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Abstract 

Membrane solubilization by sodium dodecyl sulfate (SDS) is indispensable for many established biotech-

nological applications, including viral inactivation and protein extraction. Although the ensemble thermo-

dynamics have been thoroughly explored, the underlying molecular dynamics have remained inaccessi-

ble, owing to major limitations of traditional measurement tools. Here, we integrate multiple advanced 

biophysical approaches to gain multi-angle insight into the time-dependence and fundamental kinetic 

steps associated with the solubilization of single sub-micron sized vesicles in response to SDS. We find 

that the accumulation of SDS molecules on in-tact vesicles triggers biphasic solubilization kinetics com-

prising an initial vesicle expansion event followed by rapid lipid loss and micellization. Our findings sup-

port a general mechanism of detergent-induced membrane solubilization and we expect the framework 

of correlative biophysical technologies presented here will form a general platform for elucidating the 

complex kinetics of membrane perturbation induced by a wide variety of surfactants and disrupting 

agents.  
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Introduction 
 

The solubilization of lipid membranes by the anionic detergent sodium dodecyl sulfate (SDS) has found 

vast utility across the pharmaceutical and biological sectors with far-reaching applications including rapid 

cell lysis, protein extraction and viral inactivation[1-3]. However, despite decades of empirical use, access-

ing the molecular mechanisms through which SDS leads to membrane solubilization has remained a 

major experimental challenge, owing to the shortcomings of technologies which rely on averaging over 

the entire process[4, 5]. 

 

Initial steady-state thermodynamic experiments reported the partitioning of SDS into lipid membranes, 

illuminating several key factors, including the detergent: lipid molar ratio, surface pressure, electrostatic 

forces and temperature, that modulate the initial interaction[6, 7].  These experiments also indicated that 

the SDS-membrane partition coefficient is similar to those obtained for non-ionic detergents of identical 

chain lengths[7].  The kinetics of the following disruption process have also been investigated at the en-

semble level using fluorescence strategies, whereby the emission intensity of small fluorescent mole-

cules encapsulated into vesicles increased due to dye diffusion across the perturbed bilayer[8]. Here, 

vesicle leakage was characterized by a single exponential rate of release with the rate constant increas-

ing with SDS concentration according to a power-law dependence. Differential scanning calorimetry has 

also been employed to examine the temperature-dependence and formation of mixed detergent-lipid 

micelles at the end-point of the solubilization process, revealing that membrane degradation is related to 

hydrophobic interactions between the SDS molecule and lipids[9].  

 

While it is abundantly clear from such studies that SDS influences the membrane structure, analyses 

have been constrained to the identification of structural changes in the ensemble [6, 10, 11], and while such 

data reveals valuable information about the mean average state of the interaction, dynamic heterogeneity 

within the sample, in addition to the presence of rapid transient intermediate molecular-level events re-

mains obscure. Nevertheless, the combination of ensemble-based approaches have broadly alluded to 

a three-step model of solubilization[12]. In step one, detergent monomers saturate the membrane, leading 
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to the co-existence of mixed detergent-lipid micelles within the intact membrane in step two. In step three, 

solubilization is achieved via the fragmentation and release of mixed detergent-lipid micelles into the 

solution. However, whether these steps take place sequentially or if they are interconnected remains an 

open question, and uncertainties left on the molecular mechanisms are due to a lack of techniques that 

can capture the time-dependent dynamics of the interaction across the entire solubilization window.  

 

While protocols from the Cryo-TEM and NMR communities have provided important structural insights 

into membrane conformations in response to SDS[13, 14], neither report on the underlying time-dependent 

dynamics. Conversely, isothermal calorimetry and turbidity measurements have revealed the relative 

detergent: lipid stoichiometry ratios required to achieve complete solubilization, but neither quantify 

changes within the membrane architecture[15-17].  

