Mucin-derived O-glycans supplemented to diet mitigate diverse microbiota perturbations

Pruss K. M.^{1*}, Marcobal A.^{1*}, Southwick A.M.¹, Dahan D.¹, Smits S.A.¹, Ferreyra J.A.¹,

Higginbottom S.K.¹, Sonnenburg E.D.¹, Kashyap P.C.², Choudhury B.³, Bode L.⁴, and J. L.,

Sonnenburg^{1,5#}

¹ Department of Microbiology and Immunology, Stanford University School of Medicine,

Stanford CA, USA

² Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA

³ Glycobiology Research and Training Center, University of California, San Diego, CA, USA

⁴ Division of Neonatology and Division of Gastroenterology and Nutrition, Department of

Pediatrics, University of California, San Diego, CA, USA

⁵Chan Zuckerberg Biohub, San Francisco, CA 94158

* These authors contributed equally

[#] Corresponding author: Justin L. Sonnenburg

jsonnenburg@stanford.edu

(650) 721-1510

Fax. 650-498-7147

Running title: O-glycans mitigate microbiota disturbance

Author competing interests: Pruss K.M., Marcobal A., Southwick A.M., Dahan D., Smits S.A.,

Higginbottom S.K, Sonnenburg E.D, Kashyap P.C., Choudhury B., Bode L., no conflicts of

interest. J. Ferreyra is a scientist at NGM Biopharmaceuticals. J. L. Sonnenburg is a founder of

Novome Biotechnologies, Inc., January. ai, and a scientific advisor for Second Genome and

Gnubiotics, who has licensed intellectual property related to this manuscript.

2

1 Abstract

2 Microbiota-accessible carbohydrates (MACs) are powerful modulators of microbiota 3 composition and function. These substrates are often derived from diet, such as complex 4 polysaccharides from plants or human milk oligosaccharides (HMOs) during breastfeeding. 5 Host-derived mucus glycans on gut-secreted mucin proteins may serve as a continuous 6 endogenous source of MACs for resident microbes; here we investigate the potential role of 7 purified, orally-administered mucus glycans in maintaining a healthy microbial community. In 8 this study, we liberated and purified O-linked glycans from porcine gastric mucin and assessed 9 their efficacy in shaping the recovery of a perturbed microbiota in a mouse model. We found that 10 porcine mucin glycans (PMGs) and HMOs enrich for taxonomically similar resident microbes. 11 We demonstrate that PMGs aid recovery of the microbiota after antibiotic treatment, suppress C. 12 *difficile* abundance, delay the onset of diet-induced obesity, and increase relative abundance of 13 resident Akkermansia muciniphila. In silico analysis revealed that genes associated with mucus 14 utilization are abundant and diverse in prevalent gut commensals and rare in enteric pathogens, 15 consistent with these glycan-degrading capabilities being selected for during host development 16 and throughout evolution of the host-microbe relationship. Importantly, we identify mucus glycans as a novel class of prebiotic compounds that can be used to mitigate perturbations to the 17 18 microbiota and provide benefits to host physiology.

19

20 Keywords: Human milk oligosaccharides, Porcine mucin glycans, gut microbiota, diet-induced
21 obesity, *Clostridium difficile*, prebiotics

- 22
- 23

3

24 Introduction

25 The luminal surface of the gastrointestinal tract is covered by a viscous mucus layer, which 26 serves as the primary interface at which the host interacts with a dense microbial community. 27 Secreted by host goblet cells, mucus is largely composed of highly glycosylated mucin proteins. 28 The gel-like mesh of mucins provides both a barrier to shield the host from direct interaction 29 with microbes, preventing inflammation[1], but also provides an energy-rich substrate for the 30 microorganisms that reside in the gut[2, 3]. Degradation of the diverse chemical linkages within 31 endogenous glycans requires a specialized set of glycoside hydrolases, reflected in the genetic 32 composition of the gut microbiota. Notably, species prevalent in the human gut microbiota often 33 possess broad glycan-degrading capabilities while "specialist" species may have narrower 34 glycan-degrading potential[4]. The structural features of intestinal mucus glycans are strikingly similar to those of 35 36 human milk oligosaccharides (HMOs)[5]. Mucin glycans are built upon an N-acetyl-37 galactosamine that is O-linked to serine and threonine residues of the mucin protein, while 38 HMOs are built upon a lactose core structure universally present at the reducing end of these 39 glycans[6]. In both mucin glycans and HMOs, the priming carbohydrate structure is extended with galactose-N-acetylglucosamine disaccharides and chains often terminate with fucose or 40 41 sialic acid residues[7].

HMOs are the third most abundant compound in breast milk, after lactose and fat[8].
Colostrum is particularly rich in HMOs, the concentration ranging from 20-25 g/L in the first
milk produced and decreasing to 5-20 g/L in more mature milk[9–11]. Numerous and diverse
beneficial effects have been attributed to HMOs in breast milk during infant development[12–
20].

4

47	Recently, extensive research has focused on the potential prebiotic role of HMOs. HMOs
48	are indigestible by humans and are degraded throughout the gastrointestinal tract of breast-fed
49	infants[21], becoming the primary microbiota-accessible carbohydrates available in the newborn
50	diet. Species belonging to the genera Bifidobacteria and Bacteroides are optimal HMO-
51	consumers: Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum encode in their
52	genomes clusters of genes dedicated to HMO utilization[22-24]. Bacteroides thetaiotaomicron,
53	described as a "generalist-glycan-consumer" due to the numerous glycoside hydrolases encoded
54	in its genome, grows efficiently on HMOs in vitro[5, 25]. In vivo studies with gnotobiotic mice
55	revealed that lacto-N-neotetraose, one of the most abundant oligosaccharides in HMOs, provides
56	an advantage to B. infantis over B. thetaiotaomicron in gut colonization[5]. However, the in vivo
57	effect of the structurally diverse HMO pool in microbiota composition remains under-explored.
58	In the infant gut, MAC-consuming bacteria that reach the intestinal tract must rely
59	primarily on HMOs or mucus as growth substrates. Interestingly, transcriptional data
60	demonstrates that HMO utilization in Bacteroides and Bifidobacterium relies on pathways that
61	also play a role in mucus utilization[5]. As HMOs have been described to confer numerous
62	benefits to infants and similarities between microbial metabolism of HMOs and mucin glycans
63	has been shown, we investigated the extent to which mucin glycans are able to confer benefits to
64	the microbiota and host. We hypothesized that targeting convergent glycan-utilization pathways
65	in the adult gut community with exogenously-administered porcine mucin glycans (PMGs) could
66	mitigate perturbations to the microbiota.
67	Empirical studies of the human microbiota can be performed in a controlled environment

68 by colonizing germ free (GF) mice with specific strains of bacteria (gnotobiotic) or a complete

69 microbial community from human feces (humanized). The humanized mouse model

70	recapitulates the vast majority of human microbiota compositional and functional features[26,
71	27]. In this work, we use both gnotobiotic and humanized mice to establish that the gut
72	microbiota efficiently consumes HMOs. Furthermore, we demonstrate that a complex mix of
73	glycans isolated from porcine mucin recreates some of the effect of HMOs on the gut microbiota
74	and mitigates the negative effects of various community perturbations including antibiotic
75	treatment, pathogen invasion, and a high-fat diet.
76	
77	Results
78	HMOs are consumed by members of the microbiota, conferring a growth advantage to
79	Bifidobacterium over Bacteroides in vivo.
80	We and others have previously reported the ability of both Bacteroides and Bifidobacterium to
81	utilize select HMOs in vitro[5, 28]; as such, we wished to determine whether complex HMOs
82	isolated from human donors favored Bifidobacterium or Bacteroides within the context of the gut
83	environment. 6-week old GF mice were bi-colonized with two HMO-utilizing taxa common to
84	the infant gut: Bacteroides thetaiotaomicron (Bt) and Bifidobacterium longum subsp infantis (B.
85	infantis). Mice were fed a MAC-deficient (MD) diet supplemented with HMOs (1% in water,
86	chosen to approximate the mass of HMOs consumed by human newborns, adjusted for body
87	weight, see Methods) for one week. Feces and cecal contents were collected and milk glycans
88	were measured by HPLC from all samples. In bi-colonized mice, no HMOs were detectable,
89	whereas GF mice samples revealed a high concentration of milk glycans in both the fecal (Fig
90	1A) and cecal samples (Fig S1A, B), demonstrating that HMO-utilizing members of the
91	commensal microbiota deplete HMOs within the host large intestine.

6

92	In vitro, Bt grows better on mucus glycans than B. infantis, whereas B. infantis grows
93	better on HMOs than Bt[5]. After 1 week, HMO supplementation resulted in an expansion in the
94	population of <i>B. infantis</i> relative to <i>Bt</i> compared to mice on regular water (24.3 ± 3.12 % versus
95	2.5 ± 1.45 % on day 7; $P < 0.01$, n=4 mice) (Fig 1B). These results confirm that HMOs provide a
96	selective advantage to B. infantis over Bt in vivo. Therefore, although HMOs are utilized by
97	generalist glycan degraders, they can provide a competitive advantage to microbes that specialize
98	in HMO utilization.

99 HMOs shape the composition of the gut microbiota

To address the extent to which HMOs shape a complex microbial community, we administered
purified HMOs to ex-GF mice colonized for 6 weeks with a human microbiota (humanized).
Compared to either a standard mouse diet rich in MACs (MAC⁺) diet or MD diet alone, purified
HMOs engender a distinct microbial community (Fig 1C). HMO supplementation to MD diet led
to the significant enrichment of the known mucin glycan degraders *Bacteroides caccae* and *Akkermansia muciniphila*[25], as well as polysaccharide generalists *Bacteroides ovatus* and *Bacteroides eggerthii* (Fig 1D).

107 Purified HMOs are structurally diverse, comprised of many molecules with different chemical properties[6]. An important question is whether glycans with slight structural 108 109 differences within HMO mixtures can differentially impact the community. To investigate 110 whether structural nuance in exogenous glycans led to changes in the composition of the gut 111 microbiota, we employed two of the most abundant glycans found in HMOs and administered 112 them in pure form to humanized mice. Lacto-*N*-tetraose (LNT, Gal β 1-4GlcNAc β 1-3Gal β 1-4Glc) and Lacto-N-neotetraose (LNnT, Gal
^β1-3GlcNAc
^β1-3Gal
^β1-4Glc) differ only in the placement 113 of a linkage between galactose and N-acetylglucosamine (Fig S1C). Germ-free mice were 114

humanized and then switched to MD supplemented with LNT or LNnT (1% w/v in water) or
maintained on MAC⁺ with plain water.

