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Abstract
Background The vast ecosystem of single-cell RNA-seq tools has until recently been plagued by an excess of diverging
analysis strategies, inconsistent �le formats, and compatibility issues between di�erent software suites. The uptake of 10x
Genomics datasets has begun to calm this diversity, and the bioinformatics community leans once more towards the large
computing requirements and the statistically-driven methods needed to process and understand these ever-growing
datasets.
Results Here we outline several Galaxy work�ows and learning resources for scRNA-seq, with the aim of providing a
comprehensive analysis environment paired with a thorough user learning experience that bridges the knowledge gap
between the computational methods and the underlying cell biology. The Galaxy reproducible bioinformatics framework
provides tools, work�ows and trainings that not only enable users to perform one-click 10x preprocessing, but also
empowers them to demultiplex raw sequencing from custom tagged and full-length sequencing protocols. The downstream
analysis supports a wide range of high-quality interoperable suites separated into common stages of analysis: inspection,
�ltering, normalization, confounder removal and clustering. The teaching resources cover an assortment of di�erent
concepts from computer science to cell biology. Access to all resources is provided at the singlecell.usegalaxy.eu portal.
Conclusions The reproducible and training-oriented Galaxy framework provides a sustainable HPC environment for users
to run �exible analyses on both 10x and alternative platforms. The tutorials from the Galaxy Training Network along with
the frequent training workshops hosted by the Galaxy Community provide a means for users to learn, publish and teach
scRNA-seq analysis.
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Key Points

• Single-cell RNA-seq has stabilised towards 10x Genomics datasets.
• Galaxy provides rich and reproducible scRNA-seq work�ows with a wide range of robust tools.
• The Galaxy Training Network provides tutorials for the processing of both 10x and non-10x datasets.

Background

Single-Cell RNA-seq and cellular heterogeneity. The continuing
rise in single cell technologies has led to previously unprece-
dented levels of analysis into cell heterogeneity within tissue
samples, providing new insights into developmental and dif-
ferentiation pathways for a wide range of disciplines. Gene
expression studies are now performed at a cellular level of res-
olution, which compared to bulk RNA-seq methods, allows re-
searchers to model their tissue samples as distributions of dif-
ferent expressions instead of as an average.
Pathways from Single-cell data. The various expression pro�les
uncovered within tissue samples infer discrete cell types which
are related to one another across an “expression landscape”.
The relationships between the more distinct pro�les are in-
ferred via distance-metrics or manifold learning techniques.
Ultimately, the aim is to model the continuous biological pro-
cess of cell di�erentiation from multipotent stem cells to dis-
tinct mature cell types, and infer lineage and di�erentiation
pathways between transient cell types [1].
Elucidating Cell Identity. Trajectory analysis which integrates
the up or down regulation of signi�cant genes along lineage
branches can then be performed in order to uncover the factors
and extracellular triggers that can coerce a pluripotent cell to
become biased towards one cell fate outcome compared to an-
other. This undertaking has created a new frontier of explo-
ration in cell biology, where researchers have assembled refer-
encemaps for di�erent cell lines for the purpose of fully record-
ing these cell dynamics and their characteristics in which to
create a global “atlas” of cells [2, 3].

Pitfalls and Technical Challenges

Sequencing sensitivity andNormalization. With each new protocol
comes a host of new technical problems to overcome. The �rst
wave of software utilities to deal with the analysis of single cell
datasets were statistical packages, aimed at tackling the issue
of “dropout events” during sequencing, which would manifest
as a high prevalence of zero-entries in over 80% of the feature-
count matrix. These zeroes were problematic, since they could
not be trivially ignored as their presence stated that either the
cell did not produce any molecules for that transcript, or that
the sequencer simply did not detect them. Normalisation tech-
niques originally developed for bulk RNA-seq had to be adapted
to accommodate for this uncertainty, and new ones were cre-
ated that harnessed hurdle models, data imputation via mani-
fold learning techniques, or by pooling subsets of cells together
and building general linear models [4].
Improvements in sequencing. With the downstream analysis
packages attempting to solve the dropouts via stochastic meth-
ods, the upstream sequencing technologies also aspired to solve

