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Abstract 53 

Identification of pregnancies at risk of preterm birth (PTB), the leading cause of newborn deaths, 54 

remains challenging given the syndromic nature of the disease. We report a longitudinal multi-55 

omics study coupled with a DREAM challenge to develop predictive models of PTB. We found 56 

that whole blood gene expression predicts ultrasound-based gestational ages in normal and 57 

complicated pregnancies (r=0.83), as well as the delivery date in normal pregnancies (r=0.86), 58 

with an accuracy comparable to ultrasound. However, unlike the latter, transcriptomic data 59 

collected at <37 weeks of gestation predicted the delivery date of one third of spontaneous (sPTB) 60 

cases within 2 weeks of the actual date. Based on samples collected before 33 weeks in 61 

asymptomatic women we found expression changes preceding preterm prelabor rupture of the 62 

membranes that were consistent across time points and cohorts, involving, among others, 63 

leukocyte-mediated immunity. Plasma proteomic random forests predicted sPTB with higher 64 

accuracy and earlier in pregnancy than whole blood transcriptomic models (e.g. AUROC=0.76 vs. 65 

AUROC=0.6 at 27-33 weeks of gestation). 66 

 67 

  68 
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Introduction 69 

Early identification of patients at risk for obstetrical disease is required to improve health outcomes 70 

and develop new therapeutic interventions. One of the “great obstetrical syndromes”1, preterm 71 

birth, defined as birth prior to the completion of 37 weeks of gestation, is the leading cause of 72 

newborn deaths worldwide. In 2010, 14.9 million babies were born preterm, accounting for 11.1% 73 

of all births across 184 countries—the highest preterm birth rates occurring in Africa and North 74 

America2. In the United States, the rate of prematurity remained fundamentally unchanged in 75 

recent years3 and it has an annual societal economic burden of at least $26.2 billion4. The high 76 

incidence of preterm birth is concerning: 29% of all neonatal deaths worldwide, approximately 1 77 

million deaths in total, can be attributed to complications of prematurity5. Furthermore, children 78 

born prematurely are at increased risk for several short- and long-term complications that may 79 

include motor, cognitive, and behavioral impairments6,7.  80 

Approximately one-third of preterm births are medically indicated for maternal (e.g. preeclampsia) 81 

or fetal conditions (e.g. growth restriction); the other two-thirds are categorized as spontaneous 82 

preterm births, inclusive of spontaneous preterm labor and delivery with intact membranes (sPTD), 83 

and preterm prelabor rupture of the membranes (PPROM)8. Preterm birth is a syndrome with 84 

multiple etiologies9, and its complexity makes accurate prediction by a single set of biomarkers 85 

difficult. While genetic risk factors for preterm birth have been reported10, the two most powerful 86 

predictors of spontaneous preterm birth are a sonographic short cervix in the midtrimester, and a 87 

history of spontaneous preterm birth in a prior pregnancy.11 As for prevention of the syndrome, 88 

vaginal progesterone administered to asymptomatic women with a short cervix in the midtrimester 89 

reduces the rate of preterm birth < 33 weeks of gestation by 45% and decreases the rate of neonatal 90 

complications, including neonatal respiratory distress syndrome12-14. The role of 17-alpha-91 
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hydroxyprogesterone caproate for preventing preterm delivery in patients with an episode of 92 

preterm labor is controversial15,16.  93 

 94 

To compensate for the suboptimal prediction of preterm birth by currently used biomarkers, 95 

alternative approaches to identify biomarkers have been proposed, such as focusing on fetal and 96 

placenta-specific signatures17, with the latter eventually refined by single-cell genomics17,18, and 97 

by expanding the types of data collected via multi-omics platforms10,19,20. While molecular profiles 98 

have been shown to be strongly modulated by advancing gestation in the maternal blood 99 

proteome21,22, transcriptome17,23, and vaginal microbiome24,25, the timing of delivery based on such 100 

molecular clocks of pregnancy is still challenging17. A recent meta-analysis26 suggests that specific 101 

changes in the maternal whole blood transcriptome associated with spontaneous preterm birth are 102 

largely consistent across studies when both symptomatic and asymptomatic cases are involved and 103 

when the samples collected at or near the time of preterm delivery are also included. However, the 104 

accuracy of predictive models to make inferences in asymptomatic women early in pregnancy has 105 

not been evaluated. This topic is important, since early identification is necessary to develop 106 

treatment strategies to reduce the impact of prematurity. 107 

 108 

Therefore, we generated longitudinal whole blood transcriptomic and plasma proteomic data on 109 

