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Graphical Abstract Highlights

• Genetic variability impacts protein synthesis rates
in a rat model for cardiac hypertrophy

• A trans locus affects stoichiometric translation
rates of cardiac sarcomeric proteins

• This master regulator locus induces a global,
protein length- dependent shift in translation

• Dysregulated ribosome assembly induces
half-mer formation and affects translation initiation
rate
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ABSTRACT

Little is known about the impact of naturally occurring
genetic variation on the rates with which proteins are
synthesized by ribosomes. Here, we investigate how
genetic influences on mRNA translational efficiency
are associated with complex disease phenotypes
using a panel of rat recombinant inbred lines.
We identify a locus for cardiac hypertrophy that
is associated with a translatome-wide and protein
length-dependent shift in translational efficiency. This
master regulator primarily affects the translation of
very short and very long protein-coding sequences,
altering the physiological stoichiometric translation
rates of sarcomere proteins. Mechanistic dissection
of this locus points to altered ribosome assembly,
characterized by accumulation of polysome half-mers,
changed ribosomal configurations and misregulation of
the small nucleolar RNA SNORA48. We postulate that
this locus enhances a pre-existing negative correlation
between protein length and translation initiation in
diseased hearts. Our work shows that a single
genomic locus can trigger a complex, translation-driven
molecular mechanism that contributes to phenotypic
variability between individuals.

INTRODUCTION

Gene expression regulation is a multilayered process
and variation at any level can influence susceptibility to
disease (Albert & Kruglyak, 2015; Ward & Kellis, 2012).
Heritable, naturally occurring genetic variation can induce
gene expression changes through epigenetic (Kasowski
et al., 2013; McVicker et al., 2013; Rintisch et al., 2014),
transcriptional (Brem et al., 2002; GTEx Consortium et al.,
2017; Hubner et al., 2005) and translational (Albert et al.,
2014; Battle et al., 2015; Cenik et al., 2015; Muzzey
et al., 2014) mechanisms. However, the extent to which
trans-acting factors influence mRNA translation and thereby
contribute to phenotypic diversity between individuals, and
possibly complex disease, is not known. In this study,
we use the rat HXB/BXH recombinant inbred (RI) panel
to identify distant genetic effects on mRNA translation
in a complex disease relevant setting. The HXB/BXH
panel is a powerful model system for rat genetics that
consists of 30 RI lines derived from crossing normotensive
Brown Norway (BN-Lx) and spontaneously hypertensive
rats (SHR/Ola; hereafter SHR) (Printz et al., 2003). Each
of these 30 RI lines possesses a homozygous mixture of
the ± 3.6 million genetic positions that discriminate both
parental lines - an extent of genetic variability resembling
that of two unrelated human individuals (Hermsen et al.,
2015; Simonis et al., 2012). Within the HXB/BXH panel,
these genetic variants can be associated with physiological
and molecular phenotypes to uncover disease-relevant
genotype-phenotype relationships (Heinig et al., 2010;
McDermott-Roe et al., 2011; Petretto et al., 2008; Pravenec
et al., 2008). Importantly, for each of the two parental
genotypes (BN-Lx and SHR), any genetic locus is on
average replicated by 15 out of 30 RI lines, providing
sufficient power to detect not only local (cis) but also distant,
trans-acting QTLs.

Here we define the influence of genetic variation on the
efficiency of mRNA translation (translational efficiency, or
TE) by applying ribosome profiling (or Ribo-seq (Ingolia
et al., 2009)) and RNA-seq to liver and left-ventricular
heart tissue of each of the 30 RI lines - two tissues directly
related to the cardiovascular and metabolic traits present in
SHR. Focusing specifically on distant translational efficiency
QTLs (teQTLs), we discover a prominent set of trans-acting
’hotspots’ that each control the translation of up to dozens of
genes in the rat heart. Amongst these potential translational
master regulators we find a single distant teQTL on rat
chromosome 3 that influences TE in a translatome-wide and
protein length-dependent fashion. In-depth investigation of
this locus, which colocalizes with a highly replicated locus for
left ventricular mass (Inomata et al., 2005; McDermott-Roe
et al., 2011; Siegel et al., 2003), reveals a likely defect
in ribosome biogenesis that induces half-mer formation
indicative of impaired translation initiation, and misregulates
the highly abundant small nucleolar RNA SNORA48. This
ribosomopathy is specifically observed in SHR hearts and
reinforces a protein length-dependent imbalance in protein
synthesis rates that exists at baseline (Arava et al., 2003;
Arava et al., 2005; Ciandrini et al., 2013; Rogers et al., 2017;
Shah et al., 2013), but is amplified in disease.

With our work, we show how cardiac translation is
under extensive distant genetic control by a limited number
of master regulatory loci. We highlight a single genetic
locus that induces a complex, translation-driven molecular
mechanism that contributes to phenotypic diversity and
underlies a complex cardiac trait.

RESULTS

Identification of translational efficiency QTLs in the
HXB/BXH panel

To be able to associate genetic variation with translational
efficiencies, we further refined a previously constructed
(STAR Consortium et al., 2008; Rintisch et al., 2014)
genotype map of the HXB/BXH RI panel (see Methods
and Figure 1A). The obtained genotypes were associated
with the mRNA expression and translation levels of 10,531
cardiac and 9,336 liver genes (77% overlap), which were
obtained using Ribo-seq and RNA-seq data across each
of the 30 RI lines (Figure 1B-C, Figure S1A-H and Table
S1). We identified and categorized three types of QTLs per
tissue: mRNA expression QTLs (eQTLs; mRNA-seq levels),
ribosomal occupancy QTLs (riboQTLs; Ribo-seq levels)
and translational efficiency QTLs (teQTLs; Ribo-seq levels
corrected for mRNA-seq levels) (Figure 1D-E, and Table
S2). In line with previous work (Albert et al., 2014; Battle
et al., 2015; Cenik et al., 2015; Heesch et al., 2019), we
found that most local QTLs had a clear transcriptional basis
(i.e. as eQTLs) that was, with minor variations, concordantly
visible in the Ribo-seq data (Figure S1I). However, cis
effects specific to translation (local teQTLs) did exist and
clearly influenced a subset of genes (nheart = 71 and nliver

= 88), driving expression changes independent of mRNA
expression regulation (Figure S1I and S1J). These teQTLs
showed limited recurrence between heart and liver, despite
most genes with teQTLs being expressed in both tissues
(see Methods, Figure 1F and Table S2).
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Figure 1: Identification of translational efficiency QTLs in the HXB/BXH panel. (A) Schematic overview of the establishment of
the HXB/BXH recombinant inbred panel. Colored bars represent SHR and BN-Lx alleles. (B) Schematic overview of the experimental
procedures carried out for each of the 30 HXB/BXH lines. (C) Bar plot illustrating absolute and relative ORF identifications, separated
by coding and noncoding gene biotypes, for heart and liver. Translated pseudogenes were excluded from downstream analyses. See
also Table S1. (D) Table with gene-centric QTL mapping results for heart and liver, separated by genes for which mRNA expression
QTLs (eQTLs), ribosome occupancy QTLs (riboQTLs), and/or translational efficiency QTLs (teQTLs) are identified. Local QTLs indicate
associations that map to the same genomic locus as the tested gene (see Methods). Distant QTLs refer to associations with genes on
chromosomes other than that of the QTL. See also Table S2. (E) Venn diagrams displaying a gene-centric overlap of eQTLs, riboQTLs
and teQTLs in heart and liver, highlighting QTLs shared with, or specific to, a single trait. (F) Bar plot with a tissue comparison of detected
local translational efficiency QTLs (teQTLs) considering only genes expressed and translated in both tissues. Genes are ordered by the
delta p-value in heart vs. liver tissue (middle panel). Three examples of genes expressed in heart and liver tissue are given, displaying a
local teQTL in either one, or both, of these tissues. Cross bars indicate mean values. See also Figure S1 and Tables S1-S3.

While this is possibly explained by liver being a frequent
outlier in cross-tissue eQTL comparisons (Aguet et al.,
2019), these findings suggest that many cis-acting teQTLs
are mediated in a tissue-specific manner.

Local teQTLs are mechanistically independent of
upstream ORFs
Upstream ORFs (uORFs) are major regulatory elements of
translation located in 5’ leader sequences of protein-coding
mRNAs (Morris & Geballe, 2000), and genetic variants
interfering with these elements can affect the efficiency
of mRNA translation (Cenik et al., 2015). Out of over a
thousand newly detected uORFs per tissue (Figure S1H
and Table S3), we detected 27 (heart) and 13 (liver) uORFs
whose translation rates associated with genetic variants in
cis ("uORF-QTLs"; Table S3). However, none of these
variants disrupted the uORF’s start or stop codon, and
only a single uORF-QTL colocalized with a primary ORF
teQTL. For this gene, Rte1, both QTLs showed the same
effect directionality, indicating that increased translation
of the uORF had no negative impact on the primary

ORF TE (Figure S1K). In general, uORF and primary
ORF translation rates showed a very limited quantitative
dependency (as observed in (Aspden et al., 2014; Brar
et al., 2012; Chew et al., 2016; Heesch et al., 2019)) (Table
S3, Figure S1L and S1M) and we found no enrichment of
uORFs in genes with local teQTLs (pheart = 0.70 and pliver =
0.79). In addition, we found no genetic variants in genes with
local teQTLs that interfered with local translation initiation
context or Kozak sequence. Although we cannot determine
the possible outcome of genetic variants in other functional
elements that serve to fine-tune mRNA translation, such as
RNA folding structures, methylation sites, or RNA binding
protein motifs (Hershey et al., 2012; Wang et al., 2015),
our observations imply that uORFs are unlikely to be main
drivers of local teQTLs within the HXB/BXH panel.

Distant teQTL "hotspots" are master regulators of
cardiac translation

Distant QTLs are an important source of variation in mRNA
expression levels, through which they contribute to complex
disease (Aguet et al., 2019; Brandt et al., 2020).
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Figure 2: The chromosome 3p teQTL regulates cardiac translation in a protein length-dependent manner. (A) Circos plot
highlighting all distant teQTLs detected in the rat heart that associate with the TE of at least 5 genes. The Chr. 3p teQTL is highlighted in
dark pink and of the 25 associated genes, only the names of the 11 extracellular matrix (ECM) genes are given. Gene-locus associations
for the different hotspots are indicated with the different shades of pink, with the darkest pink and thickest lines representing the
associations identified for the Chr. 3p teQTL. For each hotspot, translational efficiencies of all associated genes are given in Figure S2B.
(B) Overlay of Manhattan plots displaying genome-wide significance values for a genetic association with TE on Chr. 3p. A selection
of 5 associated genes whose protein products function in the extracellular matrix are shown. (C) Scatter plots and square correlation
coefficients (r2) based on standardized major axis (SMA) values between coding sequence (CDS) length and the fold change (FC) in gene
expression, as measured by Ribo-seq (top) or mRNA-seq (bottom), for heart (left) and liver tissue (right). To define the expression FC,
all 30 RI lines are separated by local genotype (BN or SHR) at the Chr. 3p teQTL. For heart Ribo-seq data, the correlation is significant
(p-value < 2.2 10-16; Test of correlation coefficient against zero) and the linear model based on fitted SMA method is displayed as a red
line. (D) Schematic overview of the congenic rat lines with isolated teQTL and cardiac mass QTL locus. The SHR.BN-(3L) line carries a
local BN genotype, whereas the SHR.BN-(3S) line retains the SHR genotype at the teQTL. Inserted BN segments are visualized in grey,
SHR alleles in green. (E) Scatter plots and square correlation coefficients (r2) based on standardized major axis (SMA) values between
coding sequence (CDS) length and the fold change (FC) in gene expression, as measured by Ribo-seq (top) or mRNA-seq (bottom) in
congenic rat hearts. The FC in translation is derived from a comparison between 5 replicates of SHR.BN-(3L) and SHR.BN-(3S) rats and
reproduces the global length effect observed for the Chr. 3p teQTL identified in the HXB/BXH RI panel. For heart Ribo-seq data, the
correlation is significant (p-value < 2.2 10-16; Test of correlation coefficient against zero) and the linear model based on fitted SMA method
is displayed as a red line. (F) Dot plots with indications of mean expression for 2 laminin subunits (extracellular matrix glycoproteins),
illustrating the reproducibility of the translational efficiency phenotype between the HXB/BXH RI panel and the congenic rat lines. Cross
bars indicate mean values. (G) Bar plot with all differentially translated genes in a comparison of both congenic rat lines, ordered by
Ribo-seq FC in expression. Genes associated with selected significant GO terms are highlighted on top. See also Figure S2 and Table S4.
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Although the impact of trans-acting QTLs on mRNA
translation in a complex disease setting has remained
unexplored, the HXB/BXH panel employed here provides
enough power to detect such QTLs (Aitman et al., 1999;
Heinig et al., 2010; Hubner et al., 2005; Pravenec et al.,
2008). Because we found distant teQTLs to be more
frequent in heart than in liver (Figure 1D), we decided
to focus downstream analyses solely on heart tissue. To
increase the power to detect genes with shared modes
of regulation by a single QTL "hotspot", we applied a
hierarchical regression model in a Bayesian framework
using a stochastic search algorithm (HESS (Bottolo et al.,
2011b; Lewin et al., 2016)) (see Methods). This yielded a
higher total of 243 genes whose TE is regulated by distant
teQTLs (Figure S2A and Table S4). Of all distant teQTLs,
we classified nine loci as distant cardiac master regulators,
as they influenced the TE of at least 5 (but up to 25) genes
distributed over different chromosomes (Figure 2A, Figure
S2B and Table S4).