117	Bray-Curtis dissimilarity metric reveals clear separation of microbiota composition
118	between mice consuming a MAC ⁺ diet from MD supplemented with either of the two HMOs.
119	Moderate but significant separation in composition was also observed between LNT versus
120	LNnT supplementation in the MD diet (Fig S1D). The switch from MAC^+ to MD background
121	diet drives high-level structural changes to the composition of the humanized gut microbiota (Fig
122	S1E). However, nuanced higher-resolution taxonomic changes occur corresponding to
123	supplementation of one of two isomeric tetrasaccharides that differ in a single glycosidic linkage:
124	nine taxa were significantly different at adjusted P value < 0.01 between LNT and LNnT
125	supplementation (parametric Wald test[29], data not shown), including four ASVs belonging to
126	the Bacteroidales family S24-7, Coprococcus spp. and Sutterella spp., two unidentified
127	Erysipelotrichaceae (enriched with LNnT), and one unidentified Blautia strain (LNT).
128	Accordingly, a Random Forests classifier predicts the three diets with 87.5% accuracy (out-of-
129	bag estimate of error, with 30% class error for LNnT, 10% for LNT, and 0% for SD. Leave-one-
130	out cross-validation results in accuracy of 94%), supporting the subtle but significant differences
131	imparted onto the gut community by two synthetic oligosaccharides.
132	Structural analysis reveals similarities between PMGs and HMOs

133 HMOs are structurally similar to mucin glycans. We modified a described protocol[30] for

134 purifying neutral *O*-glycans from commercially available porcine mucin using reductive β-

elimination followed by anion exchange chromatography, and characterized the purified

136 material. Hydrolysis with TFA and HPAEC-PAD analysis revealed that PMGs are composed of

units of glucosamine, galactosamine, galactose, glucose, fucose and mannose, consistent with

138	previous reports of mucin glycan composition ([31], Fig 2A). The unexpected presence of
139	mannose, a monosaccharide not commonly found in O-linked glycans is likely due to a small
140	amount of liberated N-glycan during purification. MALDI-TOF mass spectrometry identified
141	thirteen major glycans (Fig 2B), for which structures were predicted with Glycobench software
142	(see Materials and Methods) based on m/z values, and three of thirteen were confirmed by
143	MS/MS fragmentation pattern (Fig 2C, Fig S2). Structures were inferred for the remaining ten
144	masses based on previous structural work on mucin glycans (Fig 2D). Sialic acid content
145	quantification from purified PMGs revealed an absence of N-acetylneuraminic acid and N-
146	glycolylneuraminic acid (data not shown) consistent with anion chromatographic depletion of the
147	negatively charged glycan fractions. Our analysis affirms the similarity between PMGs and
148	HMOs both in terms of structure and constitutive components.
149	PMGs and HMOs drive similar high-level microbial community changes
150	Given the structural similarities between PMGs and HMOs, we sought to determine how
151	exogenously administered PMGs would affect the composition of the gut microbiota. We
152	administered pools of PMGs (1% in water, to MD or MAC ⁺ diets) or a common synthetic
153	prebiotic, galacto-oligosaccharide (GOS, 1% in water to MD) and compared microbiota
154	composition between these conditions and the HMO supplementation experiment described
155	above. Similar high-level changes in the community were observed when HMOs, PMGs or GOS
156	were supplemented to a diet deficient in plant polysaccharides, indicating taxonomic changes at
157	the family level are driven primarily by background diet (Fig S3A). A switch from MAC+
158	background diet to MD led to a reduction in alpha diversity, which was not restored by
159	administration of any exogenous glycans tested (Fig S3B). However, administration of 1%
160	PMGs to MAC ⁺ background diet led to a significant increase in alpha diversity (Fig S3B). To

161	support this finding, we sought to determine whether a lower concentration of PMG
162	supplementation would yield the same enrichment, and indeed found that 0.3% PMGs in water
163	supplemented to a MAC^+ diet led to a similar increase in alpha diversity (Fig S3C).
164	While the first principal component of Bray-Curtis dissimilarity is driven by background
165	diet (MAC ⁺ versus MD), the second principal component reveals significant separation between
166	communities supplemented with PMGs or HMOs from MD alone, whereas GOS
167	supplementation is not significantly different from MD (Fig 1C). The gap statistic predicts 5
168	clusters amongst the 6 diets (MAC ⁺ +/- 1% PMG; MD +/- 1% PMG, HMO or GOS) (canonical
169	correspondence analysis, method = firstSEmax[32]), providing further support for nuanced
170	divergence of microbial communities in response to exogenous glycan administration. As seen
171	with the administration of pure LNT and LNnT, administration of PMGs or HMOs to MD diet
172	led to significant changes to the community at lower taxonomic levels. Both HMO (Fig 1D) and
173	PMG supplementation (Fig S3D) led to the significant enrichment of the mucin-degrader <i>B</i> .
174	caccae and an unidentified member of the Blautia genus. PMG supplementation to MD led to a
175	significant increase in Bacteroides eggerthii, whereas B. fragilis and B. ovatus were enriched
176	with PMG supplementation to MAC^+ diet (Fig S3E).
177	PMGs accelerate recovery from antibiotic perturbation
178	We next pursued investigation of purified PMGs to mitigate microbiota disturbance. Humanized
179	mice were switched to MD diet and treated with 1 mg clindamycin concurrent with 1% PMG

180 supplementation in water. When compared with no supplementation, PMG led to faster recovery

181 of alpha diversity (Fig 3A) and an accelerated trajectory to the baseline community microbiota as

182 measured by comparison of UniFrac distance to pre-antibiotic timepoints (Fig 3B). Furthermore,

183 mice treated with PMGs exhibit a reduced bloom of Proteobacteria, a hallmark of post-antibiotic

- 184 oxygenation and inflammation in the gut (Fig 3C, S4A, [33, 34]). Additionally, PMG
- supplementation with antibiotics leads to a faster recovery of the relative abundance of *A*.
- 186 *muciniphila* (Fig S4B). These data suggest that exogenous glycans could be simultaneously
- administered with a course of antibiotics to aid in recovery to the microbiota.
- **188 PMGs suppress** *C. difficile* abundance
- 189 As PMGs augmented community recovery post-antibiotics, we sought to determine whether
- 190 exogenous PMGs would affect host susceptibility to an antibiotic-associated pathogen,
- 191 *Clostridium difficile (Cd). Cd* depends on disturbance to the microbiota to cause disease [35, 36]
- and thus represented a suitable target to determine whether exogenous mucus glycans could
- 193 protect the host from infection.
- 194 1% PMGs were supplemented to MAC⁺ or MD diet, concomitant with antibiotic
- treatment (1 mg clindamycin). Mice were gavaged 24 hours later with 200 µl saturated overnight
- 196 culture wild-type Cd 630 (Day 1). Administration of PMGs to mice on a background diet devoid
- 197 of complex polysaccharides significantly reduced the *Cd* burden as measured by 16S rRNA
- reads (**Fig 3D**) and selective plating (**Fig S5A**). PMGs supplemented to MAC⁺ diet did not affect
- 199 *Cd* abundance (**Fig S5B**) or histopathology (**Fig S5C**). Whether the inhibitory effect of PMGs
- 200 towards *Cd* occurs via reshaping the microbial community in a way such that *Cd* suffers a
- 201 competitive disadvantage, directly inhibiting *Cd* growth or toxin activity[37], or altering host
- immune signaling directly or indirectly via the microbiota remains to be determined.
- 203 PMGs attenuate host weight gain due to High Fat Diet
- As *A. muciniphila* has been associated with diet-induced obesity models previously [38–40] and
- appears to be manipulable with administration of PMGs, we were interested in whether
- administration of PMGs could attenuate the effects of a high-fat diet (HFD) on host physiology.

11

207 Three groups of age- and sex-matched mice were fed either a standard diet, HFD (60% fat and 208 20% carbohydrates), or HFD supplemented with 1% PMGs continuously in drinking water and 209 their weight monitored over three weeks. HFD induced significant weight gain compared to 210 MAC⁺-diet fed controls, and PMG supplementation to HFD significantly reduced host weight 211 gain (Fig 4A) and development of adipose tissue (Fig 4B), despite no differences between the 212 groups in the amount of food consumed. No differences in glucose tolerance were observed 213 between HFD-fed mice and PMG supplementation to HFD (data not shown). 214 Exogenous PMG administration to HFD led to a microbial community distinct from that 215 of MAC⁺ or HFD alone. Although HFD induces similar family-level taxonomic changes with or 216 without PMG supplementation (Fig 4G), beta-diversity analysis reveals clear separation of the 217 humanized microbial communities on the three diets, indicating strong diet-driven changes in 218 community composition (Fig 4E, Fig S6A). Accordingly, Random Forests classifies microbiota 219 samples into the three diets perfectly (HFD, HFD+PMG, MAC^+), and regression on percent 220 weight gain in individual mice from baseline perfectly predicts diet. Predictive features from the 221 Random Forests models include many members of the family S24-7, genera *Ruminococcus* and 222 Eubacterium (data not shown). Short-chain fatty acid (SCFA) and organic acid (OA) analysis 223 demonstrates drastically reduced metabolic output of microbial communities on HFD with and 224 without PMGs (Fig 4F), indicating that the phenotypic effect of PMGs during HFD is not 225 mediated by normalization of SCFA production. 226 To determine whether a shorter duration of PMG administration could attenuate host 227 weight gain during HFD, humanized mice were switched to HFD and dosed with 1% PMGs for 228 seven days at 1 and 4 weeks after diet change. Again, exogenous PMG administration led to less

229 weight gain and significant reduction of fat accumulation (Fig 4C,D). Two one-week pulses of

230	PMGs led to a distinct microbial community from HFD alone; gut microbiota composition of
231	mice dosed with PMGs remains distinct from the HFD-only group even when PMGs are
232	removed from water (Fig S6C). Random Forests again perfectly classifies the microbial
233	communities into the groups on HFD alone or HFD supplemented transiently with PMGs. HFD
234	leads to dramatic changes to the relative abundance of bacterial families compared to MAC^+ diet
235	(Fig S6B). Several taxa are significantly enriched due to exogenous PMG administration on
236	HFD background, including A. muciniphila (Fig S6D), B. caccae, and members of the
237	Lachnospiraceae family, including Dorea, Coprococcus, Coprobacillus, Clostridium hathewayi,
238	Blautia, and Eubacterium dolichum (Wald test, adjusted P value < 0.0005, Fig S6E), which were
239	also many of the top predictive features of the Random Forests classification (Table S1). There
240	are multiple potential mechanisms by which PMGs could lead to reduced weight gain in mice,
241	which is an area of important follow-up investigation.
241	when is an area of important follow-up investigation.
241	Mucin glycan utilization gene clusters are abundant in prevalent commensals and rare in
242	Mucin glycan utilization gene clusters are abundant in prevalent commensals and rare in
242 243	Mucin glycan utilization gene clusters are abundant in prevalent commensals and rare in pathogens
242 243 244	Mucin glycan utilization gene clusters are abundant in prevalent commensals and rare in pathogens Given the structural similarities between PMGs and HMOs and the capabilities of PMGs to
242 243 244 245	Mucin glycan utilization gene clusters are abundant in prevalent commensals and rare in pathogens Given the structural similarities between PMGs and HMOs and the capabilities of PMGs to mitigate community disturbance, we hypothesized that mucus glycan utilization has played a role
242 243 244 245 246	Mucin glycan utilization gene clusters are abundant in prevalent commensals and rare in pathogens Given the structural similarities between PMGs and HMOs and the capabilities of PMGs to mitigate community disturbance, we hypothesized that mucus glycan utilization has played a role in host and commensal microbiota co-evolution. To explore this hypothesis, we performed a
242 243 244 245 246 247	Mucin glycan utilization gene clusters are abundant in prevalent commensals and rare in pathogens Given the structural similarities between PMGs and HMOs and the capabilities of PMGs to mitigate community disturbance, we hypothesized that mucus glycan utilization has played a role in host and commensal microbiota co-evolution. To explore this hypothesis, we performed a broad <i>in silico</i> search for candidate mucin-degrading carbohydrate gene clusters (CGCs) within
242 243 244 245 246 247 248	Mucin glycan utilization gene clusters are abundant in prevalent commensals and rare in pathogens Given the structural similarities between PMGs and HMOs and the capabilities of PMGs to mitigate community disturbance, we hypothesized that mucus glycan utilization has played a role in host and commensal microbiota co-evolution. To explore this hypothesis, we performed a broad <i>in silico</i> search for candidate mucin-degrading carbohydrate gene clusters (CGCs) within the genomes of 4,500 common human gut commensals in the HGM database[41]. A CGC was
242 243 244 245 246 247 248 249	Mucin glycan utilization gene clusters are abundant in prevalent commensals and rare in pathogens Given the structural similarities between PMGs and HMOs and the capabilities of PMGs to mitigate community disturbance, we hypothesized that mucus glycan utilization has played a role in host and commensal microbiota co-evolution. To explore this hypothesis, we performed a broad <i>in silico</i> search for candidate mucin-degrading carbohydrate gene clusters (CGCs) within the genomes of 4,500 common human gut commensals in the HGM database[41]. A CGC was defined as the colocalization of at least two glycoside hydrolases (GH) that have been previously
242 243 244 245 246 247 248 249 250	Mucin glycan utilization gene clusters are abundant in prevalent commensals and rare in pathogens Given the structural similarities between PMGs and HMOs and the capabilities of PMGs to mitigate community disturbance, we hypothesized that mucus glycan utilization has played a role in host and commensal microbiota co-evolution. To explore this hypothesis, we performed a broad <i>in silico</i> search for candidate mucin-degrading carbohydrate gene clusters (CGCs) within the genomes of 4,500 common human gut commensals in the HGM database[41]. A CGC was defined as the colocalization of at least two glycoside hydrolases (GH) that have been previously reported to act on mucin (Table S2), plus a transporter or transcription factor within the same