216 women and leveraged the Dialogue for Reverse Engineering Assessments and Methods 110 

(DREAM) crowdsourcing framework27 to engage over 500 members of the computational biology 111 

community and robustly assess the value of maternal blood multi-omics data in two sub-112 

challenges. In sub-challenge 1, we assessed maternal whole blood transcriptomic data for 113 

prediction of gestational age in normal and complicated pregnancies using the last menstrual 114 
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period (LMP) and ultrasound estimate as the gold standard, and showed that predictions are robust 115 

to disease-related perturbations. To avoid potential biases in the gold standard, in a post-challenge 116 

analysis, we have also predicted delivery dates in women with spontaneous birth (Fig. 1), and 117 

found similar prediction performance. In sub-challenge 2, we evaluated within- and cross-cohort 118 

prediction of preterm birth leveraging longitudinal transcriptomic data in asymptomatic women 119 

generated herein and by Heng et al.28 in a cohort in Calgary. The separate consideration of both 120 

spontaneous preterm birth phenotypes, i.e. spontaneous preterm delivery with intact membranes 121 

(sPTD) and premature prelabor rupture of membranes (PPROM), allowed us to pinpoint that 122 

previously reported leukocyte activation-related RNA changes preceding preterm birth are shared 123 

across cohorts only for the PPROM phenotype but not sPTD. Moreover, the evaluation of plasma 124 

proteomics and blood multi-omics data to determine the earliest stage in gestation when 125 

biomarkers have predictive value (Fig. 1), also make this study unique, and led to the conclusion 126 

that changes in plasma proteomics can be detected earlier and are more accurate than whole blood 127 

transcripomics for prediction of preterm birth. In addition to the transcriptomic signatures of 128 

gestational age and the multi-omics signatures of preterm birth that were identified herein, this 129 

work sets a benchmark for evaluation of longitudinal omics data in pregnancy research. The 130 

computational lessons and algorithms for risk prediction from longitudinal omics data derived 131 

herein can also impact future studies. 132 

 133 
Results 134 

Prediction of gestational age by maternal whole blood transcriptomics  135 

We have generated and shared with the community exon-level gene expression data profiled in 136 

703 maternal whole blood samples collected from 133 women enrolled in a longitudinal study at 137 

the Center for Advanced Obstetrical Care and Research of the Perinatology Research Branch, 138 
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NICHD/NIH/DHHS; the Detroit Medical Center; and the Wayne State University School of 139 

Medicine. The patient population included women with a normal pregnancy who delivered at term 140 

(≥37 weeks) (Controls, N=49), women who delivered before 37 completed weeks of gestation by 141 

spontaneous preterm delivery with intact (sPTD, N=34) or ruptured (PPROM, N=37) membranes, 142 

and women who experienced an indicated delivery before 34 weeks due to early preeclampsia 143 

(N=13) (Dataset Detroit_HTA Fig. 2a). After including data from 16 additional normal 144 

pregnancies from the same population23 (Dataset GSE1139, 32 transcriptomes), the resulting set 145 

of 149 pregnancies (see demographic characteristics in Table S1), totaling 735 transcriptomes, 146 

was divided randomly into training (n=367) and test (n=368) sets; the latter set excludes publicly 147 

available data to avoid the possibility that the models are trained with data to be used for testing 148 

(Fig. S1). The research community was challenged to use data from the training set to develop 149 

gene expression prediction models for gestational age, as defined by the last menstrual period 150 

(LMP) and ultrasound fetal biometry, and to make predictions based only on gene expressions in 151 

the test set. The clinical diagnosis and sample-to-patient assignments were not disclosed to the 152 

challenge participants, while gestational age at the time of sampling was also blinded for the test 153 

set. Teams were allowed to submit up to 5 predictions for the test samples, and the best submission 154 