A single 2.9 Mb large teQTL hotspot on rat chromosome
3p (Chr. 3: 6.3 - 9.2 Mb; equivalent to human Chr.
9q34) drew our attention for being associated with the
TE of 25 genes (Figure 2A, Figure S2B, Table S2 and
S4). This locus furthermore co-localized with a highly
replicated QTL for cardiac mass (Inomata et al., 2005;
Siegel et al., 2003), for which a loss-of-function insertion
in endonuclease G (Endog) was previously identified
as a driver of cardiomyocyte hypertrophy and increased
left-ventricular weight (McDermott-Roe et al., 2011). Among
all genes associated with this master regulatory teQTL,
we found strong enrichment for extracellular matrix (ECM)
proteins (11 out of 25; GO:0031012; padj = 3.32 × 10-10)
(Figure 2A and 2B), consistent with recent observations of
strong translational control of fibrotic processes in human
hearts (Chothani et al., 2019; Heesch et al., 2019).

The chromosome 3p teQTL regulates cardiac
translation in a protein length-dependent manner
The strong translational impact on ECM genes led us
to hypothesize that the differential translation could be
related to a global switch in translational control related
to the generally high coding-sequence (CDS) length
of ECM proteins. Indeed, we observed a moderate,
though significant correlation between CDS length and fold
change (FC) in translation (r2 = 0.26), which produces a
downregulatory effect for genes with long CDSs and, vice
versa, an upregulatory effect for genes with short CDSs
(Figure 2C). This association with CDS length was specific
to heart tissue, absent in RNA-seq data, and no other
genetic locus outside of the Chr. 3p teQTL showed a similar
effect.

To replicate this translatome-wide phenotype, we
performed ribosome profiling on two congenic rat lines
with two small, but differently sized, BN segments inserted
into the short arm of Chr. 3 on an otherwise fully SHR
background (McDermott-Roe et al., 2011) (see Methods
and Figure 2D). The first congenic line possessed a
long BN segment that replaced the teQTL completely
(SHR.BN-(3L)), whereas the second line contained a
smaller BN segment positioned adjacent to the teQTL
(SHR.BN-(3S)), hence leaving the teQTL intact. Comparing
the cardiac translatomes of both congenic lines, we fully
recapitulated the protein length-dependent difference in
translation observed in the HXB/BXH RI panel (r2 = 0.20;
Figure 2E+F). A subsequent GO enrichment analysis on
differentially translated genes concordantly yielded terms

matching the downregulation of very large proteins (GO:
extracellular region; padj = 6.33 x 10-13) or the upregulation
of very small proteins (GO: cytosolic ribosome; padj = 1.22 x
10 -13) (Figure 2G). Of note, the observed TE fold changes
specifically correlated with CDS length (r2 = 0.20), to a lesser
extent with total transcript length (r2 = 0.162) but not with 5’
UTR (r2 = 0.004) or 3’ UTR length (r2 = 0.013) (Figure S2C).

The chromosome 3p teQTL induces polysome half-mer
formation
To mechanistically dissect the translational phenotype linked
to the Chr. 3p teQTL, we next performed polysome
profiling on heart tissue of both congenic lines (Figure
3A). Polysome profiles of SHR.BN-(3S) rats showed heavily
altered ribosomal configurations compared to SHR.BN-(3L)
(Figure 3A+B and Figure S3A), exemplified by “shoulders”
accompanying each polysome peak indicative of polysome
half-mer formation (Figure 3C). Polysome half-mers are
formed when the 43S preinitiation complex does not
instantly join the large 60S ribosomal subunit to form a
functional 80S monosome. This stalls translation initiation
- the rate-limiting step of RNA translation and therefore a
main determinant of TE (Gandin et al., 2008; Shah et al.,
2013; Sonenberg & Hinnebusch, 2009). Half-mers arise
because of ribosome biogenesis defects, caused by the
underproduction of 60S subunits (Rotenberg et al., 1988) or
impaired subunit joining (Colón-Ramos et al., 2006; Eisinger
et al., 1997). However, for all investigated rats ribosomal
subunit production levels appeared balanced (Figure S3B).

Globally remodeled translatomes can also result from
proteotoxic stress at the endoplasmic reticulum (ER).
Although ER stress and the unfolded protein response play a
pivotal role in the pathophysiology of the heart (Groenendyk
et al., 2010; McLendon & Robbins, 2015), we found no
characteristic signatures of such a response: the polysome
profiles did not resemble those typically observed upon
ER stress (a strong shift from polysomal to predominantly
monosomal translation (Baird et al., 2014; Harding et al.,
2000)) (Figure 3A), translation elongation rates remained
constant along the entire CDS (Liu et al., 2013) (Figure
S3C), protein levels of common ER stress markers (e.g.
p-IRE1α:IRE1α ratios and XBP1s (Schiattarella et al.,
2019)) were unchanged (Figure S3D), mRNA expression
and translation levels of genes associated to ER stress (GO:
0034976) or apoptosis (GO: 0097190) were not affected (p =
0.70 and 0.32, respectively), and translationally upregulated
genes were not enriched for having uORFs (Guan et al.,
2017) (Figure S3E).

The chromosome 3p teQTL influences stoichiometric
sarcomere translation
Comparing RNA-seq data from isolated fractions of
monosomes (80S), light- (2-3 ribosomes), medium-
(4-5 ribosomes) and heavy-weight polysomes (6+
ribosomes), we again saw a clear relationship between
ribosome occupancy and CDS length (Figure 3D). This
length-dependency was identical to the one observed in
the Ribo-seq data, validating the TE phenotype through
an independent method (Figure 3E). Whereas mRNAs
with the longest CDSs showed a clear reduction in heavy
polysome occupancy, accompanied by a relative enrichment
in the monosomal fraction, mRNAs with the shortest CDSs
showed increased steady-state translation in light- and
medium polysomal configurations (Figure 3F).
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Figure 3: The chromosome 3p teQTL induces polysome half-mer formation. (A) Schematic overview of the polysome fractionation
and RNA-seq approach. One representative polysome profile per congenic rat line is given. L, M and H fractions indicate light, medium
and heavy polysomes, respectively. (B) Congenic line comparison for differences in polysomal configuration as measured by the
distribution of RNA yield across the fractions. Quantified polysome profile area under curves (AUCs) can be found in Figure S3A. Bars
indicate mean values. (C) Zoomed-in view of multiple polysomal peaks across replicates for both congenic lines, with arrows indicating
half-mers. (D) Heatmap with scaled RNA-seq expression levels of all 12,471 quantified genes (mean RNA FPKM ≥ 1 across replicates,
for both lines). Genes are clustered into 4 groups by k-means clustering, and sorted by CDS length within each cluster. The same
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gene order obtained through clustering of the fold-change (SHR.BN-(3S) vs SHR.BN-(3L)) comparison (3rd heatmap) was used for the
individual heatmaps of SHR.BN-(3L) vs SHR.BN-(3S) (1st and 2nd heatmap). For all clusters, box plots with the CDS length distribution
are shown on the right. (E) Scatter plots and square correlation coefficients (r2) based on standardized major axis (SMA) values between
coding sequence (CDS) length and the fold change in gene expression (FC (SHR.BN-(3S) vs SHR.BN-(3L)), as measured by RNA-seq
of the four isolated fractions. The correlations are significant (p-value < 2.2 x 10-16; Test of correlation coefficient against zero) and
the linear model based on fitted SMA method are displayed as red lines. Ribosomal protein genes (with small CDSs) are depicted by
orange dots. (F) Heatmaps with the scaled FC of the ribosomal configuration of the top 500 shortest and longest CDS genes. (G)
Scatterplots showing CDS length versus fold change (FC (SHR.BN-(3S) vs SHR.BN-(3L)) for Ribo-seq and RNA-seq data, highlighting a
representative selection of core- and accessory sarcomere proteins. The square correlation coefficient (r2) based on standardized major
axis (SMA) is calculated using expression values of this subset of genes only. (H) Dot plots with Ribo-seq expression values for Ttn and
a selection of cardiac thick filament proteins. Genes are sorted by CDS length from top left to bottom right. Error bars indicate mean
values with standard deviation (SD). None of the displayed expression changes are genome-wide significant. (I) Heatmaps with polysome
profiling results for selected sarcomere proteins. Expression distributions for the individual animals, as well as the scaled fold changes
between SHR.BN-(3S) vs SHR.BN-(3L) are given. Within each group, genes are sorted by CDS length (top to bottom). (J) Schematic
representation of the cardiac thin filament and its composition stoichiometry as obtained from (Thompson & Metzger, 2014). Cardiac
muscle alpha actin (Actc1) and cardiac troponin T (Tnnt2) are the genes most strongly translationally regulated to achieve desired protein
levels. (K) Bar plots showing the relative contribution of each thin filament component as measured by Ribo-seq (top) and mRNA-seq
(bottom) expression levels. DESeq2-normalized expression values are corrected for reported rat heart protein turnover rates (Martin,
1981) and represented as a percentage of the complete thin filament. Twenty healthy rats are shown (from left to right: 5x SHR.BN-(3L)
congenic animals, followed by 15x HXB/BXH RI lines as separated by local BN genotype according to the Chr. 3p teQTL). Optimal
production values for 7 or 1 subunit(s) are indicated by dashed lines. See also Figure S3.

Among the genes most strongly affected by the
length-dependent shift in ribosomal occupancy and TE
were multiple core sarcomere proteins (Figure 3G-I). These
primarily included ’giant’ proteins Ttn and Obscn, as well
as the larger protein constituents of the thick (Myh6, Myh7
and Mybpc3) and thin filament (Actc1 and Tpm1), which all
showed downregulated translation. In contrast, the much
smaller components of the thick and thin filament, such
as the myosin light chains (Myl2 and Myl3) and cardiac
troponins (Tnnc1, Tnnt2 and Tnni3), were all translationally
upregulated. The large variability in sarcomere protein sizes
correlated well with translational fold change (r2

sarcomere =
0.60; Figure 3G), highlighting the impact of the Chr. 3p
teQTL on sarcomere gene translation.

Of note, sarcomere homeostasis strongly depends on
stoichiometric protein production and mRNA translation
has been proposed to regulate this equilibrium (Palermo
et al., 1996; Rethinasamy et al., 1998). For the cardiac thin
filament in particular, we indeed saw prominent translational
control of protein production, exemplified by the translational
up- and downregulation of Actc1 (TE = 1.50) and Tnnt2 (TE
= 0.69), respectively, to achieve protein production levels in
compliance with composition stoichiometry (Figure 3J+K).
Pushing the normally proportional filament translation rates
into opposite directions because of differences in subunit
CDS lengths (Figure 3G-I), it becomes challenging to
achieve composition stoichiometry in an energy efficient
manner (Li et al., 2014; Taggart & Li, 2018), as such
imbalances need to be corrected post-translationally
through the targeted degradation of excess subunits
(McShane et al., 2016; Taggart et al., 2020).

Reduced de novo translation rates reinforce a
pre-existing length-bias in TE
Having established that the Chr. 3p teQTL influences
TE through changes in ribosomal configurations and the
formation of polysome half-mers, it remains unclear why
the severity of this phenotype correlates with protein length.
It is known that the density of ribosomes along mRNAs
shows a translatome-wide inverse correlation with CDS
length and, as a consequence, longer proteins are generally
less efficiently translated than shorter ones (Arava et al.,
2003; Arava et al., 2005; Ciandrini et al., 2013; Rogers
et al., 2017). This length-effect is directly linked to the
frequency of translation reinitiation, which decreases with
increasing CDS length (Ciandrini et al., 2013; Rogers et al.,

2017; Shah et al., 2013). Indeed, in both unaffected
SHR.BN-(3L) and SHR.BN-(3S) rat hearts, TE correlates
negatively with CDS length (r2 = 0.12 and r2 = 0.21
respectively; Figure 4A). Upon limited or hampered de novo
assembly of 80S monosomes, SHR.BN-(3S) rats become
increasingly dependent on effective ribosome recycling
(Rogers et al., 2017), for which both previously acquired
ribosomal subunits remain instantly available. In agreement
with this, the effect on TE is significantly enhanced in
SHR.BN-(3S) rats (Fisher r-to-z transformation Z = -11;
p < 2.2 10-16) (Figure 4A). This effect is less detrimental for
mRNAs with short CDSs, which more frequently reinitiate as
one round of translation takes less time to complete, thereby
reinforcing a pre-existing length-dependency in translation
(Figure 4B).