 

Molecular dynamics simulations have gone some way to bridging this gap by enabling discrete steps of 

the initial interaction, including structural reorganizations in the membrane[18, 19] and micellization[20], to 

be followed over several tens of nanoseconds. More generally, these studies also support an interaction 

between the surfactant and lipid head groups which leads to the penetration of SDS into the membrane, 

in turn increasing the bilayer thickness and lipid tail order. Hydrophilic interactions between the sulfate 

and phosphocholine groups, and hydrophobic interactions between hydrocarbon surfactant and lipid 

chains also gives rise to a tight packing density and ordered chain alignment. Additionally, optical mi-

croscopy based on the phase contrast and fluorescence imaging of giant unilamellar vesicles also indi-

cate changes in membrane curvature after SDS incorporation, closely followed by the stress-induced 

formation of macropores and fragmentation[21]. At SDS concentrations lower than the critical micelle con-

centration (CMC), transmission microscopy experiments also indicate the homogeneous distribution of 

SDS monomers into the membrane, followed by the gradual formation of mixed micelles and at concen-

trations around the CMC, local instabilities in the vesicle architecture are introduced across the struc-

ture[22]. Unfortunately, these microscopy tools are limited to a spatial resolution of ~250 nm and cannot 

access the solubilization dynamics of vesicles which are smaller than the optical diffraction limit and 
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which have high radii of curvature. Moreover, conventional microscopy tools can only measure macro-

scopic changes in membrane structure and packing density, and provide little structural and mass infor-

mation on the nanoscale, motivating the need for the multi-disciplinary approach outlined here to gain 

molecular-level insight into this important biological problem.  

 

To overcome the hurdle posed by the optical diffraction limit, we recently reported a structural imaging 

method based on single-vesicle Förster resonance energy transfer (svFRET) to study rapid organiza-

tional changes in sub-micron sized vesicles in response to the non-ionic detergent Triton-X 100[23]. A key 

benefit of the svFRET approach is the ability to access time-dependent solubilization kinetics from single 

immobilized vesicles with millisecond time resolution, bypassing the ensemble average.  

 

Here, we combine the svFRET technology with steady-state fluorescence spectroscopy, dynamic light 

scattering (DLS), liquid-based atomic force microscopy (AFM) and quartz-crystal microbalance with dis-

sipation monitoring (QCM-D), to reveal the fundamental solubilization steps and kinetics associated with 

sub-micron sized and highly curved vesicles in response to SDS, without interference from vesicle fusion. 

We unveil the solubilization mechanism as a three step process in which detergent accumulation on the 

LUV surface precedes biphasic solubilization kinetics consisting of an initial expansion of the vesicle, 

followed by rapid lipid loss. The capability of discriminating between solubilization steps and kinetic pa-

rameters is a novel finding only afforded by the implementation of these correlated approaches, and we 

expect the presented strategy should assist in the effective and efficient fine-tuning of detergent-induced 

solubilization protocols, and for exposing the multifaceted dynamics of membrane perturbation caused 

by a broad range of molecular disruptors.  

 

Results and Discussion    

LUVs composed of 98.8% 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1% 1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine-N-(biotinyl) (Biotin-PE), 0.1 % Dil (svFRET donor) and 0.1 % DiD 

(svFRET acceptor) were prepared as detailed in the Methods section and are schematically illustrated 

in Figure S1. DMPC is a synthetic phospholipid used widely for the preparation of vesicles and supported 
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lipid bilayers[24], and is used here to provide a structural framework. Dil and DiD are lipophilic cyanine 

derivatives and when a molar ratio per vesicle of 1:1 was used, the average spatial separation between 

them was close to their Förster radius of 53 Å, corresponding to an average apparent FRET efficiency 

(EFRET) of ~0.5. As we previously reported[23], this enables nanoscopic changes in the average inter-dye 

distance to be measured by observable changes in EFRET in either direction.  

The formation of ~200 nm-sized LUVs was confirmed by DLS (Figure S2), and their steady-state fluo-

rescence emission was recorded as a first step to characterize their interaction with SDS. We note that 

the hydrodynamic radii and ensemble EFRET values obtained from the LUVs remained largely invariant 

over the course of several weeks, pointing towards their long-term stability under the buffer conditions 

used (Figure S3). As the concentration of SDS was increased towards the CMC, a progressive increase 

in Dil emission, concurrent with a progressive decrease in DiD emission was observed, giving rise to an 

overall decay in EFRET (Figure 1a), from an initial value of 0.50 ± 0.02 (± SEM) in the absence of SDS to 

0.09 ± 0.02 in the presence of 4 mM. A Hill model applied to the EFRET data indicates a half-maximal 

concentration constant of 0.92 ± 0.16 mM with a Hill coefficient of 1.25 ± 0.20. The time-dependent 

increase in Dil emission, immediately after injection of SDS followed bi-exponential kinetics, where the 

amplitude weighted average time-constant progressively decreased from 28.2 ± 7.6 s in the presence of 

