with and without different 2 

network modules were assessed on the A PET synthesis task and learning curves across different 3 
evaluation criteria are presented here. Plots demonstrate normalized mean square error 4 
(NRMSE), peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The self-attention 5 
module appeared to have the highest contribution to the achieved improvement, followed by 6 
spectral normalization and non-brain loss function exclusion.  7 
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 1 

 2 
Figure 10. Correlation between PET and synthesis PET. Plot shows the correlation between A 3 
standard uptake value ratio (SUVR) across subcortical and cortical regions of ten test participants 4 
(each color represents regions of each participants). PET images that were used for training were 5 
normalized using min-max normalization approach. Therefore, test PET images were also 6 
normalized using the same approach before comparison. Note that on region with high load of 7 

A (shown with red arrow), the synthesis error is higher, suggesting that synthesis PET could not 8 
substitute PET imaging.  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
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Synthesis 

Task (target 

image) 

Method NRMSE 

mean (  std) 

PSNR 

mean (  std) 

SSIM 

mean (  std) 

PET 

2D cGAN 0.100  0.028 29.80  1.59 0.948  0.010 

3D cGAN 0.099  0.022 29.69  1.96 0.950  0.012 

Att cGAN 0.086  0.024 31.03  2.34 0.955  0.014 

SC GAN 0.076  0.017 32.14  1.10 0.962  0.008 

FA 

2D cGAN 0.100  0.014 29.29  1.23 0.948  0.008 

3D cGAN 0.089  0.015 30.39  1.47 0.955  0.008 

Att cGAN 0.086  0.014 30.65  1.41 0.956  0.008 

SC GAN 0.082  0.013 31.00  1.12 0.959  0.007 

MD 

2D cGAN 0.135  0.019 26.98  1.38 0.949  0.010 

3D cGAN 0.121  0.018 27.93  1.42 0.953  0.010 

Att cGAN 0.108  0.014 28.74  1.19 0.954  0.009 

SC GAN 0.096  0.014 29.75  1.25 0.963  0.009 

Table 1. Comparison among different networks. Table shows statistic values of NRMSE, PSNR 1 

SSIM among test images after the networks reached the plateau and the hyperparameters were 2 

optimized. Statistically significant results are highlighted in bold font. 3 

 4 
 5 
 6 
 7 

Ablation study NRMSE 

mean (  std) 

PSNR 

mean (  std) 

SSIM 

mean (  std) 

No self-attention 0.118  0.016 28.34  1.200 0.939  0.011 

No adversarial learning 0.102  0.018 29.72  1.583 0.947  0.012 

No brain area rmse loss 0.092  0.017 30.27  1.627 0.953  0.010 

No spectral normalization  0.080  0.017 31.57  1.203 0.957  0.010 

No feature matching 0.078  0.019 32.03  1.174 0.960  0.013 

SC-GAN 0.076  0.017 32.14  1.100 0.962  0.008 

Table 2. Ablation study of SC-GAN. Table shows ablation study of different components of SC-8 

GAN on the A PET synthesis task. 9 
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