Misregulation of pseudouridylation guide SNORA48
characterizes the Chr. 3p teQTL

We next searched for possible misregulated ribosome
biogenesis factors that could explain the observed
phenotype, since mutations in these elements are known to
induce global changes in polysome profiles similar to what
we observe in the affected hearts (Li et al., 2009; Tafforeau
et al., 2013).
We find one such factor differentially regulated in the
affected hearts: the H/ACA box small nucleolar RNA
(snoRNA) SNORA48 (also known as ACA48; Ensembl
ID ENSRNOG00000060816). SNORA48 is a conserved
snoRNA predicted to guide the pseudouridylation (Ψ)
of 28S rRNA during large ribosomal subunit biogenesis
(Lestrade & Weber, 2006) (Figure S4A). It is the most highly
expressed snoRNA in rat hearts (Figure 4C) and the only
snoRNA that shows a genome-wide significant decrease in
ribosome association, while overall production levels of the
snoRNA and the host gene Eif4a1 remain constant (Figure
4D).

To identify the cause of SNORA48 misregulation,
we investigated the involvement of the key Chr. 3p
teQTL candidate gene Endog, whose loss-of-function
(LoF) increases cardiac mass and impairs cardiac energy
metabolism (McDermott-Roe et al., 2011) (Figure S4B).
We profiled the cardiac translatomes of wild type and
knockout Endog mice (obtained from (McDermott-Roe et al.,
2011)), as well as those of wild type and newly established
transgenically rescued Endog SHR rats (Table S1 and
Methods).
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Figure 4: Reduced de novo translation rates reinforce a pre-existing length-bias in TE. (A) Arrow-based scatter plot show the
transitions in TE per gene, between SHR.BN-(3S) and SHR.BN-(3L) rats. The length of the arrow is representative of the absolute
change in TE between both congenic lines, with the position of the arrow tail reflecting the SHR.BN-(3L) TE and the position of the
arrow head indicating the TE in SHR.BN-(3S) rats. Blue arrows indicate a decrease in TE in SHR.BN-(3S) rats, whereas red arrows
indicate an increase in TE in SHR.BN-(3S). Two zoomed-in regions show arrow behavior in the top and bottom of the graph, respectively
highlighting genes with very long and short CDSs. (B) Schematic of how the ribosome biogenesis defect leads to a change in translation
initiation rates and a subsequent global shift in TE that correlates with CDS length. (C) Scatter plots showing expression levels of all
cardiac-expressed snoRNAs as measured by totRNA-seq and Ribo-seq data, with SNORA48 highlighted in pink. For both Ribo-seq
datasets, p-value volcano plots show the significance of the differential regulation of SNORA48 (highlighted in pink). (D) Representation
of the genomic location of SNORA48. This snoRNA is contained within intron 4 of its host gene Eif4a1. Dot plots with expression levels
as measured by totRNA-seq and Ribo-seq for SNORA48 and its host gene Eif4a1, in both the HXB/BXH RI panel and the congenic rat
lines. Error bars indicate mean values with standard deviation (SD). See also Figure S4.

Unfortunately, these models showed no reduced ribosomal
association of SNORA48 and no clear length-dependent
translational phenotype (Figure S4C). This excludes
Endog as a monogenic driver of the Chr. 3p teQTL and
points to other mutated genes in the locus. Prime locus
candidates with predicted damaging mutations include the
DEAD box helicase Ddx31 (yeast DBP7 ), whose deletion
reduces 60S levels and induces half-mer formation in yeast
(Daugeron & Linder, 1998; Tafforeau et al., 2013), the
ribosomal RNA transcription termination factor Ttf1 (Grummt
et al., 1985), or the methyltransferase Spout1 (also known
as C9ORF114), which codes for an essential pre-rRNA
processing factor (Tafforeau et al., 2013). Although our
data indicate that Endog does not act autonomously in
the establishment of the Chr. 3p teQTL, complex genetic
interactions with one or more of these dysfunctional
ribosome biogenesis genes may be required for the
translational phenotype to arise.

DISCUSSION

In this study, we use a QTL mapping strategy to define
the influence of natural genetic variation on the efficiency
of mRNA translation, with a focus on identifying distant,
trans-acting QTLs that control multiple genes. Genetic
influences on translation have previously been studied in
yeast (Albert et al., 2014; Muzzey et al., 2014) and a
cohort of human lymphoblastoid cell lines (LCLs) (Battle
et al., 2015; Cenik et al., 2015), albeit solely carried out
in in vitro culture systems with limited focus on distant
QTLs. These studies show that within the investigated
systems, the vast majority of (local) eQTLs are fed forward
into variation in protein levels, with limited specific impact
on translation ((Albert et al., 2014; Battle et al., 2015;
Cenik et al., 2015; Muzzey et al., 2014); reviewed in
(Albert & Kruglyak, 2015; Liu et al., 2016)). Although
we similarly see high concordance between local genetic
influences on mRNA expression and translation, we do
detect multiple teQTLs with specific and prominent effects
on the mammalian tissue gene expression landscape. The
most apparent effects are orchestrated through a limited
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set of distant master regulatory loci - or teQTL "hotspots"
- each controlling the TE of up to dozens of genes.
This widespread distant translational control is particularly
abundant in the heart and likely crucial for the adaptation
to developing (patho)physiological conditions, though may
be dormant (and hence go undetected) in unaffected tissue.

We mechanistically dissect a prominent distant teQTL
on rat chromosome 3 that drives a translatome-wide and
protein length-dependent change in TE. We show that this
teQTL induces a global shift in ribosome configurations and
triggers the formation of polysome half-mers, which we trace
back to a likely ribosome biogenesis defect that impairs de
novo translation initiation. To understand the basis of this
specific molecular phenotype and the consequences for
heart disease, it is important to know that length-dependent
differences in the efficiency of translation are present at
baseline in the translatomes of all species (Ciandrini et al.,
2013; Rogers et al., 2017; Shah et al., 2013). This
phenomenon has been directly connected to the rate of
translation initiation (Ciandrini et al., 2013; Rogers et al.,
2017; Shah et al., 2013) and is most likely explained
by varying rates of translation reinitiation (Rogers et al.,
2017). As a single round of translation at a short CDS
takes less time to complete, reinitiation rates are higher,
which ultimately yields more protein. Hence, when de
novo initiation rates are reduced because of a ribosome
biogenesis defect, this does not necessarily decrease the
efficiency of translation reinitiation, as both subunits have
already been recruited and properly assembled once. It
does make mRNAs more dependent on effective and
frequent reinitiation for their translational output, thereby
enhancing a pre-existing length-dependent imbalance in TE
- which is exactly what we observe in the rat hearts that carry
the SHR genotype at the Chr. 3p teQTL (Figure 4A+B).

Interestingly, deletion of SNORD24 was previously shown
to induce a half-mer (Kouba et al., 2012; Li et al., 2009)
and length-specific translational phenotype (Thompson
et al., 2016) very similar to what we observe in this study.
SNORD24, also known as SNR24 or U24, is a highly
conserved C/D box snoRNA required for the site-specific
2’-O-methylation of 28S rRNA during 60S ribosomal subunit

biogenesis (Kiss-László et al., 1996; Kouba et al., 2012;
Li et al., 2009; Qu et al., 1995). Its deletion in yeast
reduces 60S levels and subsequently induces a polysome
half-mer phenotype accompanied by a translatome-wide
and length-dependent shift in TE (Kouba et al., 2012;
Li et al., 2009; Thompson et al., 2016). In line with
these results, one of the most striking gene expression
changes we observe in association with the Chr. 3p
teQTL is the reduced ribosomal association of SNORA48.
Similar to SNORD24, SNORA48 is predicted to guide the
modification of 28S rRNA and its high abundance in the
rat heart could indicate that its misregulation is equally
detrimental for 60S ribosomal subunit biogenesis. The high
similarity between both phenotypes raises the possibility
that length-dependent changes in TE more commonly result
from ribosome biogenesis defects that induce polysome
half-mer formation. Even though all ribosomopathies
originate from defects in ribosome biogenesis, they often
lead to unique phenotypes with tissue-specific clinical
manifestations (Danilova & Gazda, 2015). This potential
and thus far overlooked consequence of translational
deficiencies shows apparent conservation from yeast to
mammals, and could be an important mediator of the
molecular changes that connect common ribosomopathies
with specific clinical symptoms (Narla & Ebert, 2010).

Our work shows that naturally occurring genetic
variation can induce a complex, translation-driven molecular
mechanism that globally reforms mammalian tissue gene
expression. Distant genetic control of mRNA translation
is frequent and contributes significantly to interindividual
phenotypic variability, coordinated by multiple master
regulatory loci that each regulate the TE of multiple genes.
We anticipate that adaptation of gene expression regulation
through mRNA translation is crucial for tissues developing
complex phenotypic traits and highlight a single locus that
influences TE in a protein length-dependent fashion, likely
as a result of a ribosome biogenesis defect that affects
translation initiation.

Author Contributions

Conceptualization, S.v.H. and N.H.; Methodology, S.v.H.; Software, F.W. and J.R.O; Validation, J.F.S.; Formal Analysis, F.W.,
J.R.O., V.S.L., G.P., O.H., L.B., M.V. and M.H.; Investigation, S.v.H., C.C.M., S.B., E.A., M.B.M. and J.F.S.; Resources, J.S., D.S., M.C.,
and M.P.; Data Curation, F.W., J.R.O., G.P. and O.H.; Writing - Original Draft, S.v.H.; Writing - Review & Editing, S.v.H. and J.R.O., with
input from all authors; Visualization, S.v.H., F.W., E.A., C.C.M. and J.R.O.; Supervision, S.v.H.; Project Administration, S.v.H. and N.H.;
Funding Acquisition, S.v.H. and N.H.

Acknowledgements

S.v.H. was supported by an EMBO long-term fellowship (ALTF 186-2015, LTFCOFUND2013, GA-2013-609409). N.H. is the
recipient of an ERC advanced grant under the European Union Horizon 2020 Research and Innovation Program (grant agreement
AdG788970) and is supported by a grant from the Leducq Foundation (16CVD03). M.P. was supported by Praemium Academiae award
(AP1502) of the Czech Academy of Sciences. D.S. was funded by Grant 20153810 from Fundació La Marató de TV3.

Declaration of Interests

The authors declare no competing interest

9

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.05.133298doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.133298
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES
Aguet F., Barbeira A. N., Bonazzola R., Brown A., Castel S. E., Jo B.,
Kasela S., Kim-Hellmuth S., Liang Y., Oliva M., et al. (2019). The
GTEx Consortium atlas of genetic regulatory effects across human
tissues. bioRxiv.

Aitman T. J., Glazier A. M., Wallace C. A., Cooper L. D.,
Norsworthy P. J., Wahid F. N., Al-Majali K. M., Trembling P. M.,
Mann C. J., Shoulders C. C., et al. (1999). Identification of Cd36
(Fat) as an insulin-resistance gene causing defective fatty acid and
glucose metabolism in hypertensive rats. Nature Genetics.

Albert F. W. & Kruglyak L. (2015). The role of regulatory variation
in complex traits and disease. Nature Reviews Genetics 16.(4),
197–212.

Albert F. W., Muzzey D., Weissman J. S. & Kruglyak L. (2014).
Genetic influences on translation in yeast.. PLoS genetics 10.(10).
Ed. by R. B. Brem, e1004692.

Anders S., Pyl P. T. & Huber W. (2015). HTSeq–a Python framework
to work with high-throughput sequencing data.. Bioinformatics
(Oxford, England) 31.(2), 166–9.

Arava Y., Wang Y., Storey J. D., Liu C. L., Brown P. O. & Herschlag D.
(2003). Genome-wide analysis of mRNA translation profiles in
Saccharomyces cerevisiae.. Proceedings of the National Academy
of Sciences of the United States of America 100.(7), 3889–94.

Arava Y., Boas F. E., Brown P. O. & Herschlag D. (2005). Dissecting
eukaryotic translation and its control by ribosome density mapping..
Nucleic acids research 33.(8), 2421–32.

Aspden J. L., Eyre-Walker Y. C., Phillips R. J., Amin U., Mumtaz
M. A. S., Brocard M. & Couso J.-P. (2014). Extensive translation of
small Open Reading Frames revealed by Poly-Ribo-Seq.. eLife 3,
e03528.

Atanur S. S., Diaz A. G., Maratou K., Sarkis A., Rotival M., Game L.,
Tschannen M. R., Kaisaki P. J., Otto G. W., Ma M. C. J., et al.
(2013). Genome sequencing reveals loci under artificial selection
that underlie disease phenotypes in the laboratory rat.. Cell 154.(3),
691–703.