1 mM SDS to 4.51 ± 0.48 s at 4 mM (Figure S4 and Table S1). Taken together, these data suggest that 

the addition of SDS at concentrations approaching the CMC introduces structural changes in the vesicle 

architecture, composition, or both, that results in a ~47 % increase in the average spatial separation 

distance between the fluorophores.  
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Figure 1. SDS vesicle interactions reported using ensemble FRET spectroscopy and dynamic 

light scattering. (a) FRET efficiency of Dil/DiD labeled vesicles versus SDS. The solid line represents a 

Hill model fit. Inset: the corresponding variation in fluorescence spectra. (b) DLS size distributions ob-

served from the free diffusion of vesicles in solution in the absence and presence of 1 mM, 1.5 mM, 2.5 

mM and 4 mM SDS. 

Having established ensemble FRET as an optical sensor of changes in dye separation distance as a 

function of SDS, DLS was next used to probe the hydrodynamic radii of LUVs in response to SDS in 

solution. The high sensitivity of DLS to the diffusion of nanomolar concentrations of vesicles makes it an 

attractive technique for accessing structural characteristics along the solubilization pathway[25, 26]. Here, 

the autocorrelation function obtained from the intensity of light scattered by the LUVs yields their trans-

lational diffusion coefficient which can be used to extrapolate their hydrodynamic radius (rH) via the 

Stokes-Einstein equation. In the absence of SDS, the LUVs were distributed around a peak rH of 97 ± 6 

nm (Figure 1b). However, the peak rH associated with the LUVs in the presence of 1 mM SDS was found 

to increase by 25 %, and the full-width at half-maximum (FWHM) of the distribution broadened two-fold. 

At higher SDS concentrations, a progressive decrease in peak rH towards several nanometers was ob-

served, which we attributed to the formation of micelles in solution. The increase in peak rH observed at 

relatively low SDS concentrations, points towards an increase in mean LUV surface area prior to micel-

lization and was assigned to LUV swelling, fusion, or the combination of both in solution. As recently 

demonstrated by molecular dynamics simulations[27], the high membrane curvature associated with LUVs 

regulates recruitment and may in this case facilitate the incorporation of SDS monomers into the bilayer, 

even at concentrations lower than the reported CMC.  
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To rule out the possibility of fusion and investigate each step of the solubilization process in more detail, 

LUVs containing a low percentage of Biotin-PE were immobilized onto an Avidin-coated surface and 

imaged by liquid-based atomic force microscopy in the absence and presence of SDS. As shown in 

Figure S5, biotinylated vesicles were tethered to Avidin which was in turn coupled to biotinylated bovine 

serum albumin adsorbed onto a glass substrate. In the absence of SDS, the LUVs appeared spherical 

in nature (Figure 2a) with a mean caliper diameter, defined as the average LUV width at half maximum 

of approximately 44 ± 1  nm  (±SEM, N=50) (Figure 2b). In the presence of low concentrations of SDS, 

namely 0.1 mM and 0.5 mM SDS, the mean caliper diameters were found to be approximately 51 ± 2 

nm (N=50)  and 57 ±  2 nm (N=50), corresponding to a size increase of 16.1 ± 0.5 %  and 28.3 ± 0.9 %, 

respectively (Figure 2b).  In turn, these data suggest an interaction between SDS and the vesicles that 

leads to LUV expansion. We note that the measured LUV heights ranged from approximately 18 – 30 

nm, similar to those previously reported for extracellular vesicles of comparable size. The observed re-

duction in LUV height relative to the diameter measured by DLS was assigned to elastic deformation of 

the structures induced by mechanical indentation exerted by the AFM tip as previously reported[28-30]. 