the capture e�ciency via new well, droplet, and �ow cytome-
try based protocols, all of which lend importance to the process
of barcoding sequencing reads.
In each protocol, cells are tagged with cell barcodes such

that any reads derived from them can be unambiguously as-
signed to the cell of origin. The inclusion of unique molecular
identi�ers (UMIs) are also employed to mitigate the e�ects of
ampli�cation bias of transcripts within the same cell. The de-
tection, extraction, and (de-)multiplexing of cell barcodes and
UMIs is therefore one of the �rst hurdles researchers encounter
when receiving raw FASTQ data from a sequencing facility.

The Burgeoning Software Ecosystem

Since its conception, several di�erent packages and many
pipelines have been developed to assist researchers in the anal-
ysis of scRNA-seq [5, 6]. The vast majority of these pack-
ages were written for the R programming language since many
of the novel normalisation methods developed to handle the
dropout events depended on statistical packages that were
primarily R-based [7]. Standalone analysis suites emerged
as the di�erent authors of these packages rapidly expanded
their methods to encapsulate all facets of the single-cell anal-
ysis, often creating compatibility issues with previous package
versions. The Bioconductor repository provided some much-
needed stability in this regard by hosting stable releases, but
researchers were still prone to building directly from reposi-
tory sources in order to reap the bene�ts of new features in the
upstream versions [8, 9].
Nonexchangeable Data Formats. Another issue was the prolif-
eration of the many di�erent and quickly evolving R-based
�le formats for processing and storing the data, such as
SingleCellExperiment as used by the Scater suite, SCSeq from
RaceID, and SeuratObject from Seurat [10, 11]. Many new pack-
ages would cater only towards one format or suite, leading to
the common problem that data processed in one suite could not
be reliably processed by methods in another. This incompati-
bility between packages fuelled a choice of one analysis suite
over another, or conversely required researchers to dig deeper
into the internal semantics of R S4 objects in order to manually
slot data components together [12]. These problems only accel-
erated the rapid development of these suites, leading to further
version instability. As a result of this analysis diversity, there
are many tutorials on how to perform scRNA-seq analysis each
oriented around one of these pipelines [13].
Error propagation and Analysis Uncertainty. Di�erent pipelines
produce di�erent results, where the stochastic nature of the
analyses means that any uncertainty in a crucial quality control
step upstream, such as �ltering or the removal of unwanted
variability, can propagate forward into the downstream sec-
tions to yield wildly di�erent results on the same data. This
uncertainty, and the statistically-driven methods to overcome
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them, leaves a wide knowledge gap for researchers simply try-
ing to understand the underlying dynamics of cell identity.

Rise of 10x Genomics

10x Launch. In 2015, 10x Genomics released their GemCode prod-
uct, which was a droplet-seq based protocol capable of se-
quencing tens of thousands of cells with an average cell quality
higher than other facilities [14]. This unprecedented level of
throughput steadily gained traction amongst researchers and
startups seeking to perform single-cell analysis, and thus 10x
datasets began to prevail in the �eld.
10x Analysis Software. 10x Genomics provided software that was
able to perform much of the pre-processing, and provided
feature-count matrices in a transparent HDF5-based format
which provided a means of e�cient matrix storage and ex-
change, and conclusively removed the restriction for down-
stream analysis modules to be written in R.
ScanPy, a popular alternative. The ScanPy suite [15], written in
Python, using its own HDF5-based AnnData format became a
valid alternative for analysing 10x datasets. The Seurat devel-
opers had similar aspirations and soon adopted the LOOM format,
another HDF5 variant. However, the popularity of ScanPy rose
as it began to integrate the methods of other standalone pack-
ages into its codebase, making it the natural choice for users
who wanted to achieve more without compromising on com-
patibility between di�erent suites [9].