13

253	glycan structures, some of these families may also contain members that do not target mucin
254	glycans. Therefore, by requiring two candidate mucin-degrading GHs we sought to reduce the
255	instances of false positives, accepting that some mucin-degrading CGCs containing only one of
256	these GH families would be excluded.
257	The phyla Bacteroidetes and Firmicutes contain the taxa with the highest numbers of
258	mucin-degrading CGGs per genome (Fig S7). The genera Bacteroides and Parabacteroides
259	contain the majority of strains with the highest number of mucin-degrading CGCs per genome
260	(Fig 5B). Many of the strains that were enriched in humanized mice with PMG supplementation
261	(unidentified Bacteroides spp., B. ovatus, B. caccae) were identified as strains in the HGM with
262	the highest numbers of candidate mucin-degrading CGCs (Fig 5B). Proteobacteria, which were
263	suppressed by PMG supplementation (Fig 3C) harbor very few mucin-degrading CGCs (Fig S7).
264	Prevalent human commensal bacteria show a greater diversity and abundance of mucus-
265	degrading CGCs than well-known enteric pathogens. Of the 34 species within the HGM database
266	that we identified as enteric pathogens (please see Materials and Methods section and Table S3),
267	only 4 met our criteria for harboring a candidate mucin CGC (Vibrio vulnificus, Clostridium
268	botulinum, Clostridium paraputrificum, Clostridium perfringens), as opposed to 835 gut
269	commensals. Of these, 299 strains are also prevalent (> 10%) in a healthy human cohort; only 3
270	are pathogens (Fig 5A). Taken together these results show that mucus utilization is enriched in
271	commensal, gut-associated bacteria and not common enteric pathogens, consistent with mucus as
272	a key component of the symbiosis between host and microbiota within the gut.
273	

274 **Discussion**

275	During the first months of life, delivery of glycans through breastmilk is an influential force that
276	shapes the gut microbiota of newborns and infants. It has been suggested that HMOs are
277	involved in healthy brain and body development[12, 42], immune system maturation[13, 16],
278	and protection against pathogens[14, 15, 17, 18]. Only small amounts of intact HMOs are found
279	in the feces and urine of breast-fed infants[43], suggesting that most HMOs are hydrolyzed by
280	neonate gut commensals[44]. Our experiments comparing gnotobiotic and GF mice support this
281	hypothesis, and our results demonstrate that the gut microbial community indeed metabolizes
282	HMOs. Furthermore, selective consumption of exogenous glycans can influence the composition
283	of microbes present in the gut, favoring microorganisms with a high diversity of carbohydrate-
284	active enzymes (e.g., <i>Bt</i> [5]) or with particular hydrolase activity to cleave certain glycan linkages
285	(e.g., B. infantis[22]). The metabolic flexibility of polysaccharide generalists such as Bt may
286	confer a competitive advantage during the transition from infancy to adulthood, as it may shift its
287	metabolism from HMOs to dietary or mucin glycans[24].
288	The pool of HMOs found in breastfeeding mothers varies in composition, structure and
289	concentration day to day. When searching for molecules that aim to mimic the effect of HMOs
290	on the gut microbiota, for example, in order to create an ideal infant feeding formula, similar
291	structural complexity should be one of the major considerations. Our chromatographic mass-
292	spectrometry analysis indicates that PMGs are a good candidate to mimic the complexity of
293	HMOs. In vivo experiments with humanized mice indicate that PMGs and HMOs affect the
294	microbiota in nuanced ways; the complex glycan mixtures structure the microbiota similarly at
295	high-level ecological and taxonomic scales. A notably similar change due to supplementation
296	with either glycan is an increase in the relative abundance of the species A. muciniphila, which
297	relies on mucin as a carbon and nitrogen source, producing short chain fatty acids from mucin

298	fermentation[45]. Several studies in humans and animal models have documented the presence
299	of Akkermansia with various positive phenotypes for the host. Studies in pregnant women have
300	shown A. muciniphila-like bacteria to be positively correlated with normal weight gain over
301	pregnancy[46] and reduction of diabetes[38]. In addition, Akkermansia levels have been
302	inversely related to the severity of obesity[47] and inflammatory bowel disease[48]. Colonization
303	of obese mice with A. muciniphila reduces body weight without dietary change and reverse diet-
304	induced fasting hyperglycemia and insulin resistance index, reducing adipose tissue[40].
305	Notably, recent studies have associated A. muciniphila with positive responses to
306	immunotherapy in cancer patients[49] and maintenance of intestinal adaptive immune responses
307	during homeostasis[50]. Studies demonstrating an enrichment of Verrucomicrobia in
308	industrialized compared to traditional populations [51] and blooming in mice fed a fiber-poor
309	diet coincident with inflammatory markers[1, 25] suggests that context, quantification of
310	absolute abundance, and perhaps function and strain-specific features of Akkermansia may be
311	important considerations in overall health impact of this taxon within an individual.
312	The broad spectrum of glycan structures present in breast milk may represent an
313	ecological strategy in which a robust gut ecosystem is selected for via maternal transmission of
314	microbes supported by HMOs. By delivering a diverse pool of glycans, the mother facilitates
315	establishment of a microbial community that may be more stable than one which relies primarily
316	on limited structural diversity (i.e., a single type of glycan) or on fluctuating dietary input from
317	the host. The HMO-consuming community can utilize structurally similar mucins; we show here
318	that bacteria prevalent in healthy humans possess a diverse array of glycoside hydrolases capable
319	of mucin glycan degradation. The manner by which the complex chemistries of exogenously-
320	administered PMGs influence the microbial community in the background of endogenous human

321	mucus glycans versus murine mucus glycans is an important area of follow-up investigation.
322	Previous work has demonstrated detrimental effects of microbial degradation of the host mucus
323	layer[1, 25]; exogenously-provided mucus glycans may reduce the consumption of the host
324	mucus in the absence of dietary MACs. The findings presented here support the idea that the host
325	selects for a mucin-consuming microbial community to promote stability in the gut ecosystem.
326	Accordingly, three diverse types of disturbance to the microbial community of humanized mice
327	were mitigated by administration of exogenous PMGs. The close symbiotic interactions between
328	commensals and their host appear to evolve at the mucus interface, with HMOs serving as
329	important agents of this relationship after birth.
330	
331	Materials and Methods
332	HMO isolation from human milk. Human milk was obtained from 12 healthy volunteers
333	recruited at the UCSD Medical Center, San Diego, CA, after approval by the University's
334	Institute Review Board. Proteins and lipids were removed from milk samples with centrifugation
335	and ethanol precipitation. Roto-evaporation was used to rid samples of residual ethanol. Lactose
336	and salts were removed by gel filtration chromatography over a BioRad P2 column (100 cm x 16
337	mm, Bio-Rad, Hercules, CA. USA) using a semi-automated Fast Protein Liquid Chromatography
338	(FPLC) system.
339	HMO isolation and purification from animal specimens. HMOs were extracted from mouse
340	ileum and feces, purified over C18 and Carbograph microcolumns, fluorescently labeled with 2-
341	aminobenzamide (2AB) and separated by high performance liquid chromatography (HPLC) on
342	an amide-80 column (4.6mm ID x 25cm, 5 μ m, Tosoh Bioscience, Tokyo) with a 50 mM
343	ammonium formate/acetonitrile buffer system. Separation was monitored by a fluorescence

detector at 360 nm excitation and 425 nm emission. Peak annotation was based on standard

345	retention times and mass spectrometric (MS) analysis on a Thermo LCQ Duo Ion trap mass
346	spectrometer equipped with a Nano-ESI-source.
347	HMO Profiling by High Performance Liquid Chromatography with Fluorescence Detection
348	(HPLC-FL). Isolated, dried HMOs from intestinal samples were fluorescently labeled with 2-
349	aminobenzamide (2AB) and cleaned with silica spin columns as previously described. The 2AB-
350	glycans were separated by HPLC-FL on an amide-80 column (4.6mm ID x 25cm, 5 mm, Tosoh
351	Bioscience, Tokyo) with a linear gradient of a 50 mM ammonium formate/acetonitrile buffer
352	system. Separation was performed at 25° C and monitored by a fluorescence detector at 360 nm
353	excitation and 425 nm emission.
354	Competitive colonization of gnotobiotic mouse. Germ-free Swiss-Webster mice were reared in
355	gnotobiotic isolators and fed an autoclaved polysaccharide-deficient diet (BioServ, http://bio-
356	serv.com) in accordance with A-PLAC, the Stanford IACUC. Mice were bi-colonized with
357	overnight cultures of Bt and B. infantis using oral gavage as described in [5]. Subsequent
358	community enumerations from mice were determined from freshly collected feces, by selective
359	plating of serial dilutions on Reinforced Clostridial Media (RCM) agar and Brain-Heart Infusion
360	(BHI)-blood agar supplemented with gentamicin (200 μ g/ml). Significant differences between
361	sample groups were determined using Student's t-test.
362	LNT and LNnT synthesis. Synthetic LNT and LNnT (Glycom A/S) were crystallized to a final
363	purity of >99%. Characterization was performed using multiple methods including NMR (1D
364	and 2D) mass-spectrometry, and HPLC.
365	PMGs preparation. PMGs were prepared as described by Martens <i>et al</i> [30], with some
366	modifications: O-glycans were released from porcine gastric mucin (Sigma Type III, 10% w/v)