Here, elastic deformation occurs at the onset of interaction and a tip indentation of ~10 nm is typical with 

applied forces of ~2 nN, comparable to those used in this work[31]. Nevertheless, the measurable expan-

sion of mean caliper diameters in the presence of SDS points towards a mechanism of interaction in-

volving a substantial LUV structural change that precedes complete solubilization.  
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Figure 2. Visualization of SDS-induced vesicle expansion by liquid AFM. (a) Representative image 

of LUVs pre-immobilized onto a glass substrate using a BSA-biotin-Avidin immobilization scheme. The 

scale bar indicates 150 nm. (b) Comparative box plots, first quartile, median, third quartile and standard 

deviation (error bars) are shown summarizing the relative variation in mean caliper diameter, d, in the 

absence (grey, N = 50) and presence of 0.1 mM (blue, N = 50) and 0.5 mM (green, N = 50) SDS.  

To investigate this observation further, and to extract the kinetic rates of the swelling event, single immo-

bilized vesicles were imaged via objective-based total internal reflection fluorescence (TIRF) microscopy 

and the EFRET response recorded with a time-resolution of 50 ms as SDS was flushed across the sample. 

To ensure fluorescence signals originated from the Dil and DiD labelled LUVs, varying concentrations of 

vesicles were added to the substrate, resulting in a corresponding change in the number of fluorescent 

foci per field-of-view (Figure S6). To optimize the experimental conditions necessary for minimizing pho-

tobleaching, fluorescence emission from single LUVs in the absence of SDS were first recorded as a 

function of excitation intensity. Here, Dil and DiD labelled LUVs were imaged using 532 nm excitation 

powers of 5 mW, 1 mW and 16 W, as measured at the back aperture of the TIRF objective lens. When 

the excitation power was 5 mW, the fluorescence trajectories displayed bi-exponential behavior (R2 = 

0.97)  with decay time constants of 1.6 ± 0.1 s and 10.8 ± 0.6 s, respectively (Figure S7). At 1 mW, the 

fluorescence decays were dominated by longer-lived components and an average decay time of 23.7 ± 

0.3 s was observed. At 16 W, however, the trajectories were photostable across the duration of the 

measurement time window (Figure S7). Having established that an excitation intensity of 16 W was 

necessary for long-term photostability, LUV perturbation induced by SDS was then detected through 

changes in the apparent FRET efficiency. Conformational changes were first determined via histograms 

of the svFRET efficiency as a function of SDS concentration (Figure 3a). The EFRET histogram for LUVs 
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in the absence of SDS showed a single Gaussian peak at 0.39 ± 0.1 (FWHM = 0.10), characteristic of 

an intact LUV in which the average fluorophore separation is 5.7 ± 1.5 nm. After incubation of the immo-

bilized LUVs with intermediate SDS concentrations, a progressive decrease in the peak position towards 

0.19 ± 0.06 (FWHM = 0.13) at 0.20 mM SDS was observed, indicating an 18 % increase in the mean 

inter-dye distance. In the presence of 1.0 mM SDS, a doublet distribution, reflecting heterogeneity in the 

immobilized LUVs, and assigned to partial lysis was observed, with the main peak position shifting further 

to 0.14 ± 0.02 and corresponding to an overall 26 % increase in dye separation. Taken together, the 

overall reduction in the svFRET signal, concurrent an increase in the DiL-DiD separation distance, agrees 

well the ensemble FRET measurements and AFM data. The fraction of intact LUVs estimated from the 

relative area under the histogram in the absence of SDS also progressively decreased, with negligible 

levels of intact and immobilized LUVs present when 10 mM SDS was applied. Next, to extract the kinetic 

details of the interaction, fluorescence emission trajectories obtained from single LUVs were recorded 

over time as SDS was injected into a flow-cell containing pre-immobilized LUVs. In the absence of SDS, 

emission trajectories obtained from Dil and DiD were invariant with no variation in the apparent FRET 

efficiency observed. However, as SDS was injected into the flowcell, deformation of single LUVs was 

then measured via anti-correlations in the Dil and DiD signals and thus quantifiable changes in the ap-

parent FRET efficiency (Figure 3b and Figure S8). In the absence of SDS, EFRET from single vesicles 

was found to be invariant with a value of 0.32 ± 0.01. Injection of 10 mM SDS then induced variations in 