Solutions in the Cloud

Accessible Science. As the size of datasets scaled, so did the
computing resources required to analyse them, both in terms
of the processing power and in storage. Galaxy is an open-
source biocomputing infrastructure that exempli�es the three
main tenets of science: reproducibility, peer review, and open-
access - all freely accessible within the web-browser [16]. It
hosts a wide range of highly-cited bioinformatics tools with
many di�erent versions, and enables users to freely create their
own work�ows via a seamless drag-and-drop interface.
Reproducible Work�ows. Galaxy can make use of Conda or Con-
tainers to setup tool environments in order to ensure that the
bioinformatics tools will always be able to run, even when the
library dependencies for a tool have changed, by building tools
under locked version dependencies and bundling them together
in a self-contained environment [17]. These environments pro-
vide a concise solution for the package version instability that
plagues scRNA-seq analysis notebooks, both in terms of repro-
ducibility and analysis �exibility. A user could keep the quality
control results obtained from an older version of ScanPy, whilst
running a newer ScanPy version at the clustering stage to reap
the bene�ts of the later improvements in that algorithm. By
allowing the user to select from multiple versions of the same
tool, and by further permitting di�erent versions of the tools
within a work�ow, Galaxy enables an unprecedented level of
free-�ow analysis by letting researchers pick and choose the
best aspects of a tool without worrying about the underlying
software libraries [18]. The burden of software incompatibility
and choice of programming language that plagued the scRNA-
seq analysis ecosystem before, are now completely alleviated
from the user.
User-driven Custom Work�ows. Analyses are not limited to one
pipeline either, as the datasets which are passed between tools
can easily be interpreted by a di�erent tool that is capable of

reading that dataset. In the case of scRNA-seq, Galaxy can
convert between CSV, MTX, LOOM and AnnData formats. This inter-
exchange of modules from di�erent tools further extends the
�exibility of the analysis by again letting the user decide which
component of a tool would be best suited for a speci�c part of
an analysis.
Training Resources. Galaxy also provides a wide range of learn-
ing resources, with the aim of guiding users step-by-step
through an analysis, often reproducing the results of published
works. The teaching and training materials are part of the
Galaxy Training Network (GTN), which is a worldwide collabo-
rative e�ort to produce high-quality teaching material in order
to educate users in how to analyse their data, and in turn to
train others of the same materials via easily deployable work-
shops backed by monthly stable releases of the GTN materials
[19]. Trainingmaterials are provided on a wide variety of di�er-
ent topics, and workshops are hosted regularly, as advertised
on the Galaxy Events web portal. The GTN has grown rapidly
since its conception and gains new volunteers every year who
each contribute and coordinate training and teaching events,
maintain topic and subtopics, translate tutorials into multiple
languages, and provide peer review on new material [20].

Methods

Stable Work�ows in Galaxy. The analysis of scRNA-seq within
Galaxy was a two-pronged e�ort concentrated on bringing
high quality single-cell tools into Galaxy, and providing the
necessary work�ows and training to accompany them. Asmen-
tioned in the previous section, this e�ort needed to overcome
incompatible �le format issues, unstable packages due to rapid
development, and needed to establish a standardised basis for
the analysis.
Tutorials. The tutorials are split into two main parts as out-
lined in Figure 1: �rst, the pre-processing stage which con-
structs a count matrix from the initial sequencing data; sec-
ond, the cluster-based downstream analysis on the count ma-
trix. These stages are very di�erent from one another in terms
of their information content, since the pre-processing stage re-
quires the researcher to be more familiar with wetlab sequenc-
ing protocols than your average bioinformatician would nor-
mally know, and the downstream analysis stage requires the
researcher to be familiar with statistics concepts that a wet-
lab scientist might not be too familiar with. The tutorials are
designed to broadly appeal to both the biologist and the statis-
tician, as well as complete beginners to the entire topic.