Baird T. D., Palam L. R., Fusakio M. E., Willy J. A., Davis C. M.,
McClintick J. N., Anthony T. G. & Wek R. C. (2014). Selective
mRNA translation during eIF2 phosphorylation induces expression
of IBTKα. Molecular Biology of the Cell 25.(10). Ed. by S. Wolin,
1686–1697.

Battle A, Khan Z, Wang S. H., Mitrano A, Ford M. J.,
Pritchard J. K. & Gilad Y (2015). Genomic variation. Impact of
regulatory variation from RNA to protein. Science 347.(6222),
664–667.

Baud A., Guryev V., Hummel O., Johannesson M., Rat Genome
Sequencing and Mapping Consortium & Flint J. (2014). Genomes
and phenomes of a population of outbred rats and its progenitors..
Scientific data 1.(1), 140011.

Bottolo L., Petretto E., Blankenberg S., Cambien F., Cook S. A.,
Tiret L. & Richardson S. (2011a). Bayesian detection of expression
quantitative trait loci hot spots.. Genetics 189.(4), 1449–59.

Bottolo L., Chadeau-Hyam M., Hastie D. I., Langley S. R.,
Petretto E., Tiret L., Tregouet D. & Richardson S. (2011b). ESS++:
a C++ objected-oriented algorithm for Bayesian stochastic search
model exploration.. Bioinformatics (Oxford, England) 27.(4), 587–8.

Brandt M., Kim-Hellmuth S., Ziosi M., Gokden A., Wolman A.,
Lam N., Recinos Y., Hornung V., Schumacher J. & Lappalainen T.
(2020). An autoimmune disease risk variant has a trans master
regulatory effect mediated by IRF1 under immune stimulation.
bioRxiv.

Brar G. A., Yassour M., Friedman N., Regev A., Ingolia
N. T. & Weissman J. S. (2012). High-resolution view of the yeast
meiotic program revealed by ribosome profiling.. Science (New
York, N.Y.) 335.(6068), 552–7.

Brem R. B., Yvert G., Clinton R. & Kruglyak L. (2002). Genetic
dissection of transcriptional regulation in budding yeast.. English.
Science (New York, N.Y.) 296.(5568), 752–5.

Calviello L., Mukherjee N., Wyler E., Zauber H., Hirsekorn A.,
Selbach M., Landthaler M., Obermayer B. & Ohler U. (2016).

Detecting actively translated open reading frames in ribosome
profiling data.. Nature methods 13.(2), 165–70.

Calviello L., Sydow D., Harnett D. & Ohler U. (2019). Ribo-seQC:
comprehensive analysis of cytoplasmic and organellar ribosome
profiling data. bioRxiv.

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J.,
Bealer K. & Madden T. L. (2009). BLAST+: architecture and
applications.. BMC bioinformatics 10.(1), 421.

Cenik C., Cenik E. S., Byeon G. W., Grubert F., Candille S. I.,
Spacek D., Alsallakh B., Tilgner H., Araya C. L., Tang H., et al.
(2015). Integrative analysis of RNA, translation, and protein levels
reveals distinct regulatory variation across humans.. Genome
research 25.(11), 1610–21.

Chew G.-L., Pauli A. & Schier A. F. (2016). Conservation of
uORF repressiveness and sequence features in mouse, human and
zebrafish.. Nature communications 7.(1), 11663.

Chothani S., Schäfer S., Adami E., Viswanathan S., Widjaja A. A.,
Langley S. R., Tan J., Wang M., Quaife N. M., Jian Pua C., et al.
(2019). Widespread Translational Control of Fibrosis in the Human
Heart by RNA-Binding Proteins.. Circulation 140.(11), 937–951.

Ciandrini L., Stansfield I. & Romano M. C. (2013). Ribosome traffic
on mRNAs maps to gene ontology: genome-wide quantification of
translation initiation rates and polysome size regulation.. PLoS
computational biology 9.(1). Ed. by A. Rzhetsky, e1002866.

Colón-Ramos D. A., Shenvi C. L., Weitzel D. H., Gan E. C., Matts R.,
Cate J. & Kornbluth S. (2006). Direct ribosomal binding by a cellular
inhibitor of translation.. Nature structural & molecular biology 13.(2),
103–11.

Cox J. & Mann M. (2008). MaxQuant enables high peptide
identification rates, individualized p.p.b.-range mass accuracies
and proteome-wide protein quantification.. Nature biotechnology
26.(12), 1367–72.

Danilova N. & Gazda H. T. (2015). Ribosomopathies: how a
common root can cause a tree of pathologies.. Disease models
& mechanisms 8.(9), 1013–26.

Daugeron M. C. & Linder P (1998). Dbp7p, a putative
ATP-dependent RNA helicase from Saccharomyces cerevisiae, is
required for 60S ribosomal subunit assembly.. RNA (New York, N.Y.)
4.(5), 566–81.

Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S.,
Batut P., Chaisson M. & Gingeras T. R. (2013). STAR: ultrafast
universal RNA-seq aligner.. Bioinformatics (Oxford, England) 29.(1),
15–21.

Eisinger D. P., Dick F. A. & Trumpower B. L. (1997). Qsr1p, a 60S
ribosomal subunit protein, is required for joining of 40S and 60S
subunits.. Molecular and cellular biology 17.(9), 5136–45.

Flicek P., Amode M. R., Barrell D., Beal K., Billis K., Brent S.,
Carvalho-Silva D., Clapham P., Coates G., Fitzgerald S., et al.
(2014). Ensembl 2014.. Nucleic acids research 42.(Database
issue), D749–55.

Gandin V., Miluzio A., Barbieri A. M., Beugnet A., Kiyokawa H.,
Marchisio P. C. & Biffo S. (2008). Eukaryotic initiation factor 6
is rate-limiting in translation, growth and transformation.. Nature
455.(7213), 684–8.

Groenendyk J., Sreenivasaiah P. K., Kim D. H., Agellon
L. B. & Michalak M. (2010). Biology of Endoplasmic Reticulum
Stress in the Heart. Circulation Research 107.(10), 1185–1197.

Grummt I., Maier U., Ohrlein A, Hassouna N. & Bachellerie J. P.
(1985). Transcription of mouse rDNA terminates downstream of the
3’ end of 28S RNA and involves interaction of factors with repeated
sequences in the 3’ spacer.. Cell 43.(3 Pt 2), 801–10.

GTEx Consortium, Laboratory D. A.&.C.L.W. G., Statistical Methods
groups—Analysis Working Group, Enhancing GTEx (eGTEx)
groups, NIH Common Fund, NIH/NCI, NIH/NHGRI, NIH/NIMH,
NIH/NIDA, Biospecimen Collection Source Site—NDRI, et al.
(2017). Genetic effects on gene expression across human tissues..
Nature 550.(7675), 204–213.

Guan B.-J., Hoef V. van, Jobava R., Elroy-Stein O., Valasek L. S.,
Cargnello M., Gao X.-H., Krokowski D., Merrick W. C., Kimball S. R.,

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.05.133298doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.133298
http://creativecommons.org/licenses/by-nc-nd/4.0/


et al. (2017). A Unique ISR Program Determines Cellular
Responses to Chronic Stress.. Molecular cell 68.(5), 885–900.e6.

Harding H. P., Zhang Y., Bertolotti A., Zeng H. & Ron D. (2000).
Perk is essential for translational regulation and cell survival during
the unfolded protein response.. Molecular cell 5.(5), 897–904.

Heesch S. van, Witte F., Schneider-Lunitz V., Schulz J. F., Adami E.,
Faber A. B., Kirchner M., Maatz H., Blachut S., Sandmann C.-L.,
et al. (2019). The Translational Landscape of the Human Heart..
Cell 178.(1), 242–260.e29.

Heinig M., Petretto E., Wallace C., Bottolo L., Rotival M., Lu H., Li Y.,
Sarwar R., Langley S. R., Bauerfeind A., et al. (2010). A trans-acting
locus regulates an anti-viral expression network and type 1 diabetes
risk.. Nature 467.(7314), 460–4.

Hermsen R., Ligt J. de, Spee W., Blokzijl F., Schäfer S., Adami E.,
Boymans S., Flink S., Boxtel R. van, Weide R. H. van der, et al.
(2015). Genomic landscape of rat strain and substrain variation..
BMC genomics 16.(1), 357.

Hershey J. W. B., Sonenberg N. & Mathews M. B. (2012).
Principles of Translational Control: An Overview. Cold Spring
Harbor Perspectives in Biology 4.(12), a011528–a011528.

Hubner N., Wallace C. A., Zimdahl H., Petretto E., Schulz H.,
Maciver F., Mueller M., Hummel O., Monti J., Zidek V., et al.
(2005). Integrated transcriptional profiling and linkage analysis for
identification of genes underlying disease.. Nature genetics 37.(3),
243–53.

Ingolia N. T., Ghaemmaghami S., Newman J. R. S. & Weissman
J. S. (2009). Genome-wide analysis in vivo of translation with
nucleotide resolution using ribosome profiling.. Science (New York,
N.Y.) 324.(5924), 218–23.

Inomata H., Watanabe T., Iizuka Y., Liang Y.-Q., Mashimo T.,
Nabika T., Ikeda K., Yanai K., Gotoda T., Yamori Y., et al.
(2005). Identification of quantitative trait loci for cardiac hypertrophy
in two different strains of the spontaneously hypertensive rat..
Hypertension research : official journal of the Japanese Society of
Hypertension 28.(3), 273–81.

Kasowski M., Kyriazopoulou-Panagiotopoulou S., Grubert F.,
Zaugg J. B., Kundaje A., Liu Y., Boyle A. P., Zhang Q. C., Zakharia F.,
Spacek D. V., et al. (2013). Extensive variation in chromatin states
across humans.. Science (New York, N.Y.) 342.(6159), 750–2.

Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R. & Salzberg
S. L. (2013). TopHat2: accurate alignment of transcriptomes in
the presence of insertions, deletions and gene fusions.. Genome
biology 14.(4), R36.

Kiss-László Z., Henry Y., Bachellerie J. P., Caizergues-Ferrer
M. & Kiss T. (1996). Site-specific ribose methylation of preribosomal
RNA: a novel function for small nucleolar RNAs.. Cell 85.(7),
1077–88.

Kouba T., Rutkai E., Karásková M. & Valášek L. S. (2012). The
eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and
promotes assembly of translation preinitiation complexes.. Nucleic
acids research 40.(6), 2683–99.

Kumar P., Henikoff S. & Ng P. C. (2009). Predicting the effects of
coding non-synonymous variants on protein function using the SIFT
algorithm.. Nature protocols 4.(7), 1073–81.

Lestrade L. & Weber M. J. (2006). snoRNA-LBME-db, a
comprehensive database of human H/ACA and C/D box snoRNAs..
Nucleic acids research 34.(Database issue), D158–62.

Lewin A., Saadi H., Peters J. E., Moreno-Moral A., Lee J. C.,
Smith K. G. C., Petretto E., Bottolo L. & Richardson S.
(2016). MT-HESS: an efficient Bayesian approach for simultaneous
association detection in OMICS datasets, with application to eQTL
mapping in multiple tissues.. Bioinformatics (Oxford, England)
32.(4), 523–32.

Li G.-W., Burkhardt D., Gross C. & Weissman J. S. (2014).
Quantifying absolute protein synthesis rates reveals principles
underlying allocation of cellular resources.. Cell 157.(3), 624–35.

Li W., Wang W., Uren P. J., Penalva L. O. F. & Smith A. D. (2017).
Riborex: fast and flexible identification of differential translation from

Ribo-seq data.. Bioinformatics (Oxford, England) 33.(11). Ed. by
B. Berger, 1735–1737.

Li Z., Lee I., Moradi E., Hung N.-J., Johnson A. W. & Marcotte E. M.
(2009). Rational extension of the ribosome biogenesis pathway
using network-guided genetics.. PLoS biology 7.(10). Ed. by
M. B. Eisen, e1000213.

Liu B., Han Y. & Qian S.-B. (2013). Cotranslational Response to
Proteotoxic Stress by Elongation Pausing of Ribosomes. Molecular
Cell 49.(3), 453–463.

Liu Y., Beyer A. & Aebersold R. (2016). On the Dependency of
Cellular Protein Levels on mRNA Abundance.. Cell 165.(3), 535–50.

Love M. I., Huber W. & Anders S. (2014). Moderated estimation
of fold change and dispersion for RNA-seq data with DESeq2..
Genome biology 15.(12), 550.

Ludwig L. S., Lareau C. A., Bao E. L., Nandakumar S. K., Muus C.,
Ulirsch J. C., Chowdhary K., Buenrostro J. D., Mohandas N.,
An X., et al. (2019). Transcriptional States and Chromatin
Accessibility Underlying Human Erythropoiesis.. Cell reports
27.(11), 3228–3240.e7.