EFRET and the total intensity over very different timescales. Immediately after injection, the FRET effi-

ciency decreased to 0.06 ± 0.01 over 8.5 seconds (Figures 3b and 3c) with most of this change occurring 

within the first 5.5 seconds, pointing towards an initial 18 % increase in the average separation between 

the dyes. Assuming spherical vesicles, this increase scales directly with the vesicle radius and thus 

agrees well with the swelling observed by AFM. Within this time window, the total intensity associated 

with each vesicle remained invariant, however,  at longer timescales (> 23 s) EFRET remained constant at 

a lower value of 0.06 ± 0.01, whereas the total intensity decreased rapidly to only a few percent of its 

initial value.  
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Figure 3. Real-time visualization of solubilization kinetics by svFRET. (a) EFRET histograms obtained 

from immobilized LUVs after incubation with SDS at concentrations of 0 mM (N = 631), 0.05 mM (N = 

438), 0.1 mM (N = 339), 0.15 mM (N = 400), 0.2 mM (N = 432) and 1 mM (N = 351). Solid lines represent 

Gaussian fits to the data. (b) Representative normalized variation in the fluorescence emission of Dil and 

DiD (top panel), the corresponding variation in FRET efficiency obtained before (< 15 s) and after (> 15 

s) injection of 10 mM SDS (middle panel) and the corresponding sum of Dil and DiD fluorescence inten-

sities (ID + IA) (lower panel). (c) The corresponding relative FRET state occupancies observed over the 

45 second measurement window. (d) Schematic illustration of the solubilization process. Injection of SDS 

leads to an initial LUV expansion event that precedes lysis. (e) Comparative bar plot summarizing the 

relative variation in tE and tL obtained after injection of 10 mM SDS. Error bars indicate the standard error 

of the mean (N = 30). 

 

As we previously reported[23], the different timescales and responses of both signals indicate that they 

represent different perturbations of the vesicle structure. First, the initial reduction in EFRET with a largely 

unchanged total intensity indicates expansion of the LUV with little-to-no lipid loss, and second, a rapid 

decrease in total intensity while EFRET remains invariant suggests a fast lysis step corresponding to re-

lease of lipids into solution (Figure 3d). The EFRET plateau observed at ~25 seconds when lipids are lost 

to solution (EFRET 0.06 ± 0.01) represents an inter-dye distance of 8.4 ± 1.4 nm within the resultant micelle. 

Under these conditions, LUV expansion was found to occur with a half-life, tE, of 4.0 ± 0.8 seconds, 
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followed by a faster lysis event with a half-life (TL) of 1.3 ± 0.1 seconds (Figure 3e). Since the expansion 

event reflects the initial interaction between SDS and the LUV, tE can also be interpreted as the associ-

ation and diffusion rate of SDS into the membrane.  

The detection of a multi-step solubilization mechanism in LUVs agrees well with optical microscopy and 

phase contract measurements reported for giant unilamellar vesicles composed of 1-palmitoyl-2-oleoyl-

glycero-3-phosphocholine (POPC) and DMPC lipids and with diameters > 1 m[21, 22]. These experiments 

demonstrated that injection of SDS around the CMC causes an initial increase in the membrane surface 

area over the first several seconds, attributed to the homogeneous incorporation of SDS into the outer 

layer, which precedes membrane fracturing, the opening of transient nanopores and the ejection of mixed 

micelles. With increasing GUV size, the local density of SDS incorporation was found to differ across the 

membrane resulting in local instabilities. However, the microscopy techniques used in these studies only 

provide access to a cross-section of the GUVs and thus quantification of conformational changes across 

the entire three-dimensional volume is non-trivial. Nevertheless, the diffraction-limited LUVs and GUVs 

displayed common solubilization characteristics: comparable concentration requirements to achieve 

complete solubilization, and a vesicle swelling event that precedes a lysis step where micelles are re-

leased to the solution. Fluorescence microscopy experiments performed on POPC GUVs (10 – 20 m) 

in the presence of the non-ionic detergent Triton X-100 (TX-100) at the CMC also showed an increase 

in surface area, attributed to the rapid insertion of TX-100 into the bilayer, prior to a gradual lysis step[21, 

32]
. Furthermore, when we applied svFRET technique to explore the effect of TX-100 on LUVs composed 

of POPC and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS), the timescales associated 

with the expansion and lysis steps were found to be ~5 s and ~40 s, respectively[23]. Though it is possible 

that the kinetics vary as a function of the LUV composition, a similar expansion timescale was observed 

in the current work with SDS, while the lysis rate was an order of magnitude faster, consistent with pre-

vious studies investigating the interaction between anionic and non-ionic detergents and single cells[33]. 