(smallest Root Mean Squared Error, RMSE) was retained for each unique team. We received 331 155 

submissions for this sub-challenge from 87 participating teams, of which 37 teams provided the 156 

required details on the computational methods used to be qualified for the final team ranking in 157 

this sub-challenge (Table S2). 158 

  159 

Team ranking robustness analysis (see Methods) suggested that the predictions of the first-ranked 160 

team were significantly better (Bayes factor > 3) than those of the second- and third-ranked teams 161 
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(Fig. S2). Among the top 20 teams, the most frequent methods used to select predictor genes 162 

included univariate gene ranking and meta-gene building via principal components analysis as 163 

well as literature-based gene selection. Common prediction models included neural networks, 164 

random forest, and regularized regression (LASSO and ridge regression), with the latter being used 165 

by the top ranked team in this sub-challenge.   166 

 167 

The model generated by the first-ranked team in sub-challenge 1 (Team 1) predicted the test set’s 168 

gestational ages at blood draw with an RMSE of 4.5 weeks (Pearson correlation between actual 169 

and predicted values, r=0.83, p<0.001) (Fig. 2b). This prediction model (M_GA_Team1) was 170 

based on ridge regression, and the predictors were meta-genes derived by using principal 171 

components from expression data of 6,106 genes. As shown in Fig. 2b, the gestational age 172 

predictions showed little bias in second trimester (14-28 weeks) samples (mean error 0.6 weeks); 173 

however, gestational ages predicted of first trimester samples were overestimated (mean error 3.7 174 

weeks) while the third-trimester samples were underestimated (mean error -1.96 weeks). This 175 

finding can be understood, in part, by the larger number of second trimester samples relative to 176 

first- and third trimester samples, available for training of the model. Of interest, the prediction 177 

errors for complicated pregnancies were similar to those of normal pregnancies (ANOVA, p>0.1), 178 

suggesting that this model, in general, was robust to obstetrical disease- and parturition-related 179 

perturbations in gene expression data (Fig. S3).  180 

 181 

To identify a core transcriptome predicting gestational age in normal and complicated pregnancies 182 

that captures most of the predictive power of the full model (M_GA_Team1) that involved >6000 183 

predictor genes, we combined linear mixed effects modeling for longitudinal data to prioritize gene 184 
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expressions and then used these as input in a LASSO regression model. The resulting 249 gene 185 

regression model (M_GA_Core) (Fig. S4, Table S3) had an RMSE=5.1 weeks (Pearson 186 

correlation between actual and predicted values, r=0.80) and involved two tightly connected 187 

modules related to immune response, leukocyte activation, inflammation- and development-188 

related Gene Ontology biological processes (Fig. 2c, Table S4). We previously reported that 189 

several member genes of these networks (e.g. MMP8, CECAM8, and DEFA4) were most highly 190 

modulated in the normal pregnancy group used herein29, and others have shown the same to be 191 

true at a cell-free RNA level in a Danish cohort17. In addition, these data are consistent with the 192 

concept that pregnancy is characterized by a systemic cellular inflammatory response30-34. In this 193 

study, we also show that these mediators correlate with gestational age in both normal and 194 

complicated pregnancies, and the latter group contributed more than half of the transcriptomes 195 

used to fit and evaluate the models (Table S1).  196 

 197 

Comparison of gene expression models and clinical standard in predicting time to delivery 198 

in women with spontaneous term or preterm birth 199 

To enable a direct comparison with a previous landmark study of pregnancy dating by targeted 200 

cell-free RNA profiling17, we used the same methods as described above for model 201 

M_GA_Team1, except for the use of a time variable defined backward from delivery and, hence, 202 

independent of LMP and ultrasound estimations [Time to delivery, TTD=Date at sample – Date at 203 

delivery (weeks)], as response. As in the study by Ngo et al17, only those patients with spontaneous 204 

term delivery were included in this analysis, thus omitting even the subset of normal pregnancies 205 

that had been truncated by elective cesarean delivery. The prediction performance on the test set 206 

of the resulting model (M_sTD_TTD) was compared to the LMP and ultrasound fetal biometry, 207 
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with the latter predicting delivery at 40 weeks of gestation. As shown in Fig. 3a, the gene 208 

expression model significantly predicted time to delivery with the same accuracy (RMSE, 4.5 209 