367	by incubation at 48° C for 20 hrs in 150 mM NaOH with 750 mM NaBH ₄ . The reaction was
368	neutralized with HCl (10 M). Insoluble material was removed by centrifugation at 14000 x g (30
369	mins, 4° C). Supernatant was filtered and dialyzed against dH ₂ O with 1kD MWCO membranes
370	(Spectra/Por 7, Spectrum Labs)) and subsequently lyophilized. Glycans were solubilized in
371	50mM Tris pH 7.4 buffer and fractionated using DEAE-Sepharose CL-6B anion exchange
372	columns.
373	Monosaccharide and sialic acid determination from PMGs. For monosaccharide composition
374	analysis, PMG samples were hydrolyzed using 2 M trifluoroacetic acid (TFA) at 100°C for 4 h
375	followed by removal of the acid under dry nitrogen flush. Dried samples were co-evaporated
376	with 50 µl aqueous iso-propyl solution (50% IPA) twice to ensure complete removal of TFA.
377	Finally, samples were dissolved in water and analyzed by HPAEC-PAD (Dionex ICS3000) using
378	a CarboPac PA-1 (4x250mm0 column with 100mM NaOH and 250mM NaOAc.
379	Monosaccharides were identified with a sensitive post-acceleration detector (PAD) using
380	standard Quad potential as specified by the manufacturer.
381	Sialic acid content of PMGs was determined after hydrolysis with 2M HOAc at 80 $^{\circ}$ C for
382	3 hours. Acetic acid was removed by speed vacuum and free sialic acids collected by spin-
383	filtration through a 3k MWCO filter followed by derivatization with 1,2-diamino-4,5-
384	methyleneoxybenzene (DMB). Fluorescently-labeled sialic acids were analyzed by reverse-phase
385	HPLC using Acclaim120 C18 column (4 X 250mm, 5μ , Dionex) and a fluorescence detector
386	with a slow gradient of 9% to 14% acetonitrile over 20 min.
387	MALDI-mass spectrometry method for PMG structural analysis. Samples were prepared for
388	MALDI-mass spectrometry with slight modifications to an established method[52]. To per-O-

methylate, PMG samples were dissolved in dry DMSO, to which 100 µl sodium hydroxide in

390	DMSO was added, followed by immediate addition of 200 μ L methyl iodide. After continuous
391	stirring for 1 h, a second aliquot of methyl iodide (50 μ L) was added, followed by stirring for 30
392	min. The reaction was stopped with ice-cold water and the permethylated glycans were extracted
393	with 1 mL chloroform. The chloroform layer was washed twice with water, dried, re-suspended
394	in methanol, mixed with sDHB matrix and spotted on a MALDI plate. Spectra were acquired on
395	positive mode, and putative glycan structures were assigned with Glyco Workbench[53, 54].
396	Mouse humanization and enumeration. Germ-free Swiss-Webster mice were humanized once
397	with 200 μ l of frozen human fecal sample resuspended 1:1 in anaerobic phosphate buffer saline
398	(PBS) by oral gavage. The same adult human donor sample was used for all humanization
399	experiments. The humanized microbiota was allowed to equilibrate for 4-6 weeks prior to onset
400	of experimental manipulation. Mice were maintained in gnotobiotic isolators throughout the
401	duration of the experiments and fed one of three diets: standard (Purina LabDiet 5K67),
402	polysaccharide-deficient (BioServ, http://bio-serv.com) or high fat (60% fat and 20%
403	carbohydrates, D12492, Research Diets Inc.). When needed, 1 mg of clindamycin (Sigma) per
404	mouse was administered via oral gavage or 200 µl of an overnight culture of C. difficile growth
405	in RCM (BD Difco). To approximate the mass of HMOs available to breastfeeding infants,
406	complex pools of glycans (purified HMOs and PMGs) were added at a concentration of 1%
407	(w/v) in water unless otherwise specified. Infants consume approximately 7.5-11.25 g HMOs
408	daily (~750 mL milk intake, HMOs are 10-15 mg/mL in breastmilk), 1.5-2.25 g/kg (for a 5 kg
409	infant). Mice consume about 5 mL water per day; at 10 mg/mL glycan concentration, this
410	equates to 2 g/kg for a 25 g mouse. LNT and LNnT together constitute 15-20% total HMOs in
411	breastmilk[8]; as such, administration of pure glycans (LNT, LNnT) are provided at a higher

20 412 concentration than at which they naturally occur. All animal protocols were in accordance with 413 A-PLAC, the Stanford IACUC. C. difficile enumeration. For quantification of C. difficile CFU, 1 µl feces was serially diluted in 414 415 PBS and plated onto selective media, composed of Clostridium difficile Agar Base (OxoiD) with 416 7% v/v of Defibrinated Horse Blood (Lampire Biological Laboratories), supplemented with 32 417 mg/L Moxalactam (Santa Cruz Biotechnology) and 12 mg/L Norfloxacin (Sigma-Aldrich) 418 (CDMN). Plates were incubated overnight at 37° C in an anaerobic chamber (Coy). Identification 419 of colonies as C. difficile was validated by colony PCR, using the primers Cl1 (5'-420 TGTTGCAATATTGGATGCTTT) and Cl2 (5'-TGACCTCCAATCCAAACAAA), which target 421 a fragment of *tcdB* gene. 422 16S rRNA amplicon sequencing and analysis. Fresh fecal samples were collected and frozen at 423 -80° C. DNA was extracted according to Earth Microbiome Project standard protocols using the 424 Powersoil-htp extraction kit (MoBio). The 16S rRNA gene was amplified (515F, 806R) and 425 sequenced using the Illumina MiSeq platform at the Medical Genome Facility, Mayo Clinic, 426 Rochester, MN across 6 runs at 150 bp except the experiments with HFD, where 300 bp (Figures 427 4A,B,E,F,G) and 250 bp (Figures 4C,4D,S6) were generated. Raw reads were demultiplexed 428 using QIIME 1.9[55] and subsequently trimmed and denoised using DADA2 with standard input 429 parameters maxN=0, maxEE=2, trunQ=2 except for the GOS/HMO/PMG supplementation 430 experiment (corresponding to Figures 1C,1D,S3) where maxEE=(5,2) was used[56]. Taxonomy was assigned with the GreenGenes training set version 13.8 clustered at 97% identity. 431 432 Phylogenetic trees were constructed by performing a multiple sequence alignment and 433 constructing a Generalized time-reversible with Gamma rate variation maximum likelihood tree

434 using a neighbor-joining tree as a starting point with the R packages *msa* and *phangorn* as

435	described previously[57]. All resulting datasets were filtered for low-abundance ASVs at 10%
436	prevalence and subsequently rarefied. R packages phyloseq, DESeq2, RandomForests, rfUtilities,
437	vegan, caret, cluster, harrietr, ggpubr, plotrix, rstatix and ggplot2 were used for normalization,
438	analyses, and visualization.
439	Mining for mucin carbohydgrate gene clusters in silico. Four thousand five hundred and fifty
440	eight fully sequenced genomes were selected based on their identification as being human-
441	associated (n=4558, in the Human Gut MAG Species Database, HGMdb;
442	https://github.com/snayfach/IGGdb)[41]. Carbohydrate-active enzyme assignment of glycoside
443	hydrolases (GHs) was performed using a Hidden Markov Model database[58, 59]. We identified
444	physically linked carbohydrate gene clusters (CGCs) using a default stringent parameter in the
445	dbCaN software, which defines a CGC as physical linkage (distance ≤ 2) of at least two
446	CAZymes with a transcription factor (TF) or transporter (TC); in this case CAZymes were
447	constrained to those listed in Table S2. GHs within CGCs were summed across each genome,
448	and heat maps were generated using CGC counts. Prevalence of taxa across individuals was
449	determined by running the IGGSearch software [41] with default settings on the 180
450	metagenomes available from healthy individuals in the HMP (<u>https://hmpdacc.org/</u>). Taxa were
451	defined as pathogenic if they met the criteria of belonging to a list of genera
452	(Salmonella, Shigella, Yersinia, Vibrio, Campylobacter) or species (Clostridium difficile,
453	Clostridium perfringens, Clostridium botulinum, Pseudomonas Aeruginosa), and could be
454	manually verified as pathogens based on existing literature (see Table S3 for a list of these 34
455	species).

22

456	Body composition analysis. Animals were measured for total body fat mass and adipose deposits
457	were precisely dissected and weighted. Short chain fatty acid content was determined as
458	described previously[60].
459	
460	Data Availability. All raw 16S sequencing data will be made publicly available. Code will be
461	made available upon request.
462	
463	Acknowledgements. We thank members of the Sonnenburg Lab for helpful discussions. We
464	thank the UCSD Glycotechnology Core Facility for technical assistance and Glycom for their
465	generous contribution of LNT and LNnT. Evelyn Jantscher-Krenn and Alex Szyszka at the
466	Division of Neonatology and Division of Gastroenterology and Nutrition, Department of
467	Pediatrics, UCSD, provided technical support for the HMO isolation. The authors acknowledge
468	support from the National Institutes of Health R01-DK085025 (to J.L.S.). J.L.S. is a Chan
469	Zuckerberg Biohub Investigator.
470	
471	Competing Interests. Pruss K.M., Marcobal A., Southwick A.M., Dahan D., Smits S.A.,
472	Higginbottom S., Sonnenburg E., Kashyap P., Choudhury B., Bode L., no conflicts of interest. J.
473	Ferreyra is a scientist at NGM Biopharmaceuticals. J. L. Sonnenburg is a founder of Novome
474	Biotechnologies, Inc., January. ai, and a scientific advisor for Second Genome and Gnubiotics,
475	who has licensed intellectual property related to this manuscript.
476	

References

477

478 1. Earle KA, Billings G, Sigal M, Lichtman JS, Hansson GC, Elias JE, et al. Quantitative

479		Imaging of Gut Microbiota Spatial Organization. <i>Cell Host Microbe</i> 2015; 18 : 478–488.
480	2.	Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP, Weatherford J, et al. Glycan
481		foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005; 307: 1955-
482		1959.
483	3.	Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human
484		gut microbiota. Nat Rev Microbiol 2012; 10 : 323–335.
485	4.	Marcobal A, Southwick AM, Earle KA, Sonnenburg JL. A refined palate: Bacterial
486		consumption of host glycans in the gut. <i>Glycobiology</i> 2013; 23: 1038–1046.
487	5.	Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, et al.
488		Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization
489		pathways. <i>Cell Host Microbe</i> 2011; 10 : 507–514.
490	6.	Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. <i>Glycobiology</i>
491		2012; 22 : 1147–1162.
492	7.	Wu S, Salcedo J, Tang N, Waddell K, Grimm R, German JB, et al. Employment of
493		tandem mass spectrometry for the accurate and specific identification of oligosaccharide
494		structures. <i>Anal Chem</i> 2012; 84 : 7456–7462.
495	8.	Kunz C, Rudloff S, Baier W, Klein N, Strobel S. Oligosaccharides in Human Milk:
496		Structural, Functional, and Metabolic Aspects. Annu Rev Nutr 2000; 20: 699–722.
497	9.	Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, et al. Preterm Milk
498		Oligosaccharides During the First Month of Lactation. <i>Pediatrics</i> 2011; 128 : e1520–
499		e1531.
500	10.	Bao Y, Zhu L, Newburg DS. Simultaneous quantification of sialyloligosaccharides from
501		human milk by capillary electrophoresis. Anal Biochem 2007; 370 : 206–214.
502	11.	Coppa G V, Pierani P, Zampini L, Carloni I, Carlucci A, Gabrielli O. Oligosaccharides in
503		human milk during different phases of lactation. Acta Paediatr Suppl 1999; 88: 89–94.
504	12.	Wang B. Molecular Mechanism Underlying Sialic Acid as an Essential Nutrient for Brain
505		Development and Cognition. Adv Nutr 2012; 3: 465S-472S.
506	13.	Eiwegger T, Stahl B, Haidl P, Schmitt J, Boehm G, Dehlink E, et al. Prebiotic
507		oligosaccharides: In vitro evidence for gastrointestinal epithelial transfer and
508		immunomodulatory properties. <i>Pediatr Allergy Immunol</i> 2010; 21 : 1179–1188.
509	14.	Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS. Human-Milk Glycans That
510		Inhibit Pathogen Binding Protect Breast-feeding Infants against Infectious Diarrhea. J
511		<i>Nutr</i> 2005; 135 : 1304–1307.
512	15.	Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS.
513		Campylobacter jejuni binds intestinal H(O) antigen (Fuc α 1, 2Gal β 1, 4GlcNAc), and
514		fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem
515		2003; 278 : 14112–14120.
516	16.	Triantis V, Bode L, van Neerven RJJ. Immunological Effects of Human Milk
517		Oligosaccharides. Front Pediatr 2018; 6: 1–14.
518	17.	Porcelli P, Schanler R, Greer F, Chan G, Gross S, Mehta N, et al. Growth in Human Milk-
519		Fed Very Low Birth Weight Infants Receiving a New Human Milk Fortifier. Ann Nutr
520		<i>Metab</i> 2000; 44 : 2–10.
521	18.	Sisk PM, Lovelady CA, Dillard RG, Gruber KJ, O'Shea TM. Early human milk feeding is
522		associated with a lower risk of necrotizing enterocolitis in very low birth weight infants. J
523		<i>Perinatol</i> 2007; 27 : 428–433.
524	19.	Lauwaet T, Bliss LA, Bode L, Gillin FD, Reed SL, Jantscher-Krenn E. Human milk