Mandelboum S., Manber Z., Elroy-Stein O. & Elkon R. (2019).
Recurrent functional misinterpretation of RNA-seq data caused by
sample-specific gene length bias.. PLoS biology 17.(11), e3000481.

Martin A. F. (1981). Turnover of cardiac troponin subunits. Kinetic
evidence for a precursor pool of troponin-I.. The Journal of biological
chemistry 256.(2), 964–8.

McDermott-Roe C., Ye J., Ahmed R., Sun X.-M., Serafín A.,
Ware J., Bottolo L., Muckett P., Cañas X., Zhang J., et al. (2011).
Endonuclease G is a novel determinant of cardiac hypertrophy and
mitochondrial function.. Nature 478.(7367), 114–8.

McLachlan G. J. & Krishnan T. (2008). “The EM Algorithm
and Extensions, 2E”. Wiley Series in Probability and Statistics.
Hoboken, NJ, USA: John Wiley & Sons, Inc.

McLaren W., Gil L., Hunt S. E., Riat H. S., Ritchie G. R. S.,
Thormann A., Flicek P. & Cunningham F. (2016). The Ensembl
Variant Effect Predictor.. Genome biology 17.(1), 122.

McLendon P. M. & Robbins J. (2015). Proteotoxicity and cardiac
dysfunction.. Circulation research 116.(11), 1863–82.

McShane E., Sin C., Zauber H., Wells J. N., Donnelly N., Wang X.,
Hou J., Chen W., Storchova Z., Marsh J. A., et al. (2016). Kinetic
Analysis of Protein Stability Reveals Age-Dependent Degradation.
Cell 167.(3), 803–815.e21.

McVicker G., Geijn B. van de, Degner J. F., Cain C. E., Banovich
N. E., Raj A., Lewellen N., Myrthil M., Gilad Y. & Pritchard J. K.
(2013). Identification of genetic variants that affect histone
modifications in human cells.. Science (New York, N.Y.) 342.(6159),
747–9.

Morris D. R. & Geballe A. P. (2000). Upstream open reading frames
as regulators of mRNA translation.. Molecular and cellular biology
20.(23), 8635–42.

Muzzey D., Sherlock G. & Weissman J. S. (2014). Extensive
and coordinated control of allele-specific expression by both
transcription and translation in Candida albicans.. Genome
research 24.(6), 963–73.

Narla A. & Ebert B. L. (2010). Ribosomopathies: human disorders
of ribosome dysfunction. Blood 115.(16), 3196–3205.

Palermo J., Gulick J., Colbert M., Fewell J. & Robbins J.
(1996). Transgenic remodeling of the contractile apparatus in the
mammalian heart. Circulation Research.

Petretto E., Sarwar R., Grieve I., Lu H., Kumaran M. K., Muckett P. J.,
Mangion J., Schroen B., Benson M., Punjabi P. P., et al. (2008).
Integrated genomic approaches implicate osteoglycin (Ogn) in the
regulation of left ventricular mass. Nature Genetics 40.(5), 546–552.

Pravenec M, Churchill P. C., Churchill M. C., Viklicky O, Kazdova L,
Aitman T. J., Petretto E, Hubner N, Wallace C. A., Zimdahl H, et al.
(2008). Identification of renal Cd36 as a determinant of blood
pressure and risk for hypertension. Nat Genet 40.(8), 952–954.

Printz M. P., Jirout M., Jaworski R., Alemayehu A. & Kren V.
(2003). Invited Review: HXB/BXH rat recombinant inbred strain

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.05.133298doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.133298
http://creativecommons.org/licenses/by-nc-nd/4.0/


platform: a newly enhanced tool for cardiovascular, behavioral,
and developmental genetics and genomics. Journal of Applied
Physiology 94.(6), 2510–2522.

Qu L. H., Henry Y., Nicoloso M., Michot B., Azum M. C.,
Renalier M. H., Caizergues-Ferrer M. & Bachellerie J. P. (1995).
U24, a novel intron-encoded small nucleolar RNA with two 12 nt
long, phylogenetically conserved complementarities to 28S rRNA..
Nucleic acids research 23.(14), 2669–76.

R Development Core Team (2016). “R: A Language and
Environment for Statistical Computing”.

Reimand J., Arak T., Adler P., Kolberg L., Reisberg S., Peterson
H. & Vilo J. (2016). g:Profiler-a web server for functional
interpretation of gene lists (2016 update).. Nucleic acids research
44.(W1), W83–9.

Rethinasamy P., Muthuchamy M., Hewett T., Boivin G., Wolska
B. M., Evans C., Solaro R. J. & Wieczorek D. F. (1998). Molecular
and physiological effects of alpha-tropomyosin ablation in the
mouse.. Circulation research 82.(1), 116–23.

Rintisch C., Heinig M., Bauerfeind A., Schafer S., Mieth C.,
Patone G., Hummel O., Chen W., Cook S., Cuppen E., et al. (2014).
Natural variation of histone modification and its impact on gene
expression in the rat genome.. Genome research 24.(6), 942–53.

Rogers D. W., Böttcher M. A., Traulsen A. & Greig D. (2017).
Ribosome reinitiation can explain length-dependent translation of
messenger RNA.. PLoS computational biology 13.(6). Ed. by
A. V. Morozov, e1005592.

Rotenberg M. O., Moritz M. & Woolford J. L. (1988). Depletion
of Saccharomyces cerevisiae ribosomal protein L16 causes a
decrease in 60S ribosomal subunits and formation of half-mer
polyribosomes.. Genes & development 2.(2), 160–72.

Schafer S., Adami E., Heinig M., Rodrigues K. E. C., Kreuchwig
F., Silhavy J., Heesch S. van, Simaite D., Rajewsky N.,
Cuppen E., et al. (2015). Translational regulation shapes the
molecular landscape of complex disease phenotypes.. Nature
communications 6.(May), 7200.

Schafer S., Marvao A. de, Adami E., Fiedler L. R., Ng B., Khin E.,
Rackham O. J. L., Heesch S. van, Pua C. J., Kui M., et al. (2017).
Titin-truncating variants affect heart function in disease cohorts and
the general population.. Nature genetics 49.(1), 46–53.

Schiattarella G. G., Altamirano F., Tong D., French K. M.,
Villalobos E., Kim S. Y., Luo X., Jiang N., May H. I., Wang Z. V.,
et al. (2019). Nitrosative stress drives heart failure with preserved
ejection fraction.. Nature 568.(7752), 351–356.

Shabalin A. A. (2012). Matrix eQTL: ultra fast eQTL analysis via
large matrix operations.. Bioinformatics (Oxford, England) 28.(10),
1353–8.

Shah P., Ding Y., Niemczyk M., Kudla G. & Plotkin J. B. (2013).
Rate-limiting steps in yeast protein translation.. Cell 153.(7),
1589–601.

Siegel A.-K., Planert M., Rademacher S., Mehr A. P., Kossmehl P.,
Wehland M., Stoll M. & Kreutz R. (2003). Genetic loci contribute to

the progression of vascular and cardiac hypertrophy in salt-sensitive
spontaneous hypertension.. Arteriosclerosis, thrombosis, and
vascular biology 23.(7), 1211–7.

Simonis M., Atanur S. S., Linsen S., Guryev V., Ruzius F.-P.,
Game L., Lansu N., Bruijn E. de, Heesch S. van, Jones S. J. M.,
et al. (2012). Genetic basis of transcriptome differences between
the founder strains of the rat HXB/BXH recombinant inbred panel..
Genome biology 13.(4), r31.

Sonenberg N. & Hinnebusch A. G. (2009). Regulation of translation
initiation in eukaryotes: mechanisms and biological targets.. Cell
136.(4), 731–45.

STAR Consortium, Saar K., Beck A., Bihoreau M.-T., Birney E.,
Brocklebank D., Chen Y., Cuppen E., Demonchy S., Dopazo J., et al.
(2008). SNP and haplotype mapping for genetic analysis in the rat..
Nature genetics 40.(5), 560–6.

Tafforeau L., Zorbas C., Langhendries J.-L., Mullineux S.-T.,
Stamatopoulou V., Mullier R., Wacheul L. & Lafontaine D. L. J.
(2013). The complexity of human ribosome biogenesis revealed
by systematic nucleolar screening of Pre-rRNA processing factors..
Molecular cell 51.(4), 539–51.

Taggart J. C. & Li G.-W. (2018). Production of Protein-Complex
Components Is Stoichiometric and Lacks General Feedback
Regulation in Eukaryotes.. Cell systems 7.(6), 580–589.e4.

Taggart J. C., Zauber H., Selbach M., Li G.-W. & McShane E.
(2020). Keeping the Proportions of Protein Complex Components
in Check.. Cell systems 10.(2), 125–132.

Thompson B. R. & Metzger J. M. (2014). Cell biology of sarcomeric
protein engineering: disease modeling and therapeutic potential..
Anatomical record (Hoboken, N.J. : 2007) 297.(9), 1663–9.

Thompson M. K., Rojas-Duran M. F., Gangaramani P. & Gilbert W. V.
(2016). The ribosomal protein Asc1/RACK1 is required for efficient
translation of short mRNAs.. eLife 5.

Wang X., Zhao B. S., Roundtree I. A., Lu Z., Han D., Ma H.,
Weng X., Chen K., Shi H. & He C. (2015). N6-methyladenosine
Modulates Messenger RNA Translation Efficiency. Cell 161.(6),
1388–1399.

Ward L. D. & Kellis M. (2012). Interpreting noncoding genetic
variation in complex traits and human disease.. Nature
biotechnology 30.(11), 1095–106.

Warton D. I., Duursma R. A., Falster D. S. & Taskinen S. (2012).
smatr 3- an R package for estimation and inference about allometric
lines. Methods in Ecology and Evolution 3.(2), 257–259.

Xiao Z., Zou Q., Liu Y. & Yang X. (2016). Genome-wide assessment
of differential translations with ribosome profiling data.. Nature
communications 7.(1), 11194.

Zhong Y., Karaletsos T., Drewe P., Sreedharan V. T., Kuo D.,
Singh K., Wendel H.-G. & Rätsch G. (2017). RiboDiff: detecting
changes of mRNA translation efficiency from ribosome footprints..
Bioinformatics (Oxford, England) 33.(1), 139–141.

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.05.133298doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.133298
http://creativecommons.org/licenses/by-nc-nd/4.0/


METHODS

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,
Norbert Hubner (nhuebner@mdc-berlin.de).

Materials availability
The transgenic SHR/Ola-Tg(CMV-Endog)136 rat line with rescued expression of Endog was newly established for this
study in the lab of Michal Pravenec (Institute of Physiology of the Czech Academy of Sciences, 142 20, Praha 4, Czech
Republic) and is available upon request.

Data and code availability
The accession number for the raw rat and mouse sequencing data reported in this paper, normalized and ready-to-use
sequencing read count matrices, as well as a further refined genotype map of the HXB/BXH recombinant inbred panel (list
of all SDPs and genotypes) is European Nucleotide Archive (ENA): PRJEB38096. All analyses in this study are performed
using published and publicly available analytical tools or software packages, with the precise software versions parameters
used detailed in the respective Methods sections. The code used for the implementation of these tools, as well as all
other computational analyses in this study, is available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal models
Six-week old male HXB/HXB RI rats (n = 30; left ventricle and liver), congenic SHR.BN-D3Rat108/D3Rat56 rats
(SHR.BN-(3L); n = 5; left ventricle), congenic SHR.BN-D3Rat108/D3Rat124 rats (SHR.BN-(3S); n = 5; left ventricle),
transgenic SHR/Ola-Tg rats expressing Endog (n = 5; left ventricle) and wild type SHR/Ola rats carrying an Endog LoF
mutation (n = 5; left ventricle) were housed, bred and fed ad libitum with a natural diet (Altromin 1314) in an air-conditioned
animal facility at the Czech Academy of Sciences, Prague, Czech Republic. All rat experimental procedures were
carried out in accordance with the European Union National Guidelines and the Animal Protection Law of the Czech
Republic (311/1997) and were approved by the Ethics Committee of the Institute of Physiology, Czech Academy of
Sciences, Prague. The congenic rat lines were designed as follows (as described in (McDermott-Roe et al., 2011)): For
(SHR.BN-D3Rat108/D3Rat56 or "SHR.BN-(3L)”), a longer genomic BN fragment (Chr3: 0-60 Mb) replaces the entire Chr.
3p teQTL in an otherwise fully SHR/Ola genetic background. For (SHR.BN-D3Rat108/D3Rat124 or "SHR.BN(3S)"), only a
shorter fragment (Chr3: 11.2-60 Mb) adjacent to, but not overlapping, the identified teQTL is replaced with a BN fragment.
Transgenic SHR/Ola-Tg(CMV-Endog)136 strain (hereafter referred to as the SHR-Endog transgenic) was derived by
microinjecting fertilized eggs with a mix of the Sleeping Beauty construct containing Endog cDNA of BN origin under
control of the universal EF-1α promoter and mRNA of the SB100X transposase. Transgenic rats were detected using PCR
with the following primers: Endog-F 5’-CGA CAC CTT CTA CCT GAG CA-3’ and Endog-R 5’-GGC CCT GTG CAG ACA
TAA AC-3’.