Pre-processing Work�ows

The pre-processing scRNA-seq materials tackle the two most
common use-cases that researchers will encounter when they
�rst begin the �eld: processing scRNA-seq data from 10x Ge-
nomics, and processing data generated from alternative pro-
tocols. For instance, microwell-based protocols have been
known to yield more features and display lower levels of
dropouts compared to 10x, and so we accommodate for them
by providing a more customizable path through the pre-
processing stage [21].
Barcode Extraction. Before the era of 10x Genomics, scRNA-seq
data had to be demultiplexed, mapped, and quanti�ed. The de-
multiplexing stage entails an intimate knowledge of cell bar-
codes and Unique Molecular Identi�ers (UMIs) which are pro-
tocol dependent, and expects that the bioinformatician knows

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2020. ; https://doi.org/10.1101/2020.06.06.137570doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.06.137570
http://creativecommons.org/licenses/by/4.0/


4 | GigaScience, 2020, Vol. 00, No. 0

Figure 1. Themain stages of single-cell analysis, separated broadly into the up-
per and lower stages of pre-processing and downstream analysis, respectively.
The upper part illustrates the two main routes to generating a count-matrix
from sequencing data; via one-click quanti�cation solutions, or through man-
ual demultiplexing. The lower part describes the four main stages required
to perform cluster-based analysis from the count-matrix, through �ltering,
normalisation, confounder removal, and embedding.

exactly where and how the data was generated. One common
pitfall at this very �rst stage is estimating how many cells to
expect from the FASTQ input data, and this requires three cru-
cial pieces of information: which reads contain the barcodes (or
precisely, which subset of both the forward and reverse reads
contains the barcodes); of these barcodes, which speci�c ones
were actually used for the analysis; and how to resolve barcode
mismatches/errors.
Barcode Estimation. Naive strategies involve using a known bar-
code template and querying against the FASTQ data to pro�le the
number of reads that align to a speci�c barcode, often employ-
ing ’knee’ methods to estimate this amount [22]. However,
this approach is not robust, since certain cells are more likely
to be over-represented compared to others, and some cell bar-
codes may contain more unmappable reads compared to others,
meaning that the metric of higher library read depth is not nec-
essarily correlated with a better-de�ned cell. Ultimately, the
bioinformatician must inquire directly with the sequencing lab
as to which cell barcodes were used, as these are often not spe-
ci�c to the protocol but to the technician who designed them,
with the idea that they should not align to a speci�c reference
genome or transcriptome.
One-click Pre-processing
Quanti�cation with Cell Ranger. 10x Genomics simpli�ed the
scRNA package ecosystem by using a language independent �le
format, and streamlining much of the barcode particularities

with their Cell Ranger pipeline, allowing researchers to focus
more on the internal biological variability of their datasets [23].
Quanti�cation with STARsolo. The pre-processing work�ow (ti-
tled "10X StarSolo Work�ow") in Galaxy uses RNASTARsolo util-
ity as a drop-in replacement for Cell Ranger, because not only
is it a feature update of the already existing RNA STAR tool in
Galaxy, but because it boasts a ten-fold speedup in comparison
to Cell Ranger and does not require Illumina lane-read informa-
tion to perform the processing [24, 25].
Other Approaches. The pre-processing work�ows for these
“one-click” solutions consume the same datasets and yield
approximately the same count matrices by following simi-
lar modes of barcode discovery and quanti�cation. Within
Galaxy, there is also Alevin (paired with Salmon) and scPipe
which can both also perform the necessary demultiplexing,
(alignment-free) mapping, and quanti�cation stages in a sin-
gle step [26, 27, 28].
Flexible Pre-processing
CELSeq2 Barcoding. The custom pre-processing work�ow (ti-
tled "CELSeq2: Single Batch mm10") is modelled after the CEL-
seq2 protocol using the barcoding strategies of the Freiburg
Max-Planck Institute laboratory as its main template, but the
work�ow is actually �exible to accommodate any droplet or
well-based protocol such as SMART-seq2, and Drop-seq [29].
Manual Demultiplexing and Quanti�cation. The training picto-
graphically guides users through the concepts of extracting cell
barcodes from the protocol, explains the signi�cance of UMIs
in the process of read deduplication with illustrative examples,
and instructs the user in the process of performing further
quality controls on their data during the post-mapping process
via RNA STAR and other tools that are native to Galaxy.
Training theUser. At each stage, the user’s knowledge is queried
via question prompts and expandable answer box dialogs, as
well as helpful hints for future processing in comment boxes,
all written in the transparent Markdown speci�cation devel-
oped for contributing to the GTN.