525		oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Br J
526	•	<i>Nutr</i> 2012; 108 : 1839–1846.
527 528	20.	Charbonneau MR. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. <i>Cell</i> 2016; 164 : 859–871.
529	21.	Jantscher-Krenn E, Marx C, Bode L. Human milk oligosaccharides are differentially
530	21.	metabolised in neonatal rats. Br J Nutr 2013; 110 : 640–650.
531	22.	Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, et al. The genome
532		sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk
533		utilization within the infant microbiome. <i>Proc Natl Acad Sci</i> 2008; 105 : 18964–18969.
534	23.	Kim J-H, Henrissat B, Bottacini F, Turroni F, Mills D, Kelly D, et al. Genome analysis of
535		Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan
536		foraging. Proc Natl Acad Sci 2010; 107 : 19514–19519.
537	24.	Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human
538		gut microbiome in early-onset type 1 diabetes from the TEDDY study. <i>Nature</i> 2018; 562 :
539		589–594.
540	25.	Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A
541	20.	Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and
542		Enhances Pathogen Susceptibility. <i>Cell</i> 2016; 167 : 1339–1353.
543	26.	Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The Effect of Diet on
544	20.	the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice.
545		Sci Transl Med 2009; 1: 6ra14:1-10.
546	27.	Marcobal A, Kashyap PC, Nelson TA, Aronov PA, Donia MS, Spormann A, et al. A
547	_/.	metabolomic view of how the human gut microbiota impacts the host metabolome using
548		humanized and gnotobiotic mice. <i>ISME J</i> 2013; 7: 1933–43.
549	28.	Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al.
550		Consumption of Human Milk Oligosaccharides by Gut-Related Microbes. J Agric Food
551		<i>Chem</i> 2010; 58 : 5334–5340.
552	29.	Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and
553		microbial differential abundance strategies depend upon data characteristics. Microbiome
554		2017; 5 : 27.
555	30.	Martens EC, Chiang HC, Gordon JI. Mucosal Glycan Foraging Enhances Fitness and
556		Transmission of a Saccharolytic Human Gut Bacterial Symbiont. Cell Host Microbe 2008;
557		4 : 447–457.
558	31.	Jin C, Kenny DT, Skoog EC, Padra M, Adamczyk B, Vitizeva V, et al. Structural diversity
559		of human gastric mucin glycans. Mol Cell Proteomics 2017; 743–758.
560	32.	Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the
561		gap statistic. J R Stat Soc Ser B Stat Methodol 2001; 63: 411–423.
562	33.	Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota.
563		<i>Science</i> 2018; 362 : eaat9076.
564	34.	Byndloss MX, Olsan EE, Rivera-Chavez F, Tiffany CR, Cevallos SA, Lokken KL, et al.
565		Mictobiota-activated PPAR-gamma signaling inhibits dysbiotic Eneterobacteriaceae
566		expansion. Science 2017; 357 : 570–575.
567	35.	Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, et al.
568		Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase
569		susceptibility to Clostridium difficile infection. Nat Commun 2014; 5: 3114.
570	36.	Battaglioli EJ, Hale VL, Chen J, Jeraldo P, Ruiz-Mojica C, Schmidt BA, et al.

571		Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a
572		subset of patients with diarrhea. Sci Transl Med 2018; 10: eaam7019.
573	37.	Cherian RM, Jin C, Liu J, Karlsson NG, Holgersson J. Mucin-based C. difficile inhibitors
574		Recombinant mucin-type fusion proteins with Gal α 1,3Gal substitution as Clostridium.
575		2016.
576	38.	Hansen CHF, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sørensen SJ, et al. Early
577		life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes
578		incidence in the NOD mouse. <i>Diabetologia</i> 2012; 55 : 2285–2294.
579	39.	Cani PD, de Vos WM. Next-generation beneficial microbes: The case of Akkermansia
580		muciniphila. <i>Front Microbiol</i> 2017; 8 : 1–8.
581	40.	Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk
582		between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.
583		<i>Proc Natl Acad Sci</i> 2013; 110 : 9066–9071.
584	41.	Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from uncultivated
585		genomes of the global human gut microbiome. <i>Nature</i> 2019; 568 : 505–510.
586	42.	Cowardin CA, Ahern PP, Kung VL, Hibberd MC, Cheng J, Guruge JL, et al. Mechanisms
587		by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse
588		model of infant undernutrition. <i>Proc Natl Acad Sci U S A</i> 2019; 116 : 11988–11996.
589	43.	Rudloff S, Pohlentz G, Borsch C, Lentze MJ, Kunz C. Urinary excretion of in vivo 13C-
590		labelled milk oligosaccharides in breastfed infants. <i>Br J Nutr</i> 2012; 107 : 957–963.
591	44.	Albrecht S, Schols HA, van Zoeren D, van Lingen RA, Groot Jebbink LJM, van den
592		Heuvel EGHM, et al. Oligosaccharides in feces of breast- and formula-fed babies.
593		<i>Carbohydr Res</i> 2011; 346 : 2173–2181.
594	45.	Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM. The Mucin Degrader
595		Akkermansia muciniphila Is an Abundant Resident of the Human Intestinal Tract. Appl
596		<i>Environ Microbiol</i> 2007; 74 : 1646–1648.
597	46.	Santacruz A, Collado MC, García-Valdés L, Segura MT, Marítn-Lagos JA, Anjos T, et al.
598		Gut microbiota composition is associated with body weight, weight gain and biochemical
599		parameters in pregnant women. Br J Nutr 2010; 104 : 83–92.
600	47.	Karlsson CLJ, Önnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K. The microbiota
601		of the gut in preschool children with normal and excessive body weight. <i>Obesity</i> 2012; 20 :
602		2257–2261.
603	48.	Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al.
604		Mucolytic Bacteria With Increased Prevalence in IBD Mucosa Augment In Vitro
605		Utilization of Mucin by Other Bacteria. Am J Gastroenterol 2010; 105: 2420–2428.
606	49.	Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut
607		microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.
608		Science 2018; 359 : 91–97.
609	50.	Ansaldo E, Slayden LC, Ching KL, Koch MA, Wolf NK, Plichta DR, et al. Akkermansia
610		muciniphila induces intestinal adaptive immune responses during homeostasis. Science
611		(80-) 2019; 364 : 1179–1184.
612	51.	Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, et al. Seasonal
613		Cycling in the Gut Microbiome of the Hadza Hunter-Gatherers of Tanzania. Science (80-)
614		2017; 357 : 802–806.
615	52.	IC, FK. A Simple and Rapid Method for the Permethylation of Carbohydrates.
616		<i>Carbohydr Res</i> 1984; 131 : 209–217.

617 618 619	53.	Dell A, Ranzinger R, Damerell D, Maass K, Ceroni A, Haslam SM. The GlycanBuilder and GlycoWorkbench glycoinformatics tools: updates and new developments. <i>Biol Chem</i> 2012; 393 : 1357–1362.
620 621 622	54.	Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslma SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. <i>J Proteome Res</i> 2008; 7 : 1650–1659.
623 624 625	55.	Knights D, Walters WA. Caparose JGKJ, Stombaugh J, Bittinger K, Bushman FD QIIME allows analysis of high- throughput community sequencing data. Nat Met 7□: 335-336. <i>Nat Publ Gr</i> 2010; 7 : 335–336.
626 627 628	56.	Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. <i>Nat Methods</i> 2016; 13 : 581–583.
629 630 631	57.	Holmes SP, Sankaran K, Callahan BJ, McMurdie PJ, Fukuyama JA. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. <i>F1000Research</i> 2016; 5 : 1492.
632 633 634	58.	Huang L, Zhang H, Wu P, Entwistle S, Li X, Yohe T, et al. DbCAN-seq: A database of carbohydrate-active enzyme (CAZyme) sequence and annotation. <i>Nucleic Acids Res</i> 2018; 46 : D516–D521.
635 636	59.	Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. DbCAN: A web resource for automated carbohydrate-active enzyme annotation. <i>Nucleic Acids Res</i> 2012; 40 : 445–451.
637 638 639	60.	Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA, et al. Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice. <i>Gastroenterology</i> 2013; 144 : 967–977.
640 641	61.	Ndeh D, Gilbert HJ. Biochemistry of complex glycan depolymerisation by the human gut microbiota. <i>FEMS Microbiol Rev</i> 2018; 42 : 146–164.
642 643	62.	Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. <i>Front Genet</i> 2015; 5 .
644 645 646	63.	Ravcheev DA, Thiele I. Comparative genomic analysis of the human gut microbiome reveals a broad distribution of metabolic pathways for the degradation of host-synthetized mucin glycans and utilization of mucin-derived monosaccharides. <i>Front Genet</i> 2017; 8 : 1–
647 648	64.	22. Wakinaka T, Kiyohara M, Kurihara S, Hirata A, Chaiwangsri T, Ohnuma T, et al.
648 649 650 651	04.	Bifidobacterial a-galactosidase with unique carbohydrate-binding module specifically acts on blood group B antigen. <i>Glycobiology</i> 2013; 23 : 232–240.
652		
	Figur	e Legends

653 Figure 1. Human milk oligosaccharides (HMOs) are consumed by and shape the

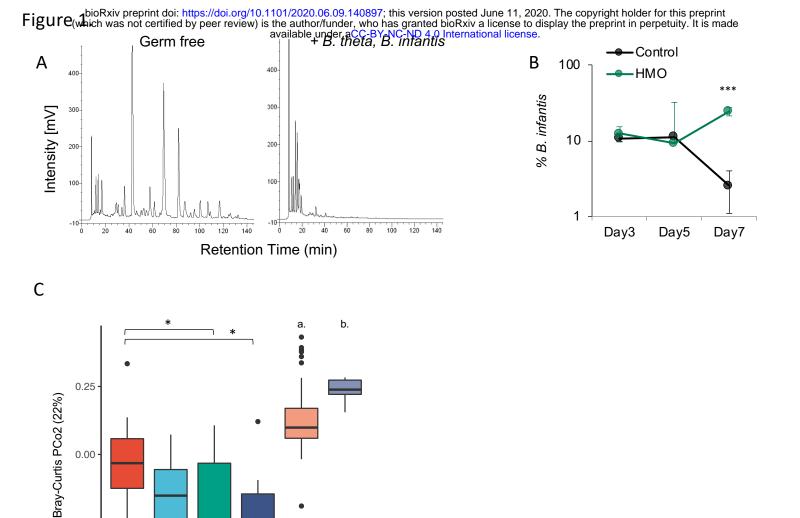
- 654 commensal microbiota. A) Germ-free and mice bi-colonized with *Bt* and *B. infantis* were fed
- MD diet supplemented with 1% HMOs (w/v in water). HPLC-FL based chromatograms of
- 656 glycan content in stool samples at day 7 reveal degradation of HMOs *in vivo*. **B**) HMO