weeks, r=0.86, p<0.001) as when predicting LMP and ultrasound-based gestational age in the full 210 

cohort of normal and complicated pregnancies. The test set accuracy of the gene expression model, 211 

defined as predicting delivery within one week of the actual date35, was 45% (5/11) based on third 212 

trimester samples, which is comparable to the LMP and ultrasound estimate based on first or 213 

second trimester fetal biometry (55%). Of note, 45% accuracy was also reported by Ngo et al17  214 

using cell free RNA based on second and third trimester samples.  215 

 216 

When data from all pregnancies with spontaneous term delivery were used to train a transcriptomic 217 

model of time to delivery, and apply it to data from women with spontaneous preterm birth, the 218 

prediction was found to be statistically significant. However, the error increased (RMSE=5.6) (Fig. 219 

3b) relative to the estimate (RMSE=4.5) for prediction of time to delivery in women with 220 

spontaneous term delivery (Fig. 3a). The additional preterm parturition-specific perturbations in 221 

gene expression explain, in part, the added uncertainty in prediction estimates of TTD in 222 

spontaneous preterm birth cases compared to spontaneous term pregnancies. Moreover, as 223 

expected, the term pregnancy TTD model overestimated the duration of pregnancy of women who 224 

were destined to experience preterm birth (Fig. 3b). The overestimation (mean prediction error) 225 

was 2.3 weeks compared to the five-week gap between the LMP and ultrasound-based gestational 226 

ages at delivery in the term (mean, 39 weeks) and preterm (mean, 34 weeks) birth groups. Based 227 

on data of 1 to 4 samples collected at 24-37 weeks of gestation for each woman with preterm birth, 228 

the M_sTD_TTD model identified 33% of pregnancies to be at risk of delivery within 2 weeks or 229 

already past due, with one-half of these, 16% (11/70), predicted to deliver ±1 week from the actual 230 
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date. This finding contrasts with the LMP-and-ultrasound method, which predicted no cases 231 

delivering within ±1 or ±2 weeks of the actual delivery date. This evidence further suggests that 232 

the M_sTD_TTD model captured both gene expression changes related to immune- and 233 

development-related processes establishing the age of pregnancy as well as the effects of the 234 

common pathway of parturition36,37. Hence, it generalized to the set of women with spontaneous 235 

preterm birth when samples at or near delivery were included and genome-wide gene expression 236 

data were available.  237 

 238 

Prediction of preterm birth by maternal blood omics data collected in asymptomatic women 239 

(sub-challenge 2) 240 

In this study, we demonstrated that a transcriptomic model of maternal blood derived from data of 241 

women with spontaneous term delivery (M_sTD_TTD) can predict spontaneous preterm birth 242 

when the data has been collected early in pregnancy as well as near or at the time of preterm 243 

parturition up to less than 37 weeks. With sub-challenge 2 of the DREAM Preterm Birth Prediction 244 

Challenge, we addressed the more difficult task of predicting preterm birth from data collected up 245 

to 33 weeks of gestation while the women were asymptomatic. Of importance, the development 246 

of interventions to prevent preterm birth requires pregnant women at risk to be identified as early 247 

as possible before the onset of preterm parturition. Moreover, to enable future targeted studies of 248 

candidate biomarkers, the maximum number of predictor genes that participating teams could use 249 

as predictors in this sub-challenge was limited to a total of 100 genes for prediction of both 250 

phenotypes of preterm birth: sPTD and PPROM.  251 

 252 
 After the first phase of sub-challenge 2 in which predictions were optimistically biased, given the 253 

confounding effects of the gestational ages at sampling (see Methods), we drew from the Detroit 254 
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cohort longitudinal study (Fig. 4a) only samples collected at specific gestational-age intervals 255 

while women were asymptomatic (i.e., prior to an eventual diagnosis of spontaneous preterm 256 

delivery or PPROM). Two scenarios of prediction of preterm birth were devised to include cases 257 

and controls with available samples collected at the 17-23 and 27-33 weeks (Fig. 4a); a third 258 

scenario involved patients with available samples collected at three gestational age intervals (17-259 