Downstream Work�ows

Common Stages of Analysis. The downstream modules are de-
�ned by the �ve main stages of downstream scRNA-seq anal-
ysis: �ltering, normalisation, confounder removal, clustering,
and trajectory inference. There are three work�ows to aid in
this process (two of which are shown in Figure 2), each sport-
ing a di�erent well-established scRNA-seq pipeline tool.
Quality Control with Scater. The Scater pipeline follows a
visualise-�lter-visualise paradigm which provides an intuitive
means to perform quality control on a count matrix by use of
repeated incremental changes on a dataset through the use of
PCA and library size based metrics [30]. Once this pre-analysis
stage is complete, the full downstream analysis (comprising
the �ve stages mentioned above) can be performed by work-
�ows based on the following suites: RaceID and ScanPy.
DownstreamAnalysiswith theRaceID Suite. RaceID was developed
initially to analyse rare cell transcriptomes whilst being ro-
bust against noise, and thus is ideal for working with smaller
datasets in the range of 300 to 1000 cells. Due to its complex
cell lineage and fate predictions models, it can also be used on
larger datasets with some scaling costs.
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Downstream Analysis with the ScanPy Suite. ScanPy was devel-
oped as the Python alternative to the innumerable R-based
packages for scRNA-seq which was the dominant language for
such analyses, and it was one of the �rst packages with na-
tive 10x genomics support. Since then it has grown substan-
tially, and has been re-implementing much of the newer R-
based methods released in BioConductor as “recipe” modules,
thereby providing a single source to perform many di�erent
types of the same analysis.
The work�ows derived from both these suites emulate the

�vemain stages of analysis mentioned previously, where �lter-
ing, normalisation, and confounder removal are typically sep-
arated into distinct stages, though sometimes merged into one
step depending on the tool.
Filtering
Cell and Gene Removal. During the �ltering stage, the initial
count matrix removes low-quality or unwanted cells using
commonly used parameters such as minimum gene detection
sensitivity and minimum library size, and low-quality genes
are also removed under similar metrics, where the minimum
number of cells for a gene to be included is decided. The Scater
pre-analysis work�ow can also be used here to provide a PCA-
based method of feature selection so that only the highly vari-
able genes are left in the analysis.
Disadvantages of Filtering. There is always the danger of over-
�ltering a dataset, whereby setting overzealous lower-bound
thresholds on gene variability, can have the undesired e�ect of
removing essential housekeeping genes. These relatively uni-
formly expressed genes are often required for setting a baseline
to which the more desired di�erentially expressed genes can
be selected from. It is therefore important that the user �rst
performs a naive analysis and only later re�ne their �ltering
thresholds to boost the biological signal.
Normalisation
Library Size Normalisation. The normalisation step aims to re-
move any technical factors that are not relevant to the analysis,
such as the library size, where cells sharing the same identity
are likely to di�er from one another more by the number of
transcripts they exhibit, than due to more relevant biological
factors.
Intrinsic Cell Factors. The �rst and foremost is cell capture e�-
ciency, where di�erent cells produce more or less transcripts
based on the ampli�cation and coverage conditions they are
sequenced in. The second is the presence of dropout events
which manifest as a prevalence of “zeroes” in the �nal count
matrix. Whether a “zero” is imputable to the lack of detection
of an existing molecule or to the absence of the molecule in the
cell is uncertain. This uncertainty alone has led to a wide se-
lection of di�erent normalisation techniques that try to model
this expression either via hurdle models, or imputing the data
via manifold learning techniques, or working around the issue
by pooling subsets of cells together [31].
In this regard, both the RaceID and ScanPy work�ows of-

fer many di�erent normalisation techniques, and users are en-
couraged to take advantage of the branching work�ow model
of Galaxy to explore all possible options.
Confounder Removal
Regression of Cell Cycle E�ects. Other sources of variability stem
from unwanted biological contributions known as confounder
e�ects, such as cell cycle e�ects and transcription. Depending
on what stage of the cell cycle a cell was sequenced at, two cells
of the same type might cluster di�erently because one might
have more transcripts due to it being in the M-phase of the cell