The Endog KO mouse was derived from a C57BL/6J background and provided by Dr. Michael Lieber, University of
Southern California, LA, CA, USA (Irvine et al., 2005). From the provided founder animals, a colony was established and
actively maintained for multiple years within the lab of Daniel Sanchis (Institut de Recerca Biomedica de Lleida, Spain)
(McDermott-Roe et al., 2011). The six-week old male mice used for Ribo-seq and RNA-seq experiments were housed
in Tecniplast GM500 cages (391 x 199 x 160 mm) never exceeding 5 adults / cage. The investigation with this mouse
line was approved by the Experimental Animal Ethic Committee of the University of Lleida (code CEEA N02-02/15) and
conforms to the Guide for the Care and Use of Laboratory Animals, 8th Edition, published in 2011 by the US National
Institutes of Health.

All rat and mouse animals used in this study were drug and test naive, specific pathogen free (SPF) and not involved in
previous procedures.

METHOD DETAILS

Generating a genotype map of the HXB/BXH panel
To refine an existing (STAR Consortium et al., 2008; Rintisch et al., 2014) genotype map of the HXB/BXH panel and
convert this map to the latest rat genome assembly (rn6), we genotyped the 30 HXB/BXH recombinant inbred panel lines
using a custom designed Affymetrix RATDIV SNP Array at 805,399 variable genetic positions, as described previously
(Baud et al., 2014). In short, genotyping was performed according to the Affymetrix SNP chip 6.0 protocol using 250 ng
(RNase A-treated) genomic DNA, isolated from rat liver tissue and digested with StyI and NspI, respectively. Genotypes
were called and high-quality markers were selected from the 805,399 genotyped SNPs. For this, the original 25-mer
Affymetrix probes were first remapped to the latest Ensembl rat genome build (Rnor 6.0) (Flicek et al., 2014) using BLAST
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(Camacho et al., 2009), requiring the wild type or variant probe to map uniquely within the entire rat genome (as described
previously in (Baud et al., 2014)). We furthermore excluded (i) SNPs within 13 base pairs of an indel, (ii) missing or
heterozygous variant calls, (iii) monomorphic markers, and (iv) SNPs with a call rate lower than 0.99. The resulting
genotype calls could be collapsed into 2,957 genotype blocks, or strain distribution patterns (SDPs), with an average size
of 0.75 Mb. Collapsing genotypes into SDPs increased the power for downstream QTL mapping, as not every SNP had to
be tested individually. An SDP changed to a next SDP as soon as one of the 30 lines consistently switched genotypes.
As some SDPs can occur more than once in the genome, e.g. by chance or because of genotyping or genome assembly
errors, we merged such SDPs into a single, globally uniquely occurring SDP, whilst preserving positional information.
Subsequently, we merged identical SDPs if separated by a single alternating SDP (e.g. due to a SNP genotyping error).
This results in a set of 1,685 unique SDPs that we subsequently used for QTL mapping.

Ribosome profiling of heart and liver tissue
For ribosome profiling and mRNA-seq, snap-frozen and powdered tissue was obtained from the animals described in the
"Animal models" section. For all samples except for the transgenic Endog rats and the Endog knockout mice (see below),
ribosome profiling was performed using the TruSeq Ribo Profile (Mammalian) Library Prep Kit (Illumina, San Diego, CA;
USA), according to a TruSeq Ribo Profile protocol optimized for use on tissue material, as described previously (Heesch
et al., 2019; Schafer et al., 2015). In short, ± 50-100 mg powdered tissue was lysed for 10 minutes on ice in 1 mL lysis
buffer consisting of 1 × TruSeq Ribo Profile mammalian polysome buffer, 1% Triton X 100, 0.1% NP 40, 1 mM dithiothreitol,
10 U ml-1 DNase I, cycloheximide (0.1 mg ml-1) and nuclease-free H2O. Using immediate repeated pipetting and multiple
passes through a syringe with a 21G needle we dissociated tissue clumps to create a homogenous lysate that facilitates
quick and equal lysis of the tissue powder. Samples were next centrifuged at 20,000g for 10 minutes at 4◦C to pellet
cell and tissue debris. Per sample, 400-800µL of lysate was further processed according to the TruSeq Ribo Profile
(Mammalian) Reference Guide with the additional modification of 8% PAGE selection directly after PCR amplification of
the final library. For all samples, ribosome profiling library size distributions were checked on the Bioanalyzer 2100 using a
high sensitivity DNA assay (Agilent; 5067-4626), multiplexed and sequenced on an Illumina HiSeq 2500 producing single
end 1x51nt reads. HXB/BXH RI panel samples were always processed in large batches of maximum 30 samples to avoid
a sample processing bias.

For heart tissue of transgenic and wild type SHR/Ola rats, as well as Endog knockout and wild type C57BL/6 mice,
a slightly modified procedure was used due to the termination of the TruSeq RiboProfile kit production by Illumina. The
isolation of ribosome footprints is identical to the procedure with the TruSeq kit and as described in (Heesch et al., 2019),
except for the use of 7.5uL Ambion RNase 1 (ThermoFisher Scientific AM2295; 100U/uL). Following footprint isolation
and PAGE purification, footprints were phosphorylated (NEB T4 PNK; New England Biolabs M0201) and used as input for
small RNA library prep using the NEXTflex Small RNA-Seq Kit v3 (Bioo Scientific - PerkinElmer NOVA-5132-06). Libraries
were prepared according to manufacturer’s instructions (V19.01), size-selected on 8% PAGE gels (ThermoFisher Scientific
EC6215BOX) and QC’d on a Bioanalyzer 2100 (high sensitivity DNA assay; Agilent; 5067-4626). Libraries displayed an
average size of 157 bp and were sequenced in a multiplexed manner averaging 4 samples per lane on an Illumina HiSeq
4000. Downstream Ribo-seq data QC shows identical read quality, library complexity and footprint periodicity as libraries
generated by Illumina’s TruSeq RiboProfile procedure.

Replicate HXB/BXH Ribo-seq experiments
On average, each genomic locus within the HXB/BXH RI panel is shared by 15 animals, as all 30 RI lines are a homozygous
mixture of 2 genetic backgrounds (BN-Lx and SHR/Ola). To assess the biological variability across individual animals of
each HXB/BXH RI line, we performed replicate Ribo-seq experiments on liver tissue of 3 animals (i.e. biological replicates)
for 2 of the 30 RI lines: BXH12 and BXH13. For each, we find Pearson correlations > 0.99 across biological replicates,
reassuring the high quality of our data and reproducibility of the library preparation and sequencing approach (Figure S1C).

mRNA-seq and totRNA-seq
For mRNA-seq and totRNA-seq, total RNA was isolated using TRIzol Reagent (Invitrogen; 15596018) using 5-10mg rat
and mouse tissue of the exact same powdered tissue samples (from the exact same animals) used for Ribo-seq. RNA
was DNase treated and purified using the RNA Clean & Concentrator™-25 kit (Zymo Research; R1018). RIN scores were
measured on a BioAnalyzer 2100 using the RNA 6000 Nano assay (Agilent; 5067-1511). Poly(A)-purified mRNA-seq
libraries or ribosomal RNA depleted totRNA-seq libraries were generated from the same sample of high quality RNA
(average RNA Integrity Number (RIN) for HXB/BXH rats of 9.1 (Figure S1A). RNA-seq library preparation was performed
according to the TruSeq Stranded mRNA or total RNA Reference Guide, using 500ng of total RNA as input. Libraries were
multiplexed and sequenced on an Illumina HiSeq 2500 or 4000 producing paired-end 2x101nt reads.

Polysome profiling of congenic rat hearts
Powdered left ventricular heart tissue (3 replicates per congenic line) was lysed in polysome lysis buffer composed of 20
mM Hepes pH 7.5, 5 mM MgCl2, 300 mM KCl, 2 mM DTT, 100 µg/mL cycloheximide, 0.2% NP-40 and 40 U/µL RNAseOut
(Invitrogen). Following a 30-minute incubation at 4 ◦C in rotation, the lysed tissue samples were centrifugated for 15
minutes at 20,000 × g at 4 ◦C. An aliquot of the lysate was used to quantify total RNA concentration using the Direct-zol
RNA kit (R2051; Zymo, USA) according to the manufacturer’s instructions. From the clear supernatants of the lysates,
15 µg of total RNA was loaded onto 10 – 50% linear sucrose gradients prepared in polysome buffer (20 mM Hepes pH
7.5, 5 mM MgCl2 and 300 mM KCl, 2 mM DTT), and centrifuged at 32,000 rpm (129,311 × g) (SW40Ti rotor, Beckman)
for 177 minutes at 4 ◦C. Sucrose gradient fractions were separated using a Biocomp Piston gradient fractionation system
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associated to a Biorad fraction collector (Biorad model 2110 Fraction Collector) into 42 fractions of 300 µl each, and the
absorbance was monitored at 254 nm with an ultraviolet absorbance detector (Biorad model EM-1 Econo UV monitor)
to record the polysome profile. Fractions corresponding to the monosomes, light, medium, and heavy polysomes were
pooled separately. RNA was extracted with 3x volumes of TriFast-FL (VWR, USA) and purified using Direct-zol RNA kit
(Zymo, USA) according to the manufacturer’s instructions. RNA was DNase treated and purified using the RNA Clean &
Concentrator™-25 kit (Zymo Research; R1018). RIN scores were measured on a BioAnalyzer 2100 using the RNA 6000
Nano assay (Agilent; 5067-1511). Ribosomal RNA-depleted totRNA-seq libraries were generated from high quality RNA
(Table S1). RNA-seq library preparation was performed according to the TruSeq Stranded total RNA Reference Guide,
using 200ng of total RNA as input. Libraries were multiplexed and sequenced on an Illumina HiSeq 4000 producing paired
2x78nt reads.

Sequencing data alignment
Prior to mapping, ribosome-profiling reads were clipped for residual adapter sequences and filtered for mitochondrial,
ribosomal RNA and tRNA sequences. Next, we trimmed the 2x101 nt mRNA-seq reads to 29-mers (matching Ribo-seq
footprint lengths, which peak at 28-29 nt) and processed those mRNA reads exactly the same as the ribosome profiling
data, in order to avoid a downstream mapping or quantification bias due to read length or filtering. For mapping of the
HXB/BXH rat RI panel data, we first used Tophat2 v2.1.0 (Kim et al., 2013) to align the full-length 2x101 nt mRNA-seq
against the rat reference genome (Rattus Norvegicus rn6, Ensembl release 82), in order to obtain all splicing events
naturally occurring in heart and liver tissue. Next, all 29-mer trimmed mRNA and ribosome profiling data were mapped
using the splice junction information gathered from the alignment of the full-length mRNA-Seq reads. TopHat2 was used
for the initial sequencing data alignment and splice junction determination of the HXB/BXH data analysis, as at the time
this project was initiated current state-of-the-art alignment tools were not yet available. Sequencing data was aligned to
the reference genome, and not to reconstructed SNP-infused genomes, because the number of allowed mismatches per
29-mer (2 mismatches) suffices to overcome a mapping bias caused by SHR-specific SNPs. We tested this reasoning
extensively by aligning replicate trimmed mRNA-seq and Ribo-seq data of SHR/Ola animals (5 replicates) (Schafer et al.,
2015) to the BN reference genome or to an SHR/Ola SNP-infused genome. Moreover, we detected no significantly
differentially expressed genes i.e. genes for which the expression change could be attributed to a mapping bias driven by
local genetic variation. On average, for the HXB/BXH Ribo-seq data we can uniquely align 27.8M Ribo-seq reads for left
ventricular tissue samples and 41.5M Ribo-seq reads for liver tissue samples, equaling between 71% and 87% of the total
number of sequenced reads used for mapping.

For Ribo-seq and RNA-seq data obtained from congenic rats, transgenic rats, knockout mice and polysome fractionation
experiments, sequencing alignment strategies were identical to described above, but using STAR 2-pass v2.7.1a (Dobin
et al., 2013) instead of TopHat2 to improve mapping accuracy and speed. Mice data was mapped to the Mus Musculus
reference genome mm10, Ensembl release 85. We used STAR to align the previous datasets mapped with Tophat2 and
we found Pearson correlations > 0.99 across both methods, supporting the reproducibility of the data regardless of the
mapping algorithm. Data QC of all Ribo-seq libraries was performed using Ribo-seQC v1.1 (Calviello et al., 2019).