22, 22-27, and 27-33 weeks) (Fig. 4b). The selection of the 17-23 and 27-33 week intervals enabled 260 

cross-study model development and testing with the microarray gene expression study of Heng et 261 

al.28 derived from a cohort in Calgary, Canada. Furthermore, we also included the profiles of 1,125 262 

maternal plasma proteins measured by using an aptamer-based technique38,39 in samples collected 263 

at 17-23 and 27-33 weeks of gestation from 66 women prior to the diagnosis of preterm birth (62 264 

sPTD and 4 PPROM). These samples were profiled in the same experimental batch with samples 265 

from 39 normal pregnancies that we previously described22,40, which herein served as controls 266 

(Fig. 4c). The characteristics of pregnancies with available proteomics profiles are shown in Table 267 

S1. 268 

 269 
The prediction algorithms generated by 13 teams who participated in the second phase of sub-270 

challenge 2 were applied by the Challenge organizers to train and test models on 70 pairs of 271 

training/test datasets generated under 7 scenarios (Table 1). The scenarios differed in terms of 272 

omics data type, number of longitudinal measurements per patient, the outcome being predicted, 273 

and the patient cohorts used for training/testing (Table 1). In all cases, there were no differences 274 

in terms of number of samples and gestational age at sampling between the cases and controls 275 

(Fig. 4). 276 

 277 

Scenario  Platform Sample GA 
(weeks) 

Train set Test set Number of 
datasets 

Outcomes 
predicted 
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C2 Transcriptomics 17-23 & 27-33 Calgary Calgary 10* sPTD, PPROM 
D2 Transcriptomics 17-23 & 27-33 Detroit Detroit 10* sPTD, PPROM 
D3 Transcriptomics 17-22 & 22-

27& 27-33 
Detroit Detroit 10* sPTD, PPROM 

CtoD Transcriptomics 17-23 & 27-33 Calgary Detroit 10+ sPTD, PPROM 
DtoC Transcriptomics 17-23 & 27-33 Detroit Calgary 10+ sPTD, PPROM 

CDtoD Transcriptomics 17-23 & 27-33 Calgary + Detroit Detroit 10** sPTD, PPROM 
DP2 Proteomics 17-23 & 27-33 Detroit Detroit 10* sPTD, sPTB 

 278 
Table 1: Scenarios of spontaneous preterm birth model training and testing using multi-279 
omics data. *Subjects in the original cohort were randomly split into equally sized groups that 280 
were balanced with respect to the phenotypes. ** One-fifth of patients from the Detroit cohort 281 
(balanced with respect to the phenotypes) were randomly selected in the training set while the 282 
remaining four-fifths were used as the test set. +Training set subjects were sampled with 283 
replacement from the original cohort to create different versions of the training set, and the trained 284 
model was then applied to the original test cohort. sPTB, spontaneous preterm birth; sPTD, 285 
spontaneous preterm delivery with intact membranes; PPROM, preterm prelabor rupture of 286 
membranes. 287 

 288 
To assess the prediction performance of the test set in sub-challenge 2, we used both the Area 289 

Under the Receiver Operating Characteristic Curve (AUROC) as well as the Area Under the 290 

Precision-Recall Curve (AUPRC), the latter being especially suited for imbalanced datasets, e.g., 291 

the proteomics set that features more cases than controls (Fig. 4c).  292 

 293 
Figure 5 depicts the resulting 28 prediction performance scores (7 scenarios x 2 outcomes x 2 294 

metrics) for each team after the conversion of AUROC and AUPRC metrics into Z scores. Final 295 

team rankings were obtained by aggregating the ranks over all prediction performance scores that 296 

were significant, according to at least one team, after multiple testing correction (Table S5). A 297 

rank robustness analysis (Fig. S5) determined that the first-ranked team outperformed the second-298 

ranked team and that the second- and third-ranked teams outperformed the fifth-ranked team 299 