657	supplementation provides a competitive advantage to B. infantis over Bt in bi-colonized mice
658	(n=4 mice/group, mean +/- SEM, *** = $P < 0.001$). Abundance of <i>Bt</i> and <i>B. infantis</i> from feces
659	was determined with CFU dilution plating. C) Bray-Curtis dissimilarity metric indicates
660	significant differences to community composition between mice on MD diet and MD diet
661	supplemented with 1% PMGs, or HMOs. MD diet alone is not significantly different from MD
662	diet supplemented with 1% GOS. (Data were combined across sampling time-points: n=12 MD,
663	n=19 MD+GOS, n=21 MD+HMOs, n=11 MD+PMG, n=61 MAC ⁺ , n=10 MAC ⁺ +PMG. a. *
664	MAC ⁺ vs. MD; **** MAC+ vs. MD+GOS, MD+HMOs, and MD+PMG. b. *** MAC ⁺ +PMG
665	vs. MD; **** MAC++PMG vs. MD+GOS, MD+HMOs, and MD+PMG. *** <i>P</i> < 0.001, **** <i>P</i>
666	< 0.0001, pairwise t-tests with Bonferroni multiple hypothesis correction). D) Individual ASVs
667	with significantly different abundance due to HMO supplementation (positive log ₂ -fold change)
668	versus MD diet alone (negative log_2 -fold change, mean +/- SEM, adjusted <i>P</i> -value < 0.01,
669	parametric Wald test). Highest resolution taxonomic assignment indicated to the left.
670	Figure 2. Structural analysis of porcine mucin glycans (PMGs). A) Six detectable
671	monosaccharides were identified after total acid hydrolysis of PMGs, with four monosaccharides
672	associated with mucin glycans dominating. Amino sugars are the N-acetyl forms. B) 13 abundant
673	O-linked glycans were detected in purified PMGs using MALDI-TOF mass spectrometry. C,D)
674	Structures of the O-glycans quantified in (B) were predicted with GlycoWork Bench. Three of
675	the identified PMGs (C) were validated with MS/MS.
676	Figure 3. Treatment with PMGs leads to accelerated post-antibiotic recovery. A) MD diet
677	supplemented with 1% PMGs (+PMG) leads to accelerated recovery of alpha diversity compared
678	to MD diet alone (Control, mean +/- SEM shown, ** $P < 0.01$, **** $P < 0.0001$, pairwise t-tests
c-c	

679 with Bonferroni correction for post-antibiotic treatment timepoints) Baseline alpha diversity

680	measurements are during MAC^+ diet prior to clindamycin treatment. B) Unweighted UniFrac
681	distance (compared to pre-antibiotic MAC ⁺ baseline) reveals that PMG supplementation to MD
682	diet (+PMG) leads to a faster trajectory back to baseline community than MD diet alone
683	(Control, **** $P < 0.0001$, pairwise t-tests with Bonferroni correction). C) Mean relative
684	abundance (%) of the phylum Proteobacteria is suppressed in mice treated with 1% PMGs
685	compared to the MD control. Bars are colored by genus. Total Proteobacteria abundance is
686	significantly higher days 7 and 14 post-antibiotic treatment in the control group. (* $P < 0.05$,
687	pairwise t-tests with Bonferroni correction). D) Relative abundance of Cd is suppressed with
688	PMG supplementation compared to MD diet alone (* $P < 0.05$, ** $P < 0.01$, pairwise t-tests with
689	Bonferroni correction).
690	Figure 4. PMGs mitigate the effect of high-fat diet on host physiology and the gut
691	microbiota. A) Weight gain in individual mice fed HFD (n=5 mice, blue), HFD supplemented
692	continuously with 1% PMGs (n=5, red), or maintained on MAC ⁺ diet (n=4, red). Weight was
693	compared to baseline day 0 prior to diet switch (mean +/- SEM, repeated measures two-way
694	ANOVA with Dunnett's multiple comparison's test, $*$ indicates significance versus MAC ⁺). B)
695	Fat pads as percent total body mass at day 21 (mean +/- SEM, ANOVA). C) PMGs administered
696	for 7-day durations in water (1% w/v) are sufficient to reduce host weight gain (C) and fat
697	accumulation (D) due to HFD. C) Weight gain compared to day 0 (mean +/- SEM, $n = 5$
698	mice/group, multiple t-tests). Red boxes denote period of two one-week pulses of PMGs
699	administered to HFD + PMG group. D) Fat pads as percent total body mass at day 35 (mean +/-
700	SEM, $n = 5$ mice/group). E) Unweighted UniFrac reveals separation of the three diet groups;
701	PMG supplementation to HFD leads to a unique microbial community from HFD alone. F) Diet-
702	dependent decreases in cecal short-chain fatty acids were determined by GC-MS in cecal

703	contents of mice fed MAC ⁺ , HFD, or HFD + 1% PMG. G) Changes in the top 100 most
704	abundant taxa over time for mice maintained on MAC^+ , HFD, or HFD supplemented with 1%
705	PMGs. f indicates that a strain is not assigned at the family level in the Greengenes database;
706	NA indicates lack of taxonomic assignment at the family level. For A-D,F: * $P < 0.05$, ** $P < 0.05$
707	0.01, *** P < 0.001, **** P < 0.0001.
708	Figure 5. Prevalent gut commensals harbor high numbers of mucin-degrading
709	carbohydrate gene clusters. A) Numbers of putative mucin-degrading CGCs per genome in
710	839 taxa that met criteria for at least 1 mucin-degrading CGC and 10% prevalence in healthy
711	humans. A healthy cohort from the Human Microbiome Project (HMP) dataset is used to define
712	prevalence. Stars indicate the pathogenic strains queried that contained putative mucin CGCs. B)
713	The top 50 taxa within the HGM database harboring the highest number of mucin-degrading
714	CGCs within their genomes. Total putative mucin-targeting glycoside hydrolases identified
715	within these candidate mucin CGCs are indicated (GH sum).
716	Figure S1. Corresponds to Figure 1. A) HPLC-FL based chromatograms of glycan content in
717	cecal contents of germ-free or bi-colonized mice fed 1% HMOs in drinking water. At day 7,
718	mice bi-colonized with Bt and B. infantis degrade the HMOs still visibly present in germ-free
719	mice. B) Glycan content from germ-free and bi-colonized control ($BtBi = B$. theta, B. infantis)
720	mice not fed HMOs. C-E) Supplementation with two synthetic HMOs that differ in a single
721	glycosidic linkage affects the composition of the gut microbiota. C) Structure of LNT and LNnT,
722	two synthetic HMOs. Green circles indicate the differing location of the Gal-Glc linkage. D)
723	Bray-Curtis distance reveals full separation of microbial communities of mice on MAC ⁺ diet
724	from MD supplemented with either synthetic HMO, as well as separation of LNT from LNnT
725	$(F_{(2,29)}=41.736 * P < 0.05, **** P < 0.0001, one-way ANOVA with Tukey's post-hoc$


726	comparisons). E) Relative abundance of bacterial families in MAC^+ or MD supplemented with
727	LNnT or LNT. f indicates that a strain is not assigned at the family level in the Greengenes
728	database; NA indicates lack of taxonomic assignment at the family level.
729	Figure S2. Corresponds to Figure 2. Verification with MS/MS fragmentation pattern of the
730	three porcine mucin glycan structures predicted by GlycoWork Bench from Fig 2C.
731	Figure S3. Corresponds to Figure 1. A). Diet-induced changes to the relative abundance of
732	bacterial families over time. All mice began on MAC ⁺ baseline diet days prior to glycan
733	supplementation. f indicates that a strain is not assigned at the family level in the Greengenes
734	database; NA indicates lack of taxonomic assignment at the family level. B) There are no
735	differences in two alpha diversity metrics between groups on MD dietary background; however,
736	1% PMG supplementation to MAC ⁺ diet results in significant alpha diversity enrichment
737	compared to MAC ⁺ alone. Observed ASVs and Shannon index are higher in MAC ⁺ +/- PMGs
738	than MD supplemented with various glycans (observed ASVs: $F_{(5,128)}$ =17.382, $P < 0.0001$ one-
739	way ANOVA with tukey's post-hoc comparisons. a. * MAC^+ vs. $MD+GOS$, **** MAC^+ vs
740	MD+HMOs, *** MAC ⁺ vs. MD+PMG, *** MAC ⁺ vs MAC ⁺ +PMG. Shannon diversity:
741	$F_{(5,34.74)}$ =20.83, $P < 0.0001$ Welch's ANOVA with Games-Howell post-hoc comparisons. b,
742	**** MAC ⁺ +PMG vs. MD, MD+GOS, MD+HMOs, and MD+PMG.) C) More dilute PMG
743	supplementation (0.3%) still leads to significant enrichment of alpha diversity to MAC^+ diet (***
744	$P < 0.001$, Student's t-test). D) 1% PMG supplementation (positive log_2 -fold change) to MD diet
745	(negative log ₂ -fold change) led to significant enrichment of several taxa that were also enriched
746	by HMOs (mean +/- SEM, Wald Test, adjusted P value < 0.05). E) 0.3% PMG supplementation
747	to MAC ⁺ diet (as in S3C) led to enrichment of three <i>Bacteroides</i> species (mean +/- SEM, Wald
748	Test, adjusted P value < 0.01).

749	Figure S4. Corresponds to Figure 3. A) Relative abundance of bacterial families after
750	clindamycin treatment. f indicates that a strain is not assigned at the family level in the
751	Greengenes database; NA indicates lack of taxonomic assignment at the family level. B. PMGs
752	supplemented to MD diet lead to enhanced recovery of A. muciniphila (Pairwise t-tests with
753	Bonferroni correction, * $P < 0.05$, *** $P < 0.001$).
754	Figure S5. Corresponds to Figure 3. A) Absolute abundance of <i>Cd</i> colonization enumerated
755	with selective plating is reduced with PMG administration days 6 and 7 post-infection compared
756	to unsupplemented control (MD diet, * $P < 0.01$, Student's t-test). B) Relative abundance of Cd
757	is not affected by PMGs in a MAC ^{$+$} background. C) Blinded histopathological scoring of cecal
758	(i.) and distal colon (ii.) tissues from mice infected with <i>Cd</i> .
759	Figure S6. Corresponds to Figure 4. A) PMG supplementation to HFD leads to distinct
760	communities from HFD alone or MAC^+ diet as quantified by the first principal component of
761	unweighted UniFrac distance between communities ($F_{(2,107)}$ =782.603 **** P < 0.0001 ANOVA
762	with Tukey's post-hoc comparisons. n=30 HFD, n=29 HFD+PMG, n=51 MAC ⁺). B) Relative
763	abundance of the top 100 most abundant taxa on HFD alone or HFD with transient (1 week)
764	PMG supplementation. Salmon-colored background boxes indicate sampling timepoints during
765	which 1% PMGs were administered to the latter group. Both groups started on MAC^+ diet (day
766	0). f indicates that a strain is not assigned at the family level in the Greengenes database; NA
767	indicates lack of taxonomic assignment at the family level. C) Microbial communities of mice
768	that were treated transiently with PMGs (red crosses) remain distinct from mice on HFD alone
769	(blue), even when PMGs are removed from HFD (red circles). D) <i>A. muciniphila</i> reaches a
770	higher relative abundance in mice treated transiently with PMGs (** $P < 0.01$, t-test). E) Taxa

- that are significantly enriched due to transient PMG supplementation (positive) in water to HFD
- background (negative, mean +/- SEM, adjusted *P* value < 0.0005).
- 773 Figure S7. Corresponds to Figure 5. A) The distribution of number of putative mucin-
- degrading CGCs per genome amongst all phyla in the HGM database.