Figure 2. Downstream analysis work�ows as shown in the Galaxy Work�ow
Editor for (top) RaceID and (bottom) ScanPy, each displaying modules symbol-
izing the �ve main stages of analysis.

cycle. Library sizes notwithstanding, it is the variability in spe-
ci�c cell cycle genes that can be the main driving factor in the
overall variability. Thankfully, these e�ects are easy to regress
out, and we replicate an entire standalone ScanPy work�ow
dedicated to detecting and visualising the e�ects based on the
original notebook [32].
Transcriptional Bursting. The transcription e�ects are harder to
model, as these are semi-stochastic and are as of yet still not
well understood. In bulk RNA-seq the expression of genes un-
dergoing transcription are averaged to give “high” or “low”
signals producing a global e�ect that gives the false impres-
sion that transcription is a continuous process. The reality is
more complex, where cells undergo transcription in “bursts” of
activity followed by periods of no activity, at irregular intervals
[33]. At the bulk level these discrete processes are smoothed to
give a continuous e�ect, but at the cell level it could mean that
even two directly adjacent cells of the same type normalised to
the same number of transcripts can still have di�erent levels
of expression for a gene due to this process. This is not some-
thing that can be countered for, but it does educate the users
in which factors they can or cannot control in an analysis, and
how much variability they can expect to see.
Clustering and Projection
Dimension Reduction and Clustering. Once a user has obtained a
count matrix they are con�dent with, they are then guided
through the process of dimension reduction (with choice of dif-
ferent distance metrics), choosing a suitable low-dimensional
embedding, and performing clustering through commonly-
used techniques such as k-means, hierarchical, and neighbour-
hood community detection. These complex techniques are il-
lustrated in layman’s terms through the use of helpful images
and community examples. For example, the GTN ScanPy tu-
torial explains the Louvain clustering approach[34] via a stan-
dalone slide deck to assist in the work�ow [35].
Commonly-used Embeddings. The clustering and the cluster in-
spection stages are notably separated into distinct utilities here,
with the understanding that the same initial clustering can ap-
pear dissimilar under di�erent projections, e.g. t-distributed
Stochastic Network Embedding (tSNE) against Uniform Mani-
fold Approximation and Projection (UMAP) [36, 37]. Ultimately
the user is encouraged to play with the plotting parameters to
yield the best looking clusters.
Static Plots or Interactive Environments. Cluster inspection tools
are available that allow users to easily generate static plots
tailored to pipeline-speci�c information as originally de�ned
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by the software package authors. However, the AnnData and
LOOM speci�cations store this map projection data separately,
enabling the use of a plethora of possible plotting tools, in-
cluding HTML5-based interactive visualisations, such as cellx-
gene[38], that permit on-demand querying and rendering of in-
dividual cell features without having to generate static images.
A collection of these Galaxy interactive tools can be accessed
at the website live.usegalaxy.eu. Though these tools are ex-
cellent at dynamically displaying map projections, especially
3-dimensional ones, further computation must be performed
to complete a full pseudotime analysis.
Pseudotime Trajectory Analysis
Inferring Developmental Pathways. The cell pseudotime series
analysis is often referred to as the trajectory inference stage,
since cells are ordered along a trajectory to re�ect the continu-
ous changes of gene expression along a developmental pathway
under the assumption that the cells are transitioning from one
pluripotent type to another less-potent type.
Pseudotime Techniques. For the trajectory inference stage, there
is the Partition-based Graph Abstraction (PAGA) technique
championed by ScanPy [39], and there is also the FateID and
StemID packages for the RaceID work�ow [40]. The former
provides a level of graph abstraction to the datasets in order to
infer a community graph structure, which it can use to learn
the shape of the data and infer pathways between neighbour-
hoods. The latter is more intuitive, in that it constructs a min-
imal spanning tree of related clusters that infer lineage, and
cell fate decisions that can be explored by querying branches
in the tree, as a function of the genes which are up or down
regulated along the currently explored pathway. The statisti-
cal strength and signi�cance of each pathway guides the user
alongmore valid trajectories that would more accurately re�ect
the biological variation occurring within transitioning cells.
Sharing Reference Maps
The insights and novel cell types discovered in these analyses
can also be integrated into the Human Cell Atlas portal [41],
which is an initiative that aims to classify unique or rare cell
types as well as their transitive properties in order to build a
comprehensive map of cells that can be used to investigate the
various di�erentiation pathways of multipotent stem cells in
the human body.