(Bayes factor > 3). For all scenarios (Table 1), the models of Team 1 involved data from 50 genes 300 

collected at the last available measurement (closest to delivery), while Team 2 used data collected 301 

at the last two available time points for 50 genes selected based on overall expression as opposed 302 

to correlation with the outcome. Among other differences in their approaches, Team 1 treated the 303 
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outcome as a binary variable while Team 2 used a continuous variable derived from gestational 304 

age at delivery (see Methods). Of note, the top two ranked teams were the same in both sub-305 

challenges 1 and 2. 306 

 307 
As depicted in Fig. 6a, with the approach of Team 1, one transcriptomic profile at 27-33 weeks of 308 

gestation from asymptomatic women predicted PPROM across the cohorts and microarray 309 

platforms [AUROC=0.6 (0.56-0.64)] when training the model on the Calgary cohort and testing 310 

on the Detroit cohort. Nearly the same performance [AUROC=0.61 (0.56-0.66)] was observed 311 

when one-fifth of the Detroit set was added to the Calgary cohort so that microarray platform and 312 

cohort effects can be accounted for during the data preprocessing and model training. Prediction 313 

of PPROM when training on the Detroit cohort and testing on the Calgary cohort was shy of 314 

significance [AUROC=0.54 (0.5-0.57)] based on one sample collected at the 27-33 weeks interval 315 

but increased to an AUROC of 0.6 (0.56−0.63); if, in a post-challenge analysis, borrowing from 316 

the approach of Team 2, for the same predictor genes, the data from both time points (17-22 and 317 

27-33 weeks of gestation) were used as independent predictors in the model of Team 1 (Fig S6). 318 

Although separate differential expression analyses of the data from each cohort and time point 319 

failed to reach statistical significance after multiple testing correction, the consistency across 320 

cohorts and time points of gene expression changes preceding the diagnosis of PPROM was 321 

demonstrated by an individual patient data meta-analysis, which identified 402 differentially 322 

expressed genes after adjusting for cohort and time point (moderated t-test q-values <0.1) (Fig. 323 

6b, Table S6). A highly connected protein-protein interaction sub-network corresponding to genes 324 

significant in this meta-analysis is shown in Fig. 6c, illustrating some of the Gene Ontology 325 

biological processes significantly enriched in PPROM and included vesicle-mediated transport and 326 

leukocyte- (myeloid and lymphocyte) mediated immunity, among others (Table S7). These data 327 
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are consistent with the hypothesis that circulating myeloid (monocytes and neutrophils) and 328 

lymphoid (T cells) cells are especially activated in women who experience pregnancy 329 

complications such as preterm labor41-44 and PPROM45. 330 

 331 
Unlike PPROM, changes in the maternal whole blood transcriptome preceding spontaneous 332 

preterm delivery with intact membranes were not shared across cohorts at either the 17-23 or 27-333 

33 week intervals. Within the Detroit cohort, prediction of spontaneous preterm delivery was best 334 

performed by Team 2, whose approach leveraged information from the last-available two time 335 

points; the prediction performance was significant [AUROC=0.66 (0.6-0.73)] if the data collected 336 

at 22-27 and 27-33 weeks of gestation were used, and it was not significant if the data collected at 337 

17-22 and 27-33 weeks of gestation were used instead (Fig. S7). This finding is in agreement with 338 

previous observations that that closer the sampling to the clinical diagnosis, the higher the 339 

predictive value of the biomarkers40,46,47. Of interest, 20 of the 50 most highly expressed genes in 340 

the Detroit cohort, chosen as predictors by Team 2, showed a significant correlation with 341 

gestational age at delivery at both time points simultaneously, suggesting a within-cohort-across-342 

time-point consistency in gene expression changes with gestational age at delivery (q<0.1) (Table 343 

S8). 344 

 345 

Although participating teams in this sub-challenge did not have access to the longitudinal plasma 346 

proteomics data in preterm birth included herein when they developed prediction algorithms, their 347 

algorithms, when applied to the plasma proteomics set (Fig. 4c), resulted in models with test 348 

prediction performances that surpassed those obtained using transcriptomic data (Fig. 5 and Table 349 

S5 and Fig. 7a). Prediction of spontaneous preterm delivery by the approach of Team 1 involved 350 

50 plasma proteins selected by random forest model importance from the panel of 1,125 available 351 
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proteins. The test set accuracy was the highest when using data collected at 27-33 weeks of 352 

gestation [AUROC=0.76 (0.72-0.8)] (Fig. 7A, Table S9). However, importantly, even one 353 

proteome profile at 17-22 weeks of gestation predicted significantly spontaneous preterm delivery 354 