Identifying translated open reading frames
To define the set of translated genes in rat heart and liver, we used RiboTaper v1.3 (Calviello et al., 2016) with standard
settings to detect open reading frames that display the characteristic 3-nt codon movement of actively translating
ribosomes. For each sample we selected only the read lengths for which at least 70% of the reads matched the primary
ORF in a meta-gene analysis. This results in the inclusion of footprints of the most prominent read lengths: 28 and 29
nucleotides. The final list of translation events was stringently filtered requiring the translated gene to have an average
mRNA-seq RPKM ≥1 and be detected as translated by RiboTaper in at least 10 out of 30 HXB/BXH RI lines. We did
not only retain canonical translation events, but also translated short ORFs (sORFs) detected in long noncoding RNAs
(lncRNAs), or upstream ORFs (uORFs) positioned in front of primary ORFs of annotated protein-coding genes. LncRNA
sORFs were required to not show sense and in-frame overlap with annotated protein coding genes. We categorically
grouped noncoding genes with antisense, lincRNA, and processed transcript biotypes as long noncoding RNAs (lncRNAs),
if they matched specific filtering criteria described previously (van Heesch et al., 2019). Upstream ORFs encompass
both independently located (non-overlapping) and primary ORF-overlapping translation events. Primary ORF-overlapping
uORFs were distinguished from in frame, 5’ extensions of the primary ORF requiring each overlapping uORF to have
a translation start site before the start of the canonical CDS, to end within the canonical CDS (prior to the annotated
termination codon) and to be translated in a different frame than the primary ORF i.e. to produce a different peptide. We
combined both types of uORFs into a single uORF category as we detect no differential impact of each uORF category on
the primary ORF TE, in accordance with previous work (Heesch et al., 2019). For the visualization of P-site tracks (Figure
S3C) we used plots generated by Ribo-seQC (Calviello et al., 2019).

Quantifying mRNA expression and translation
Gene- or feature-specific expression quantification was restricted to annotated and identified translated (coding) sequence
and performed using HTSeq v0.9.1 (Anders et al., 2015) with default parameters. For quantification of the Ttn gene,
which codes for the longest protein existing in mammals, we used a custom annotation (Heesch et al., 2019; Schafer
et al., 2017) as Ttn is not annotated in the current rat gene annotation. For this reason, Ttn was initially not included in
the QTL mapping analyses, but later on added to define the effect of its length on Ttn’s translational efficiency. Moreover,
we masked one of the two identical SURF cluster regions in the rat genome (chr3:4,861,753-4,876,317 was masked
and chr3:5,459,480-5,459,627 was included), as both regions shared 100% of nucleotide identity and the six expressed
SURF genes could not be unambiguously quantified. In parallel to the counting strategy outlined above, for quantifying
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ribosome association in small and long noncoding RNAs, we additionally ran HTSeq on exonic gene sequences allowing
for multiple mapped counts, as many snoRNAs exhibit high sequence homology and they cannot be quantified using only
unique counts. In summary, we thus used (i) uniquely mapping CDS-centric counts for mRNA and translational efficiency
quantifications, and (ii) multimapping-allowed exonic counts for noncoding RNA quantifications (e.g. SNORA48).

The mRNA-seq and Ribo-seq count data was normalized using a joint normalization procedure (DESeq2 v1.26.0
(Love et al., 2014)) as suggested previously (Xiao et al., 2016). This allows for the determination of size-factors for both
datasets in a joint manner, as both count matrices follow the same distribution. This is crucial for the comparability of
the two sequencing-based measures of gene expression, which for instance becomes important for calculating a gene’s
translational efficiency (TE). The TE of a gene can be calculated by taking the ratio of Ribo-seq reads over mRNA-seq
reads (Ingolia et al., 2009), or, when biological replicates are available, calculated via specialized DESeq2-based tools (Li
et al., 2017; Xiao et al., 2016; Zhong et al., 2017). As we here require sample-specific TE values for downstream genetic
association testing with QTL mapping, we regress out the measured mRNA-seq expression from the Ribo-seq expression
levels using a linear model. This allows us to derive residuals for each sample-gene pair, that we subsequently subject to
QTL mapping. Thus, the TE refers to the residuals of the linear model: resid (lm (normalized_Ribo-seq_read_counts ∼
normalized_mRNA-seq_read_counts)). The main advantage of TE values obtained with this calculation is that we retain a
quantitative range suitable for QTL mapping, which would not be the case for ratio-based TEs.

Pairwise association testing using Matrix eQTL
In order to understand the impact of genetic variants on gene expression regulation, we performed quantitative trait locus
(QTL) mapping using the linear regression model-based Matrix eQTL v2.1.1 (Shabalin, 2012). For association testing,
non-unique SDPs are grouped and associations of surrounding SDPs are considered when defining the correct SDP
location, thereby avoiding falsely assigned distant QTLs because of misplaced contigs in the rn6 rat genome assembly.
For this, we reasoned that true associations are likely visible in surrounding SDPs, as genotype changes between two
neighboring SDPs are usually gradual, and only a statistically unlikely multitude of recombination events between two
neighboring SDPs would fully quench the detected association. After each association is assigned to the correct SDP,
we performed a Benjamini-Hochberg correction on local and distant associations separately. A QTL is defined as ’local’ if
it meets an FDR threshold ≤ 0.05 and when it locates within the SDP block of the gene locus for which the association
was detected. Similarly, a distant QTL is defined as a trait-associated locus when it meets an FDR threshold ≤ 0.1 and is
located on a chromosome different from the one that hosts the associated gene. Subsequently, we performed permutation
testing to determine the significance of local and distant associations, by deriving the distribution of test statistics under
the null hypothesis that there is no association. We therefore randomized all samples in the gene expression matrix and
performed 10,000 runs of Matrix eQTL on the original genotype matrix. A significant association was defined as having an
empirical p-value ≤ 0.0015 (less than 15 more extreme p-values in 10,000 permutations). For all types of QTLs tested in
this study (eQTLs, riboQTLs, teQTLs and uORF-QTLs), the same association settings and filtering criteria are applied.
Throughout the manuscript, QTL numbers reported are gene-centric, i.e. if for instance two neighboring SDPs show
significant association with the same gene, a single association is counted. When a given genes associates with both local
and distant SDPs, these associations are reported separately. We additionally tested all available technical covariates for
a potential impact on our results. These included (i) date of tissue processing, (ii) individual who prepared the libraries, (iii)
RIN of the sample, (iv) library concentration (after PCR amplification), (v) date of library PCR and (vi) sequencing batch.
None of these technical covariates showed a significant impact on our data (ANOVA p-values between 0.11 and 0.97;
using the first PC1 that describes 50-80% of the variance in the data), and were thus not considered during subsequent
analyses. All detected significant association results are reported in Table S2 (eQTLs, riboQTLs and teQTLs) and Table
S3 (uORF-QTLs).

Detection of tissue-specific and recurrent QTLs
Gene expression can be regulated in a highly tissue- and cell-type specific manner and genetic effects on mRNA
expression can similarly be both specific to, or shared amongst, tissues or cell types (Aguet et al., 2019; GTEx Consortium
et al., 2017). Considering only genes expressed in both tissues, both eQTLs and teQTLs show limited recurrence in
QTL detection, indicative of high tissue specificity. Even though 83% of genes with cardiac eQTLs (605 out of 727) and
66% of genes with liver eQTLs (248 out of 377) are expressed in both tissues, we could only detect the same eQTL for
126 of these (17%). Similarly, the vast majority genes with teQTLs are expressed in both tissues (88% and 100% in
heart and liver, respectively), though only a small fraction of teQTLs (n = 20; 9%) was independently detected in both.
All but one of these recurrent eQTLs and teQTLs result from local associations (Table S2), indicating strong enrichment
of recurrent local over distant QTLs. This is in line with previous observations across human tissues (Aguet et al., 2019;
GTEx Consortium et al., 2017) and, in our study, likely influenced by the higher detection sensitivity for local over distant
QTLs. A single distant eQTL for Tmcc2 forms the exception being regulated in trans in both tissues (Table S2). Although
isoform-specific expression regulation of human TMCC2, driven by local changes in chromatin dynamics, was previously
shown to be of biological importance (Ludwig et al., 2019), its distant control was not yet known.

Finding causal variants for local teQTLs
To identify potential causal variants underlying teQTLs, we infused our genotype maps with known SHR/Ola- and
BN-Lx-specific indels and SNVs that were previously identified through whole-genome sequencing (Atanur et al., 2013;
Hermsen et al., 2015; Simonis et al., 2012). Among all genes with a local QTL (either eQTL, riboQTL or teQTL; Table
S2), we detect only 8 coding sequence variants with a predicted deleterious consequence resulting in one stop gain, one
essential splice-site mutation and six missense mutations (Kumar et al., 2009; McLaren et al., 2016). Of these, only a
single missense variant in the Lss gene is associated with TE in the heart (teQTL padj = 0.0014; Table S2). We find no
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variants altering the local translation initiation context or Kozak sequence - a previously proposed frequent cause of local
teQTLs (Cenik et al., 2015).

Detecting distant QTL hotspots with HESS
HESS (Bottolo et al., 2011a) is a generic Bayesian variable selection approach, associated with an evolutionary stochastic
search algorithm (Bottolo et al., 2011b), and developed to tackle the challenging integrative task of linking parallel
high-dimensional multivariate regressions in a computationally efficient way. When q genes are predicted by the same set
p of SNPs, in HESS the prior probability of association between gene k (k = 1,. . . ,q) and SNP j (j = 1,. . . ,p) is decomposed
into its marginal effects, i.e., πk,j = πkxρj ,πk,jε[0, 1] . In this formulation, ρj ≥ 0 captures the relative “propensity” for
SNP j to influence several genes at the same time. The SNP specific “propensity” ρj inflates/deflates the probability πk

of selecting any SNP to be associated with gene k in a multiplicative fashion, i.e., the baseline risk for gene k to be
associated to any SNP is increased/decreased by the “propensity” of SNP j to be a key regulatory marker or “hotspot”.
For each gene k, the a priori baseline risk and the corresponding level of sparsity are controlled through a suitable choice
of the hyper-parameters of the densityρ(πk). We ran R2HESS v1.0.1 (Lewin et al., 2016) with default parameters. The
marginal posterior probability of inclusion γ̂k,j = E(γk,j|Y, γk,j) indicates the strength of association between gene k and
SNP j after observing the data Y and it is calculated as the number of times a particular gene-SNP pair has been selected.
Significant gene-SNP associations were declared using a non-parametric FDR approach, where a mixture model of two
beta densities was chosen to model the null H0 and the alternative H1 distributions. We ran the Expectation-Maximization
algorithm (McLachlan & Krishnan, 2008) on γ̂k,j (k = 1,. . . ,q, j = 1,. . . ,p) to estimate the parameters of mixture model and,
for a fixed FDR level, we calculated the optimal cut-off point on t such that the estimated FDR is not greater that the
desired one. Finally, the proportion of genes associated with each SNP is defined as the average number of genes that
are significantly predicted by each SNP. This measure helps to prioritize SNPs that influence multiple genes at the same
time and allows the discovery of so-called regulatory hot-spots, i.e., genetic loci that are associated with a large number of
mRNAs.

Western blot analysis and quantification
Frozen left ventricle tissues from congenic rats (SHR.BN-(3S) and SHR.BN-(3L)) were lysed in ice-cold modified
RIPA buffer (150 mM NaCl, 50 mM Tris HCL pH 7.4, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 5 mM
EDTA and 2 mM EDTA) containing protease (cOmplete™, EDTA-free Protease Inhibitor Cocktail) and phosphatase
(PhosSTOP) inhibitors as described in (Schiattarella et al., 2019). After incubation on ice for 30 min, samples were
centrifuged at 20,000 g for 15 min at 4◦C and supernatants were transferred to new pre-chilled tubes. Proteins were
denatured for 10 min at 70◦C in NuPAGE LDS Sample Buffer (4X) (Invitrogen; NP0007) and NuPAGE Sample Reducing
Agent (10X) (Invitrogen; NP0009) and separated on NuPAGE 4-12% Bis-Tris Protein Gels (Invitrogen; NP0343BOX)
for 30 min in MES buffer (Invitrogen; NP0002) at 200 V. Gels were blotted on PVDF membranes (Immobilon-PSQ
Membrane, Merck Millipore; ISEQ00010) and membranes were stained with the following primary antibodies: p-IRE1α
Ser724 (NB100-2323, Novus Biological), IRE1α (3294, Cell Signaling Technology), XBP1s (83418S, Cell Signaling
Technology), GAPDH (ab125247, Abcam), HSP60 (12165, Cell Signaling Technology) and TOM20 (42406, Cell Signaling
Technology). Protein expression was measured with chemiluminescence and quantified using Image Studio Lite software
(version 5.2, LI-COR). Background-subtracted densitometric signals from SHR.BN-(3S) and SHR.BN-(3L) samples were
normalized against the loading control (and the unphosphorylated protein form in case of p-IRE1α Ser724) and statistical
significant differences between SHR.BN-(3S) and SHR.BN-(3L) samples were determined using unpaired Student’s t-tests.