Taken together, the svFRET studies on sub-micron and highly curved LUVs are complementary to 

phase-contrast, fluorescence and conventional optical microscopy experiments performed on GUVs, and 
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both are consistent with a common general mechanism of detergent-induced membrane solubilization 

where a vesicle expansion event precedes lipid loss. 

The ensemble FRET, DLS, AFM and svFRET data discussed so far afforded access to new structural 

and kinetic insights into the mechanism underpinning SDS-induced LUV solubilization. However, in order 

to quantify the extent of mass transfer at each stage, a complementary label-free QCM-D monitoring 

approach was employed. QCM-D has emerged as a powerful tool for monitoring vesicle deposition on 

solid surfaces[34, 35], the formation of lipid bilayers[34], vesicle fusion[36] and protein-induced pore formation 

on supported bilayers[37], but its utility in the context of probing detergent-LUV interactions has remained 

under-explored. Here, LUVs incorporating 1 % Biotin-PE were immobilized onto a QCM-D sensor using 

an identical immobilization strategy (Figure S9). Interactions between the immobilized LUVs and SDS 

were then monitored via real-time changes in the oscillation frequency and dissipation, reflecting the 

mass and viscoelasticity of the immobilized vesicles, respectively. As a solution of 0.6 mM SDS was 

flushed across the sensor surface, anti-correlative changes in both the frequency and dissipation traces 

were observed (Figure 4a), corresponding to a ~17 % mass gain at the sensor surface,  attributed to the 

initial deposition of SDS molecules onto the LUVs. This was followed by a non-destructive interaction 

that leads to a broad conformational change in in-tact vesicles. A considerable mass loss of 70 % was 

then observed via an increase in resonance frequency, consistent with immobilized material being re-

leased to solution (Figure 4b). The initial increase in energy dissipation observed as SDS entered the 

sensor surface relates to an increase in the surface viscoelasticity and LUV conformational changes 

arising from the deposition of SDS molecules. Following SDS deposition, the energy dissipation de-

creased substantially and closely matched that obtained from a control sensor lacking LUVs, indicating 

a decrease in viscoelasticity and loss of LUV surface material (Figure 4a). When a higher concentration 

(0.9 mM) was then flushed across the sensor, similar datasets were obtained (Figure 4c, d) pointing 

towards a mechanism through which mass is taken up by the LUVs prior to a conformational change 

and, at longer times, mass loss. Control experiments performed simultaneously indicated little interaction 

between a biotinylated-BSA-avidin coated sensor surface and SDS under the conditions tested, as indi-

cated by minimal changes to the frequency and dissipation response after SDS injection across the 

sensors (Figure 4a, c). Taken together, this data set also supports a mechanism through which SDS 
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accumulation on the highly-curved LUV surface precedes an expansion of the vesicle that in turn, pre-

cedes a lysis event. We note that while SDS may in addition promote membrane content leakage through 

pore formation[38], this model is similar to that proposed for the non-ionic detergent TX-100 operating on 

LUVs of comparable size[23] and supports a general mechanism of detergent-induced vesicle solubiliza-

tion.  

 

Figure 4. SDS induced vesicle solubilization monitored by QCM-D. (a) Representative variation in 

frequency (blue) and dissipation (red) of the 7th overtone associated with surface immobilized LUVs in 

the presence of (a) 0.6 mM SDS and (c) 0.9 mM SDS. The dashed lines represent data collected from a 

control sensor pre-treated with biotinylated BSA and Avidin, but lacking LUVs. The arrows indicate the 

start-point of the solubilization process for each condition. The corresponding frequency versus dissipa-

tion plots observed during the interaction between surface immobilized vesicles and (b) 0.6 mM SDS and 

(d) 0.9 mM SDS.  

 

Conclusions   

We have directly observed the solubilization of highly-curved LUVs in response to SDS using the com-

bination of multiple advanced spectroscopic techniques. The collective data unambiguously separates 

each step of the SDS-induced solubilization pathway, and through the implementation of svFRET, kinetic 
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parameters were assigned to each process without interference from vesicle fusion. We report the mech-

anism of SDS membrane solubilization as a sequence of events, whereby SDS deposition onto the LUV 

bilayer triggers expansion of in-tact LUVs that in-turn precedes rapid lipid loss.  Exploring the organiza-

tional structure and real-time dynamics of controllable vesicles is especially appealing across the life 

sciences, not only because they are commonly used for a wide-variety of biotechnological applications, 

but also because critical trafficking pathways rely on the formation of highly-curved LUVs[39, 40]. We expect 

the presented approaches to be used for affording new access to previously intractable interactions be-

tween small molecule membrane disruptors and LUVs of varying size, to evaluate the role of lipid com-

position on the solubilization pathway, and to explore the interactions between a wide range of molecules 

that target, cross and disrupt the lipid membrane, such as those with important biomedical significance. 