[AUROC=0.62 (0.58-0.67)] (Table S10), suggesting that this approach has value in the early 355 

identification of women at risk. The addition of four cases with PPROM to those with spontaneous 356 

preterm delivery did not impact the prediction performance of the proteomics models of Team 1, 357 

suggesting that this approach could generalize to both preterm birth phenotypes. Indeed, the 358 

increase in plasma protein abundance of PDE11A and ITGA2B preceded the diagnosis of both 359 

spontaneous preterm delivery and PPROM in the Detroit cohort at 27-33 weeks of gestation (Fig. 360 

7b,c). The tightly interconnected network of proteins built from among those with differential 361 

profiles with spontaneous preterm delivery in asymptomatic women at 27-33 weeks of gestation 362 

(q<0.1, Fig. 7b and Table S9) included not only several previously known markers of preterm 363 

delivery (IL6, ANGPT1) but also MMP7 and ITGA2B, which we previously described as 364 

dysregulated in women with preeclampsia46. Member proteins of this network perturbed prior to a 365 

diagnosis of spontaneous preterm delivery are annotated to biological processes such as regulation 366 

of cell adhesion, response to stimulus, and development (Fig. 7d).  367 

 368 

Given that differences in the patient characteristics could have contributed to the higher prediction 369 

performance of spontaneous preterm delivery by plasma proteomics as compared to maternal 370 

whole blood transcriptomics, the approach of Team 1 was also evaluated via leave-one-out cross 371 

validation on a subset of 13 controls and 17 spontaneous preterm delivery cases for which both 372 

types of data originated in the same blood draw. The prediction performance for spontaneous 373 

preterm delivery by plasma proteomics remained high [AUROC=0.86 (0.7-1.0)], while prediction 374 
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by transcriptomic data remained non-significant (Fig. 8), hence confirming the superior value of 375 

proteomics relative to transcriptomics for this endpoint. Of note, for a fixed number of 50 376 

predictors allowed, a stacked generalization48 approach combining predictions from individual 377 

platform models via a LASSO logistic regression led to higher leave-one-out cross-validation 378 

performance estimate [AUROC=0.89 (0.78-1.0)] compared to building a single model from the 379 

combined transcriptomic and proteomic features (Fig. 8).  380 

 381 
To extract further insight into the computational approaches best suited to predict preterm birth 382 

from longitudinal omics data in sub-challenge 2, we investigated which computational aspects 383 

explained the higher performances of the top two teams. Given that Team 1 relied only on omics 384 

data at the last available time point (T2), we kept all aspects of its method except for the temporal 385 

information considered among the following: a) first point (T1), b) change in expression between 386 

T2 and T1 (slope), or c) a combined approach in which slopes for all genes and measurements at 387 

T2 compete for inclusion in the 50 allowed predictors for a given outcome (PPROM or 388 

spontaneous preterm delivery). As shown in Fig. S8, none of these approaches would have 389 

improved prediction performance relative to the baseline approach that only considered data from 390 

the last time point (T2). We then considered several key aspects of the approach of Team 2 and 391 

have subsequently incorporated them in the approach of Team 1 to determine whether such hybrid 392 

approaches could translate into higher performances relative to the baseline approach. In 393 

particular, we have modified the approach of Team 1: a) to start with only the top half of the most 394 

highly abundant features on each platform, b) to convert the binary classification (preterm versus 395 

term) into a regression of gestational age at delivery, and c) given the selected 50 predictor genes 396 

based on the correlation of T2 expression values with the outcome, to add the expression of those 397 

gene at the previous time point as independent predictors in the random forest model. Of these 398 
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three scenarios, the last, which expands the number of predictors from 50 to 100 without increasing 399 

the number of unique genes, slightly outperformed the approach of Team 1’s overall prediction 400 

scenarios (Fig S8) and led to the consistent prediction of PPROM in all cross-study analyses (see 401 

improvement in prediction from Fig. 6a to Fig. S6). Interestingly, simply doubling the number of 402 

genes measured at T2 that were allowed as predictors in the model (from 50 to 100) led to a worse 403 

overall prediction performance relative to the approach of Team 1 that used only 50 genes at T2 404 