775

- 776 **Table S1**. Top 20 predictive taxa of the Random Forests classifier to predict HFD or HFD with
- transient PMG supplementation (Figure 4C,4D,S6B-E.).
- **Table S2.** List of literature references for mucin-targeting GHs[25, 61–64].
- Table S3. List of bacteria categorized as pathogens for the mucin-glycan degradation analysis
- 780 presented in Figure 5.

. QW

MD+GOS

MD+HMO

MD+PMG

0.00

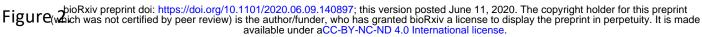
-0.25

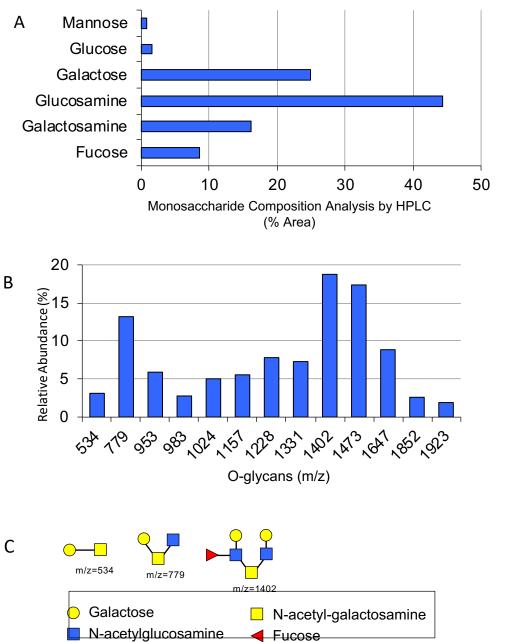
Unassigned at genus and species level Ruminococcus spp. Family Blautia spp. Bacteroides ovatus f _Bacteroidaceae Bacteroides eggerthii Bacteroides caccae f_Lachnospiraceae Bacteroides spp. f_Ruminococcaceae Anaerostipes spp. f__S24-7 Akkermansia muciniphila f_Verrucomicrobiaceae Ruminococcus gnavus No genus or species taxonomy in database

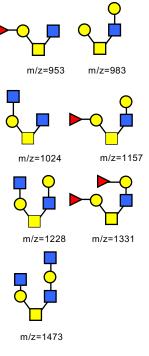
-20

-10

0

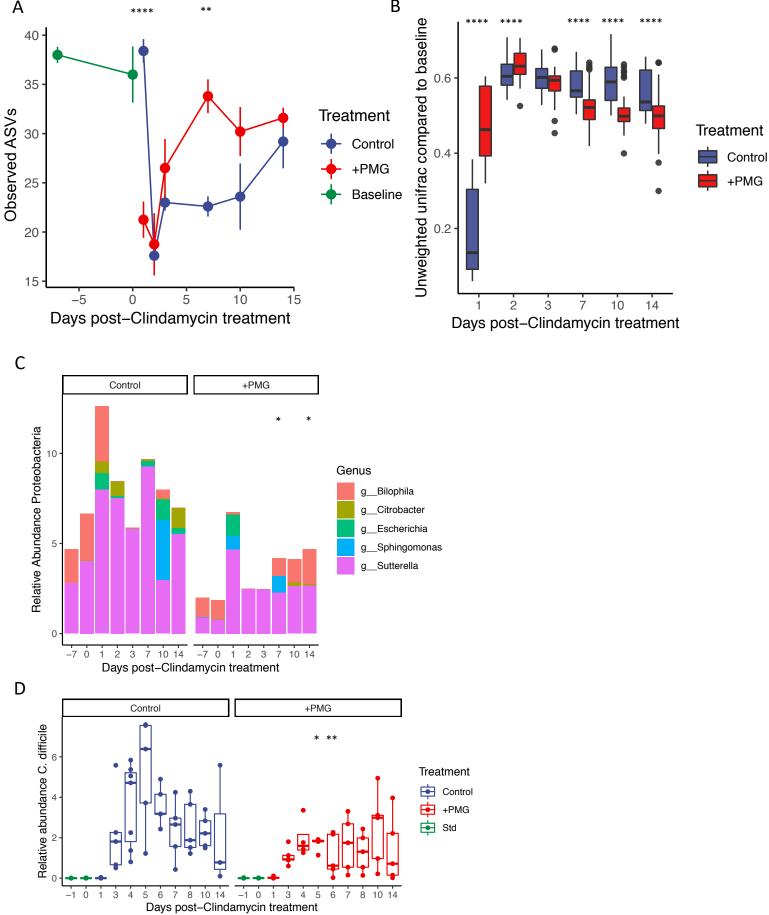

20


10 Log₂-fold change


MAC+ .

MAC+PMG

D



D

Figure (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

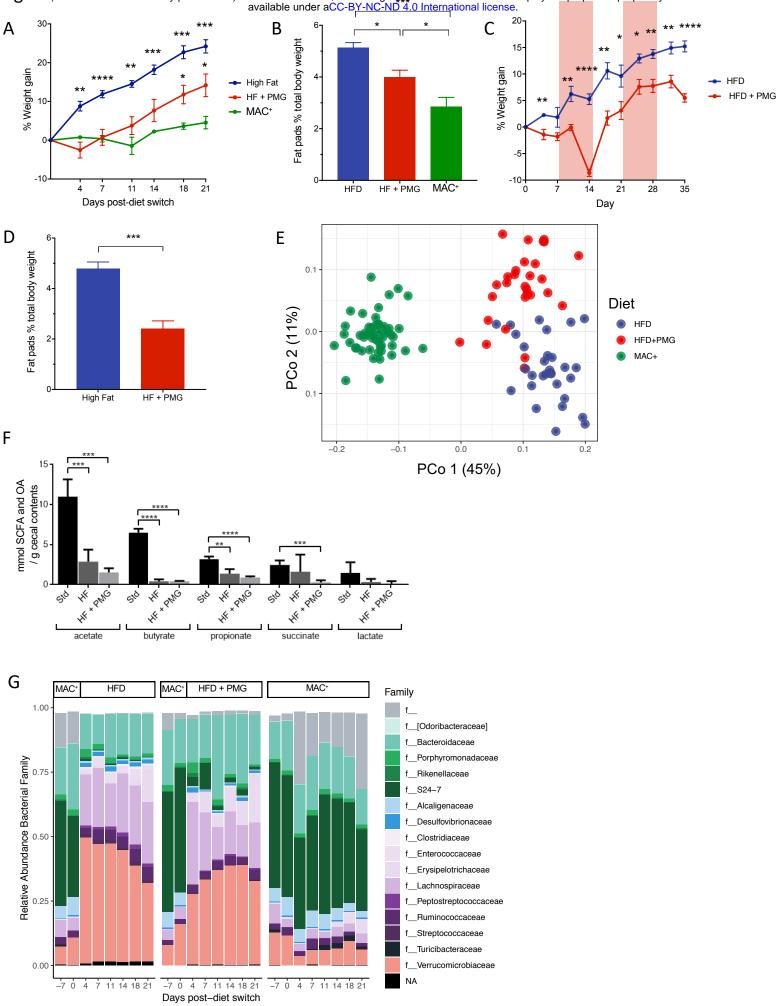
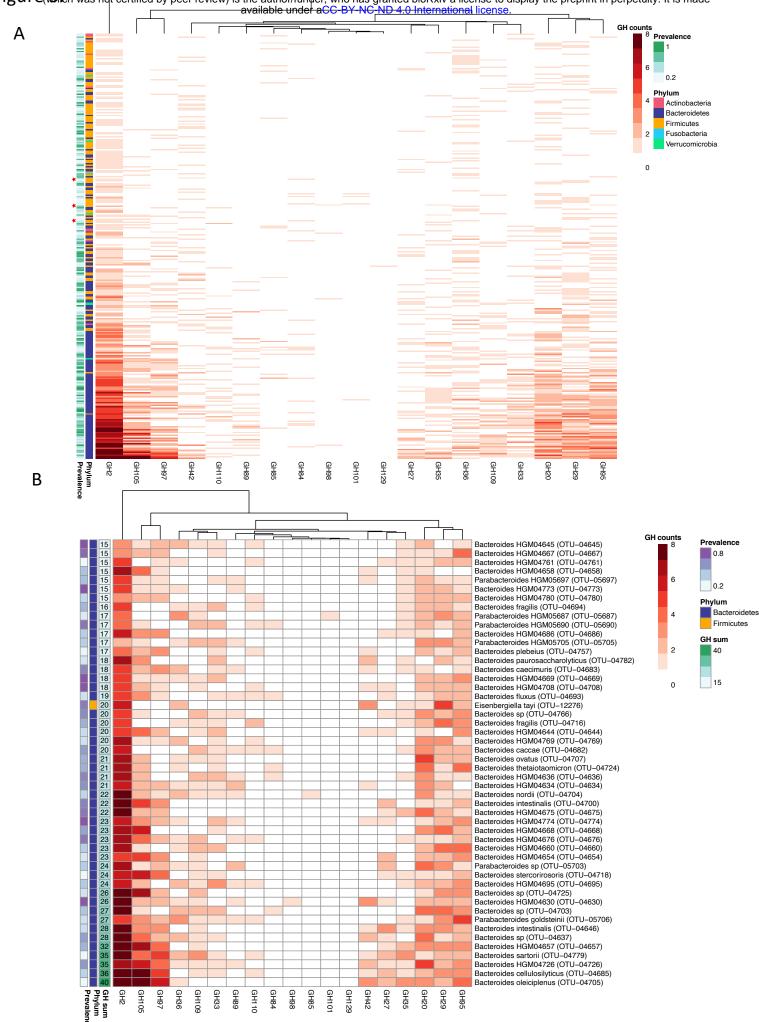



Figure (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Figure(watch was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