We also anticipate that this work may lead to the quantification of the molecular mobility of membrane-

integrated proteins relative to lipids observed in living cell systems[41]. Importantly, the observation of 

biphasic kinetics also has exciting implications for the adaptation and fine-tuning of detergent-based 

solubilization protocols.  

Methods  

Materials 

DMPC and Biotin-PE phospholipids were purchased from Avanti Polar Lipids Inc. 1,1'-Dioctadecyl-

3,3,3',3'-Tetramethylindocarbocyanine Perchlorate (Dil) and 1,1' -Dioctadecyl-3,3,3',3'-Tet-

ramethylindodicarbocyanine, 4-Chlorobenzenesulfonate Salt) (DiD) were purchased from 

ThermoFisher Scientif ic. All phospholipid samples were used without additional purification and 

stored in chloroform at -20oC prior to use. Dil and DiD stock solutions were stored at 4oC prior to use. 

SDS was purchased from Sigma Aldrich and freshly suspended in 50 mM Tris (pH 8) buffer prior to each 

use. 
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Preparation of large unilamellar vesicles  

Mixtures of lipids and lipophilic dyes were homogeneously dispersed in chloroform, dried by nitrogen flow 

and stored under continuous vacuum pumping at 21oC for 5 hours. Phospholipid mixtures were subse-

quently re-suspended in buffer solution (50 mM Tris, pH 8) and mixed well by vortex. LUVs were prepared 

by the extrusion method[42] in which they were passed through a 200 nm polycarbonate membrane filter. 

A molar ratio of 98.8: 1: 0.1: 0.1 DMPC: Biotin-PE: Dil: Dil was used for steady-state fluorescence, 

svFRET and AFM studies. For QCM-D work involving unlabeled LUVs, a molar ratio of 99: 1 DMPC: 

Biotin-PE was used. The size distribution of the prepared vesicles in solution was evaluated by dynamic 

light scattering using a Zetasizer V molecular size detector (Malvern Instruments Ltd., UK). 

Steady-state fluorescence spectroscopy 

Fluorescence emission spectra were acquired using a Horiba Fluoromax-4 fluorescence spectrophotom-

eter. Spectra from Dil and DiD were recorded using an excitation wavelength of 532 nm. FRET efficien-

cies were approximated by the apparent FRET efficiency, EFRET = (IA/[IA + ID]), where IA and ID represent 

the fluorescence emission intensities of Dil and DiD, respectively. The FRET efficiency data shown in 

Figure 1a was fitted to a Hill model of the form, 𝐸𝐹𝑅𝐸𝑇 = 𝐴 + (𝐵 − 𝐴)
[𝑇𝑋−100]𝑛

𝑘𝑛+[𝑇𝑋−100]𝑛
, where A and B are the 

measured FRET efficiencies at the start and end of the titration, k is the half-maximal concentration 

constant and n is the Hill coefficient. The parameters of the fit shown in Figure 1a are A = 0.50 ± 0.02, 

B = 0.005 ± 0.001 , k = 0.92 ± 0.16 mM and n = 1.25 ± 0.20 (2 = 0.99). Error bars represent the standard 

error of the mean from 3 individual experimental runs.  

Single-vesicle FRET Spectroscopy  

Fluorescence emission at the donor and acceptor wavelengths were acquired from single vesicles by 

using a custom-built objective-type total internal reflection fluorescence microscope equipped with a con-

tinuous wave TEM00 532 nm excitation line (Coherent, Obis). Pre-cleaned microscope slides were suc-

cessively treated with 1 mg/mL bovine serum albumin (BSA), 0.1 mg/mL biotinylated BSA, and 0.2 

mg/mL Avidin, before pM concentrations of freshly-prepared vesicles were added to the surface. Fluo-

rescence movies were acquired with an integration time of 50 ms. The base buffer used for imaging was 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.05.133868doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.133868


17 

 

50 mM Tris (pH 8), 6 % (w/v) glucose, 165 U/mL glucose oxidase, 2170 U/mL catalase and 2 mM trolox. 