Galaxy Training Network

Tutorial Hierarchy. Tutorials in the GTN are grouped by topic,
e.g. Variant Calling, Transcriptomics, Assembly, etc. These tu-
torials can also declare prerequisites, so that users can review
required concepts from previous tutorials, e.g. quality con-
trol checks from bulk RNA-seq still being used in scRNA-seq.
Not only does this allow users to derive a clear route through
the range of training materials, but it also empowers them to
choose their own learning path through the network of topics.
In particular for scRNA-seq, users can start their training from
pre-processing tutorials and continue till downstream analy-
sis.
Tutorial Structure. Tutorials usually consist of a hands-on work-
�ow that guides the user through an analysis with Galaxy util-
ising a step-by-step approach, and is often accompanied with
a slide deck that either serves to explain standalone concepts
more concisely, or is used during workshops and trainings as a
way to introduce the user to the topic. In an e�ort to maintain
reproducibility in science, all tutorials require example work-
�ows, and all materials needed to run the work�ows and tu-

Figure 3. Galaxy Training Network hosting a comprehensive suite of tools,
trainings, and work�ows to perform scRNA-seq analysis.

torials are hosted for free with open access at Zenodo with a
permanent DOI tag.

User-driven Contribution. The user contributions are the heart of
the GTN community, and options are given to appeal to di�er-
ent levels of contribution. At the casual level, each tutorial has
at the bottom an anonymous feedback form that rates the qual-
ity of the tutorial and asks for hints on what could be improved,
which the tutorial authors can then act on. At the more eager
level, users can contribute directly to the material hosted at the
GitHub repository using the approachable GTN Markdown for-
mat, which further empowers contributors to not only adapt
existing material, but to also write tutorials in their own spe-
cialist topics. The GitHub code reviews paired with the plain-
text GTN Markdown format, facilitate easy peer-review of tu-
torial topics by using standard di� utilities.

Galaxy Subdomains and Environments

Subdomains Encapsulate Relevant Tools. The Galaxy tools and the
GTN are further tied together by Galaxy subdomains, that bet-
ter serve the various topics within their own self-contained
environments. These complement the training materials by
providing only the necessary Galaxy tools in order to not trou-
ble the user with unrelated tools that might not be so relevant
to the material, e.g. Variant Analysis tools are not included
in an scRNA-seq environment. This also has the bene�t that
smaller more specialised Galaxy instances can be packaged and
deployed, avoiding the overhead of presenting the entire Galaxy
tool repertoire.

Single Cell and Human Cell Atlas. In this light, the singlecell.
usegalaxy.eu subdomain hosts the entirety of the single-cell
materials, tools, work�ows, and single-cell related events. A
table containing the full list of tools in the subdomain, as
well as their application to the previously mentioned stages of
scRNA-seq analysis is given in Supplemental Table 1. Human
Cell Atlas community members, led by the European Bioinfor-
matics Institute and the Wellcome Sanger Institute have their
own subdomain at humancellatlas.usegalaxy.eu [42], provid-
ing access to widely applicable tools including ScanPy, Seurat
andMonocle3 [43], but also specialist tools such as those for cell
type prediction (including scmap [44], scPred [45] and Garnett
[46]).
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Analysis in Galaxy work�ows. The tools outlined in the Down-
stream Work�ows subsection expose the full set of parameters
of their underlying program suites, in order to serve the same
level of customisation that the users would expect when run-
ning a notebook-based analysis. This suits the needs of most
researchers, but some are more used to processing the data di-
rectly in a language-driven notebook environment.
Galaxy Interactive Environments (GIE). For the more computer
programming-oriented users, Galaxy hosts interactive envi-
ronments at live.usegalaxy.eu which allows users to spin up
their own Jupyter [47] or RStudio [48] notebooks whilst har-
nessing the same cloud compute infrastructure. Here, users
can import their Galaxy datasets, process them in their own
desired manner, and export them back into their histories in a
similar way to how datasets are treated in work�ows.
List of GIEs. In addition to interactive notebooks, the GIE also
boasts a selection of other interactive tools such as the pre-
viously mentioned cellxgene featured in Figure 3, as well as
SPARQL a query language interface, BAM/VCF IOBIO a �le format
analysis viewer [49], EtherCalc a web spreadsheet [50], PHINCH
ametagenomes visualiser [51],Wallace a speciesmodelling plat-
form [52], WILSON an omics visualiser [53], IDE for materials
science, Panoply a netCDF viewer [54], HiGlass a Hi-C data vi-
sualiser [55], and even an XFCE Virtual Desktop environment
[56].