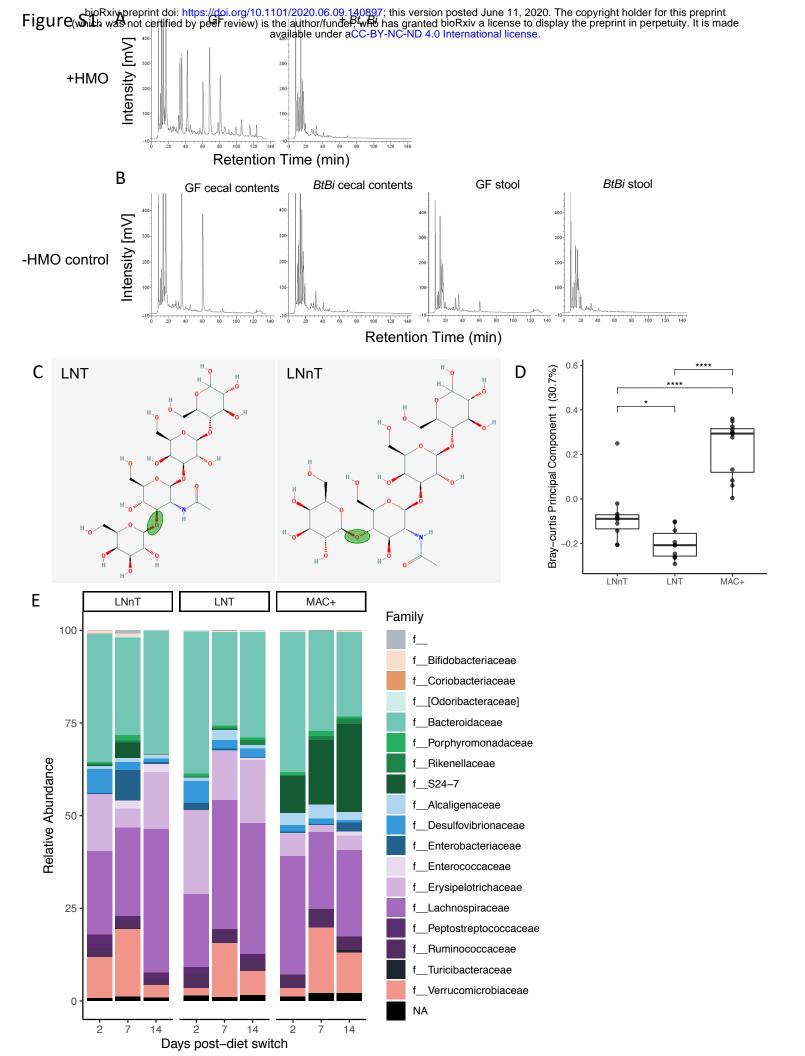
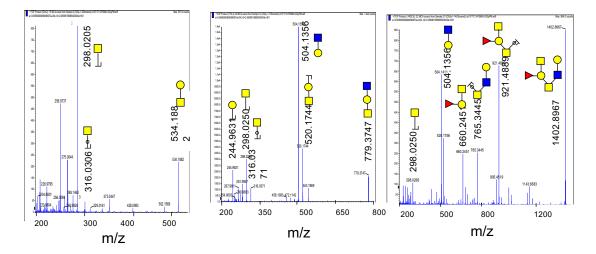
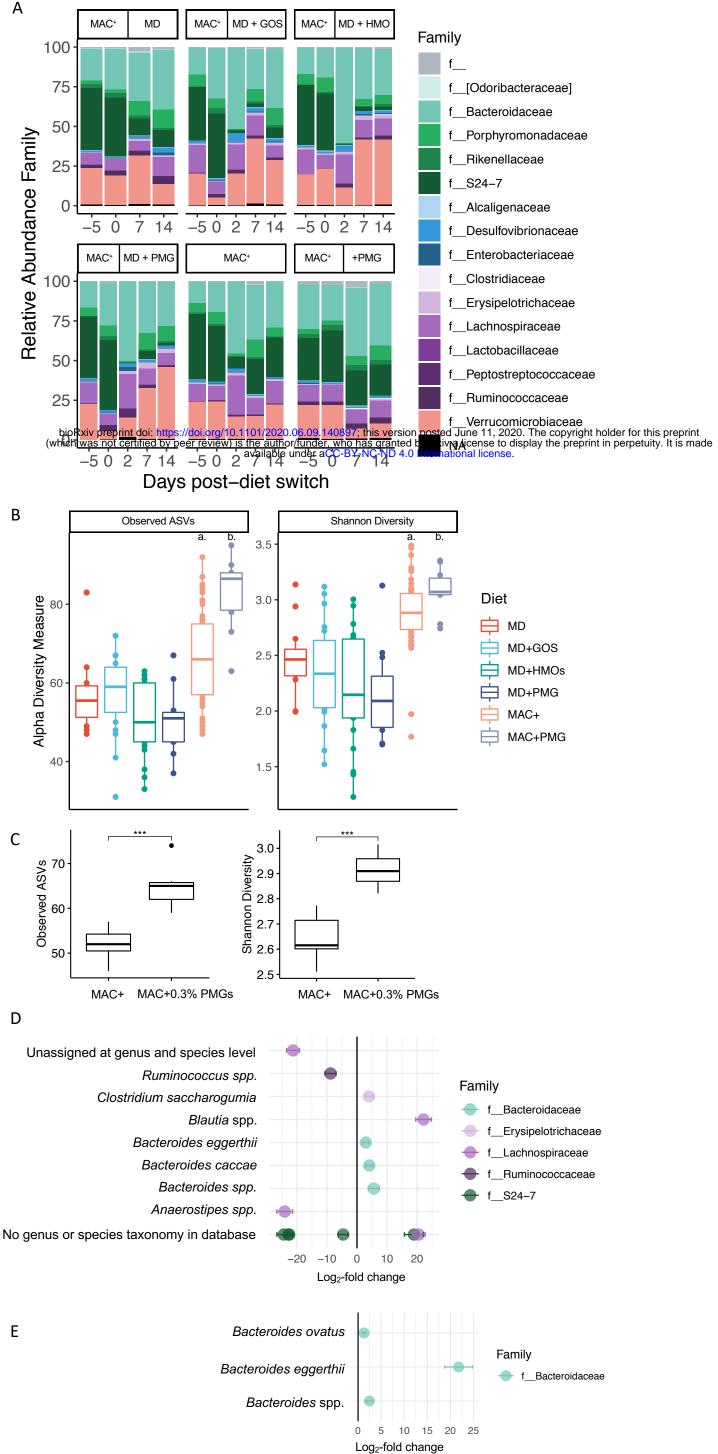
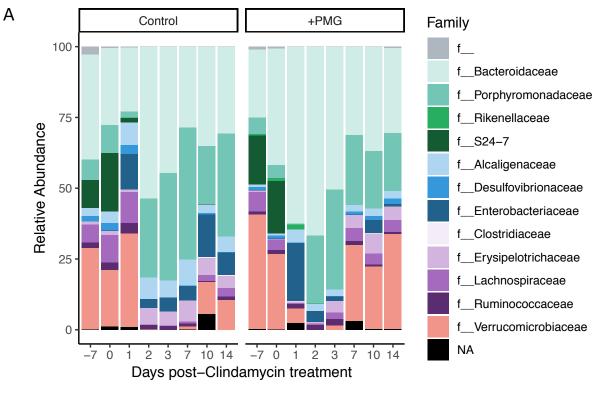




Figure (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.




```
Figure S3.
```


Е

Figure(where was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

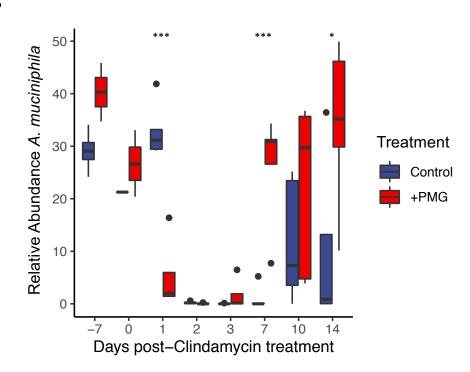
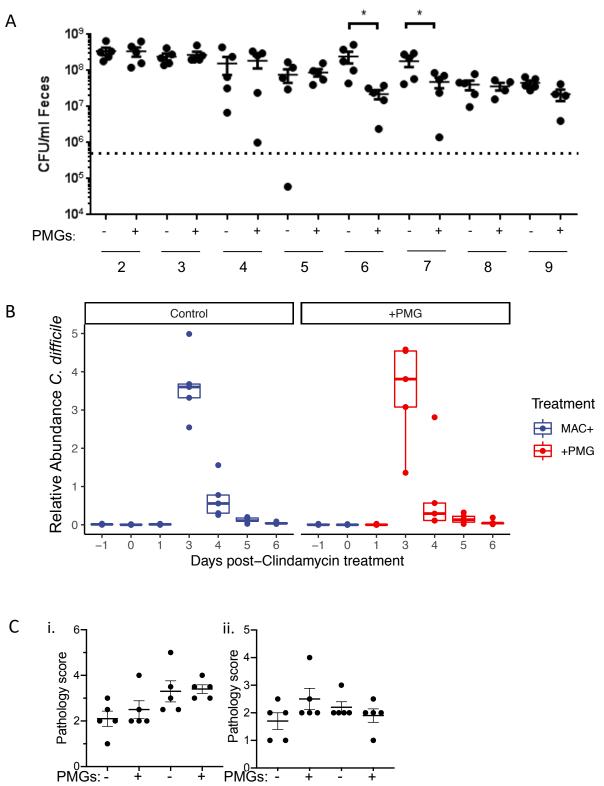
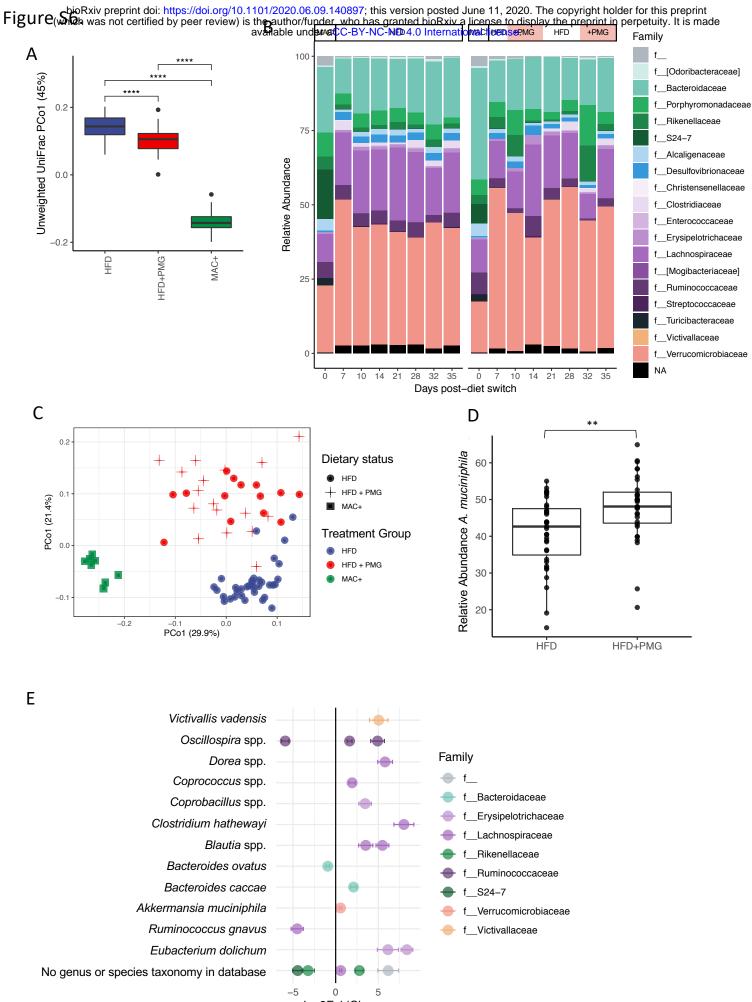
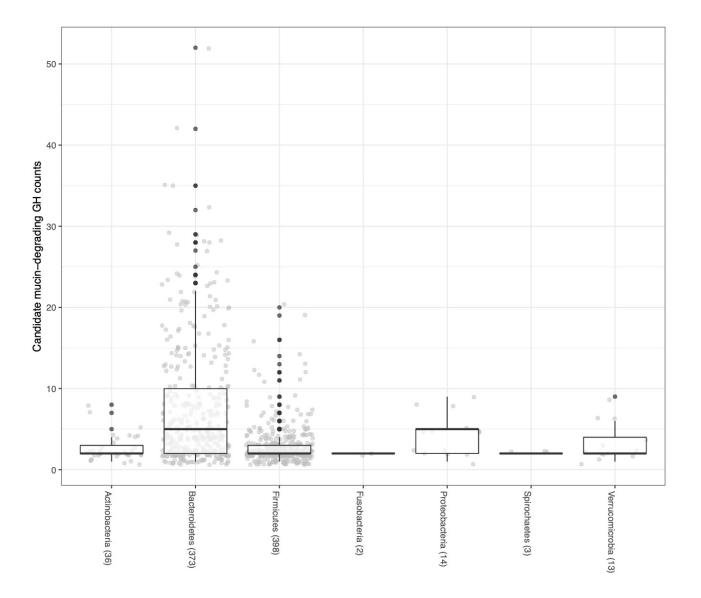




Figure (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.



MAC⁺

MAC⁺ MD MD

log2FoldChange