Concentrations of SDS as specified in the main text were then included in the imaging buffer prior to 

being injected into the sample. Spatially-separated fluorescence images of donor and acceptor emission 

were collected using an oil immersion objective lens (NA = 1.49) and separated using a DualView emis-

sion splitter (Photometrics) containing a dichroic filter (T640LPXR, Chroma) and band pass filters 

(ET585/65M and ET700/75M, Chroma) on the donor and acceptor imaging paths. Dil and DiD emission 

intensities were collected in parallel using a cooled (-80oC) EMCCD camera (Andor iXON). The svFRET 

efficiency after background correction was evaluated via the apparent FRET efficiency, EFRET = (IA/[IA + 

ID]) ~ Ro
6/([Ro

6+R6]), where IA and ID are the fluorescence intensities of the acceptor and donor, respec-

tively, Ro is the Förster radius and R is the mean separation distance between the probes on each LUV. 

Half-lives were calculated by applying exponential fits to the EFRET and [ID+IA] trajectories. Image pro-

cessing was carried out using laboratory-written analysis routines developed in MATLAB 7. Excitation 

powers were measured immediately prior to laser light entering the back aperture of the objective lens.  

Quartz Crystal Microbalance with Dissipation (QCM-D) monitoring.  

QCM-D experiments were performed using a Q-sense E4 system (Biolin Scientific). SiO2-coated AT-cut 

quartz sensors (QSX 303, Biolin Scientific) were used, for which the fundamental frequency was 4.95 ± 

0.05 MHz. The sensors were initially subjected to a 10 minute cleaning step by UV−ozone, prior to being 

sonicated in solutions of 2 % Hellmanex III and 2 x ultrapure Milli-Q water for 10 minutes. The sensors 

were then dried with N2 and placed under UV−ozone for a further 30 minutes. Each sensor was then 

immersed in 100% ethanol for 30 minutes and dried with N2 before installation in the flow modules. The 

QCM-D flow chambers were first flushed with ultrapure Milli-Q water for 1 hour, and then with 50 mM Tris 

buffer (pH 8) for 20 minutes before each measurement until a stable baseline was established (< 0.5 Hz 

shift over 10 min). The flow rate was kept constant at 20 μL/min. The sensor surfaces were then func-

tionalized with 0.1 mg/mL biotinylated BSA and 1 mg/mL BSA then rinsed with 50 mM Tris buffer (pH 

8.0) to remove unbound molecules. Thereafter, the sensor surface was flushed with 0.1 mg/mL Avidin 

solution in 50 mM Tris buffer (pH 8.0) for 20 min, followed by a rinse step with 50 mM Tris buffer (pH 8.0) 

for 20 min. Subsequently, vesicles coated with 1 % Biotin-PE were immobilized on the sensor surfaces 
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by incubation with a 33 µg/mL vesicle solution for ~80 minutes. SDS detergent solutions at the specified 

concentrations were then introduced into the QCM-D flow chambers. Changes in mass (m) were related 

to changes in frequency (f) via the Sauerbrey equation ∆m = – (C · ∆f)/n where n is the overtone number 

and C is a constant related to the properties of the quartz (17.7 ng Hz-1cm-2). 

Atomic Force Microscopy 

Imaging of immobilized LUVs was conducted using a Bioscope Resolve Atomic Force Microscope 

(Bruker) in Fluid Tapping Mode. A silicon nitride cantilever (DNP-10 tips, Bruker) with nominal spring 

constant of 0.12 Nm-1 and resonant frequency of 23 kHz was used for all measurements. Typical scan 

sizes were 1.2 m x 1.2 m for probing multiple LUVs in 50 mM Tris buffer (pH 8). To evaluate LUV 

dimensions vesicles were sampled by taking multiple images per sample. Images were then selected to 

represent the average distribution, density and size of the sample. Structures were then sampled using 

the forbidden line unbiased counting rule in ImageJ. The mean caliper diameter at each LUV mid-height 

was measured both horizontally and vertically and the average of both measurements, d, was calculated. 
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