Discussion

Growth of scRNA TrainingMaterials. The single-cell materials on
the GTN are growing substantially every year, with at �rst
only one pre-processing tutorial in 2018, one downstream tu-
torial at the start of 2019, and at the current time of writing
three pre-processing tutorials and three downstream analysis
work�ows, further accompanied by slide decks and interactive
visualisations. Single-cell Galaxy workshops based on these
materials have been given at the Single-Cell RNAseq Training
Course 2018 at the Earlham Institute, the 2019 Galaxy Commu-
nity Conference (GCC2019), within the Freiburg MeInBio con-
sortium, and at the Association of Biomolecular Resource Facil-
ities (ABRF). The trainings also lend themselves seamlessly to
online Webinars which have proved useful during the COVID-
19 lockdown period.
Reproducible Cloud-based Analysis. The advent of scRNA-seq
analysis within the Galaxy framework re-echoes the e�orts
to standardise the analysis of scRNA-seq with the promise
of presenting reproducible research. The burden of compu-
tation on the ever-growing size of the datasets is shifted to
the cloud computing resources, and as scRNA sequencing tech-
nology scales, more researchers are likely to migrate towards
cloud-based solutions in order to reap the bene�ts of supe-
rior computing abilities and storage capabilities. Ultimately,
the Galaxy framework abstracts the user from the many non-
trivial technicalities of the analysis, and exposes them to a leg-
ible interface of tools that they can pick and choose from.
Longevity and Accessibility. The community regularly comes to-
gether during scheduled code festivals (CoFests) or hackathons
to review, contribute, and actively maintain the training mate-
rials. The number of community contributions have steadily
increased over the last four years [16], and this growing trend
ensures that the Galaxy resources will stay current and adapt to
changes in scRNA sequencing technology and analysis methods
if necessary. The GTN also makes use of language translation
tools to provide international interpretations of the training

materials in order to reach a wider more internationally diverse
audience.
Future of scRNA-seq in Galaxy. The capacity for growth of scRNA-
seq in Galaxy is limitless, with the continuing acquisition of
new single-cell tools being incorporated into Galaxy work-
�ows, and the expanding GTN community bringing more
expert-level contributions to the training material. The ves-
tiges of incompatible libraries and in-exchangeable �le for-
mats are unburdened from the user as the epoch of web-based
tools and strong biocomputing frameworks become more dom-
inant. From the �rst data upload to the �nal �nishing touches
of a customized work�ow, the single cell Galaxy portal upholds
the ideals of open science by supporting the user all the way
from the initial training to the �nal publication, where they
can export and share their results with a single click.

Availability of source code and requirements
(optional, if code is present)

Lists the following:
• Project name: Single-Cell RNA-seq Analysis in Galaxy
• Project home page: singlecell.usegalaxy.eu
• Operating system(s): Web-based, Platform independent
• License: GNU GPL v3 Any restrictions to use by non-
academics: e.g. licence needed

Availability of supporting data and materials

All datasets used in the GTN are independently hosted at Zen-
odo and are easily �ndable under the tag “Galaxy Training Net-
work”, as well as being directly hosted within the Galaxy Data
Libraries on the UseGalaxy.eu server.
The tool wrappers which serve as the functional compo-

nents of the many di�erent single-cell analysis tools are
hosted at the GitHub Tools-IUC repository, as well as at the
Galaxy Toolshed under the category of “Transcriptomics”.
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