Stoichiometry of the cardiac thin filament
The thin filament is composed of five sarcomere subunits -Actc1,Tpm1,Tnnc1,Tnnt2,Tnni3- where each unit has a known
proportion of 7:1:1:1:1 (Thompson & Metzger, 2014). So as to study how the production rates of the five thin filament
proteins deviate from the compositionally stoichiometric optimal ones in the HXB/BXH RI and the congenic rat samples,
we estimated the observed proportions by correcting the DESeq2-normalized counts by CDS length and by gene turnover
rate. Gene turnover rates for Actc1, Tpm1, Tnnc1, Tnnt2, and Tnni3 have been previously estimated to be 10.3, 5.3, 3.2,
3.5, and 5.5 days, respectively (Martin, 1981).

Excluding a technical basis for the length effect
Theoretically, sample-specific gene length biases can artificially induce length-related expression differences that in turn
contribute to incorrect enrichment of GO terms related to short (e.g. ribosomal) or long (e.g. ECM) proteins (Mandelboum
et al., 2019). However, for multiple reasons we deem it highly unlikely that a technical or analytical bias could be
responsible for the length-dependent effect observed in our study. First, the RI lines are all genetic mosaics and the
length-dependency is specific for a single locus. Second, the length effect is specific to the heart and absent in liver.
Third, data generation, normalization and statistical analysis are all identical for all sequencing samples analyzed. Fourth,
no single documented technical covariate explains any of the variance across samples (e.g. date of tissue processing,
library preparation batch, sequencing flow cell, or RNA integrity of the sample; see Table S1). Fifth, Ribo-seq and
polysome fractionation experiments in congenic lines fully reproduce the translation phenotype, indicating a model- and
technology-independent effect. Sixth, the effect is absent in RNA-seq data and the correlation with length is stronger for
CDS length than for total transcript length. Lastly, previous work on SNORD24 revealed a highly similar polysome half-mer
phenotype accompanied by a length-dependent effect on TE (Thompson & Metzger, 2014).
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QUANTIFICATION & STATISTICAL ANALYSES

The generation of figures and execution of statistical tests were performed using R (R Development Core Team,
2016). GO enrichment analyses were performed using gProfiler2 v0.1.8 (Reimand et al., 2016Reimand et al., 2016).
A detailed list of software used for data processing, quantification and analysis is stated in the respective Methods
sections. We used DESeq2 v1.26.0 (Love et al., 2014) to perform differential gene expression analyses for mRNA-seq
and Ribo-seq data. Differentially expressed genes were defined with an FDR ≤ 0.05 and a log2 fold change ≤ 1/1.2
or ≥ 1*1.2 for downregulated and upregulated genes respectively. Correlation coefficients between coding sequence
(CDS) length and fold changes (FC) in gene expression were based on the Standardized Major Axis (sma) Estimation
model (R package ‘smatr’) (Warton et al., 2012). Only CDS with a minimum length of 100 nucleotides and an average
number of DESeq2-normalized counts higher than 10 were considered for correlation analyses and plotting. Statistical
parameters such as the value of n, mean/median, standard deviation (SD) and significance level are reported in the
figures and/or in the figure legends. The “n” represents the number of animals in Figure 1A, Figure S1F and the Methods
section "Experimental model and subject details", or the number of genes with QTLs in Figure 1E, the Results section
"Identification of translational efficiency QTLs in the HXB/BXH panel" and the Methods section "Detection of tissue-specific
and recurrent QTLs". The “padj” represents the FDR significance values calculated by DESeq2 in Figure 2F, Figure 4C
and Figure 4D.
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Supplemental Information

Supplemental Tables and Legends

Table S1, related to Figure 1 - Sample information for all sequenced rat and mouse tissue samples, including
all open reading frames (ORFs) detected in rat heart and liver. Provided as a separate Excel file.

Table S2, related to Figure 1 - Table with local and distant QTL mapping results for rat heart and
liver. Includes mRNA expression level QTLs (eQTLs), ribosome occupancy QTLs (riboQTLs) and translational
efficiency QTLs (teQTLs). Provided as a separate Excel file.

Table S3, related to Figure 1 - Table with upstream ORFs identified in rat heart and liver and detected
uORFs-QTLs. Provided as a separate Excel file.

Table S4, related to Figure 2 - Table with cardiac QTL hotspots as identified by HESS (see STAR
methods). Provided as a separate Excel file.
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Figure S1: Identification of translational efficiency QTLs in the HXB/BXH panel, related to Figure 1. (A) Bar plot
with RNA integrity numbers (RIN values) for total RNA isolated from rat heart (top) and liver (bottom). The dashed line
indicates the average RIN of 9.11, illustrating the high integrity of the processed tissue samples. (B) Stacked bar plots
with sequencing read filtering statistics for heart (top) and liver (bottom) tissue. Reads derived from ribosomal RNA
(rRNA), mitochondrial RNA (mtRNA) and transfer RNA (tRNA) are removed from the mRNA-seq and Ribo-seq data
prior to mapping. This results in a set of ’cleaned reads’, which are used as input for mapping and downstream data
analyses. (C) Correlation analyses and scatter plots for biological replicate Ribo-seq data for 3 replicates of two RI lines
(BXH12 and BXH13), illustrating the high technical reproducibility of our Ribo-seq approach across biological replicates.
(D) Correlation scatter plots for heart (left) and liver (right) tissue, showing the correlation between mean mRNA-seq and
Ribo-seq based quantifications of gene expression. (E) Correlation scatter plots between mRNA-seq or Ribo-seq reads
and rat liver proteomics data, as quantified using iBAQ values obtained from MaxQuant (Cox & Mann, 2008). Ribo-seq is a
slightly better proxy for final protein levels than mRNA-seq (Pearson’s r = 0.60 vs 0.53). (F) Dot plot showing the ribosome
footprint (Ribo-seq read) length distribution across the 30 lines in rat heart (left) and liver (right). (G) Venn diagrams with
tissue-specific comparisons of all identified translated genes, translated lncRNAs and translated uORFs. (H) Bar plot
with a meta-analysis of stacked P-sites derived from Ribo-seq reads in heart (top) and liver (bottom) tissue. Blue bars
indicate the number (left) and percentage (right) of footprints that precisely match annotated protein-coding gene open
reading frames (ORFs; ± 90%). (I) Bar plots with significance values for detected local (top) and distant (bottom) eQTLs
and riboQTLs, sorted by the delta of the p-values for both quantitative traits (bottom track of each panel). This analysis
illustrates that most eQTLs are prolonged during translation, though they may sometimes near-miss the significance
cutoff. Concordant with the teQTL results, this analysis furthermore highlights a highly translation-specific set of QTLs. (J)
Dot plots with expression values for 2 genes with a highly specific local teQTL in rat hearts. Bars indicate mean values.
(K) Rtel1 is the only gene for which a local teQTL and uORF-QTL coincide, though both associations occur with similar
directionality (lower translation associate with the SHR/Ola genotype). (L) Bee swarm dot plots with correlation values
(Spearman’s rho) between the translation rates of uORFs and the primary ORF TE in heart and liver. Genes with uORFs
that show a strong negative correlation with primary ORF translation are highlighted in red. Overall, most uORFs seem to
positively correlate with primary ORF TE, as previously reported for the human heart (Heesch et al., 2019). (M) Two rare
examples of genes with strongly anti-correlating translation rates for the uORF vs. the primary ORF.
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Figure S2: The chromosome 3p teQTL regulates cardiac translation in a protein length-dependent manner, related
to Figure 2. (A) Stacked bar plot showing the number of associated genes (i.e. with specific QTLs) in the rat heart, for
Matrix eQTL, HESS or both. HESS is especially powerful for the detection of distant associations where a single locus
can be linked to multiple genes. (B) Circos plot with all distant master regulatory teQTLs that associate with the TE of
at least 5 genes (as in Figure 2A). For each identified distant QTL hotspot, gene-specific TE dot box plots are given for
all associated genes. The teQTL coordinates, i.e. the genotype block linked to each set of genes, can be derived from
the SDP ID (e.g. SDPG_03006314843 starts at Rat rn6 Chr3:6,314,843). Per teQTL, genes are ordered by effect size
and directionality. See also Table S4. (C) Scatter plots and square correlation coefficients (r2) based on standardized
major axis (SMA) values between total transcript length, 5’ UTR length, or 3’ UTR length versus the fold change (FC) in
gene expression, as measured by Ribo-seq in congenic rat hearts. Obtained correlation coefficients (r2) are lower than
that of the comparison between CDS length and FC in translation (see Figure 2E), indicating that CDS length is the main
determinant of the translational efficiency phenotype. For UTR length versus FC in gene expression, only cases with at
least 10 DESeq2-normalized counts in both SHR.BN-(3L) and SHR.BN-(3S) rats are displayed. For total transcript length
versus FC in gene expression, the correlation is significant (p-value < 2.2 x 10-16; Test of correlation coefficient against
zero) and the linear model based on fitted SMA method is displayed as a red line.
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Figure S3: Impaired ribosome assembly and half-mer formation drive the chromosome 3p teQTL, related to Figure
3. (A) Rat congenic line comparison of differences in polysomal configuration as measured by normalized area under
curves (AUCs) of the polysome profiles, for SHR.BN-(3L) (grey) and SHR.BN-(3S) (green). (B) Left panel: dot plots
with RIN values of HXB/BXH RI lines separated by Chr. 3p teQTL genotype. RIN values shown are calculated on the
Agilent BioAnalyzer 2100 using the RNA nano assay. The middle panel contains dot plots of the HXB/BXH RI lines, with
(i) 18S abundance, (ii) 28S abundance and (iii) 28S / 18S ratios, as calculated by the percentage of total RNA with an
Agilent BioAnalyzer 2100 RNA nano assay. The right panel contains dot box plots comparing congenic rat line mean
mRNA expression values for ribosomal protein genes involved in the structure of the 40S (SSU) and 60S (LSU) ribosomal
subunits. Values are separated by local genotype at the chromosome 3p teQTL locus and only left ventricular heart tissue
RNA data is shown. Error bars indicate mean values with standard deviation (SD). All these analyses indicate no imbalance
between the production levels of both ribosomal subunits. (C) Meta-gene codon 3-nt periodicity bar plots displaying P-sites
of 29-nt ribosome footprints to illustrate the similarity in translation elongation rates between both congenic lines. The
visualized data are a merger of all replicate SHR.BN-(3L) (grey, top) and SHR.BN-(3S) (green, bottom) Ribo-seq 29-nt
footprints. Plots are generated with Ribo-seQC (Calviello et al., 2019) and modified to only display the following sections
of genes: (i) 25nt before and 33nt after the start codon, followed by (ii) 33nt from the middle of the CDS, and finally (iii)
33nt before and 25nt after the stop codon (Calviello et al., 2019). (D) Western blots and dot plots with quantification of
band intensities for the ER stress markers IRE1-alha phosphorylation (normalized for IRE1-alpha and TOM20 expression;
top) and XBP1s production (normalized for GAPDH expression; bottom). Error bars indicate mean values with SD. These
protein level analyses show no difference in the expression or activation of typical ER stress response markers. (E) Scatter
plot showing CDS length versus fold change (FC (SHR.BN-(3S) vs SHR.BN-(3L)) for Ribo-seq data, highlighting all genes
with actively translated uORFs in the rat heart. The square correlation coefficient (r2) based on standardized major axis
(SMA) is calculated using expression values of this subset of uORF-containing genes only, and precisely matches that of
the whole translatome (r2 = 0.20), showing that there is no differential regulation of genes with uORFs as opposed to the
full set of translated genes.
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Figure S4: Reduced de novo translation rates reinforce a pre-existing length-bias in TE. (A) Multi-species alignment
for the H/ACA box snoRNA SNORA48, highlighting functional domains (H box, pseudouridylation guide, ACA box), as
obtained from snoRNABase v3 (snoRNA-LBME-db; visited: March 2020) (Lestrade & Weber, 2006). (B) Schematic
visualization of the rat chromosome 3 teQTL and a summary of the expressed genes within this region. Expression values
for Endog are given. Heatmaps show scaled and normalized expression values. (C) Scatter plots for CDS length versus the
fold change (FC) in gene expression as measured by Ribo-seq in Endog-/- mice vs WT mice (left) and transgenic SHR/Ola
rats with partially rescued Endog expression versus wild type SHR/Ola (right). Ribo-seq was performed on 5 hearts per
condition (see also Table S1), though reveals no correlation between CDS length and translation suggesting that Endog
knockout or transgenic rescue alone is not sufficient to induce or ameliorate the CDS length-dependent shift in TE.
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