(Fig. S8). This finding suggests that for preterm birth prediction, it is more important to measure 405 

the right markers at one additional time point than to double the number of markers at the most 406 

recent time point.  407 

 408 

 409 

Discussion 410 

In this study, we have evaluated maternal blood omics data to predict gestational age and the risk 411 

of preterm birth. Although the main interest herein was the prediction of spontaneous preterm 412 

birth, the correlation of omics data with advancing gestation was relevant not only to serve as a 413 

positive control for the evaluation of omics data, but also to possibly provide relevant information 414 

for the development of more affordable tools to date pregnancy. We chose the DREAM 415 

collaborative competition framework27 to identify the best computational methods for making 416 

inferences and to assess them in an unbiased and robust way based on longitudinal omics data that 417 

we and others have generated. DREAM Challenges have been used to establish unbiased 418 

performance benchmarks across a wide array of prediction tasks49-53. Moreover, the results gained 419 

from these Challenges define community standards and advancements in many scientific 420 

fields54,55.  421 
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 422 
Collectively, sub-challenge 1 and the additional post-challenge analyses demonstrated that models 423 

based on the maternal whole blood transcriptome i) significantly predict LMP and ultrasound-424 

defined gestational age at venipuncture in both normal and complicated pregnancies (RMSE=4.5), 425 

ii) predict a delivery date within ±1 week in women with spontaneous term delivery with an 426 

accuracy (45%) comparable to the clinical standard (55%), and iii) outperform the latter approach 427 

for timing of delivery in women who are destined to experience spontaneous preterm birth (33% 428 

predicted within ±2 weeks of delivery versus 0% for the LMP and ultrasound method). Of interest, 429 

the accuracy of dating gestation in women with spontaneous term delivery was similar to the report 430 

by Ngo et al.17 who used cell-free RNA profiling in a Danish cohort, although that study involved 431 

more frequent (weekly) sampling of fewer genes (about 50 immune-, placental- and fetal liver-432 

specific) instead of the genome-wide data used herein. However, in the study by Ngo et al.17, the 433 

time-to-delivery transcriptomic model derived from samples of women with normal pregnancy 434 

failed to predict delivery dates on independent cohorts of women with preterm birth, while 33% 435 

of preterm birth cases herein were accurately identified as being at risk of delivery within ±2 436 

weeks. A possible explanation, in addition to the cohort differences between the training and 437 

testing sets in the previous study, is that our model of normal pregnancy captured not only gene 438 

changes establishing the gestational age, but also those changes involved in the common pathway 439 

of labor. While the prediction of preterm birth by omics data collected up to less than 37 weeks 440 

including samples taken when women were symptomatic was demonstrated above without using 441 

any data from preterm birth cases to establish the model, it was also previously shown by others 442 

who used data from both cases and controls10,20,56,57.  443 

 444 
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In the context of sub-challenge 2 of the DREAM Preterm Birth Prediction Challenge, we have 445 

tackled the issue of predicting preterm birth from samples collected while women were 446 

asymptomatic prior to 33 weeks of gestation. Overall, although prediction performance was low 447 

(AUROC=0.6 at 27-33 weeks of gestation), the sub-challenge and post-challenge analyses provide 448 

evidence of changes in maternal whole blood gene expression that precede a diagnosis of PPROM 449 

and that are shared across gestational-age time points and cohorts/microarray platforms. However, 450 

although some correlations of gene expression to gestational age at delivery were consistent across 451 

time points within the Detroit cohort (Table S8), the cross-cohort changes preceding spontaneous 452 

preterm delivery with intact membranes were not consistent. Moreover, the Detroit within-cohort 453 

proteomic results, obtained with methods developed without any tuning to the proteomic data, 454 

represent evidence of superior performance by plasma proteomics (AUROC=0.76 at 27-33 weeks) 455 

compared to whole blood transcriptomics in the prediction of spontaneous preterm delivery. 456 

Although we and other investigators reported the value of aptamer-based SomaLogic assays to 457 

predict early46 and late preeclampsia40, this is the first study conducted to evaluate this platform to 458 

predict preterm birth, and we found it to be of superior value as compared to whole blood 459 

transcriptomics platform in predicting spontaneous preterm delivery. Two possible limitations to 460 

the comparison between platforms are the lower sample size utilized to analyze the same blood 461 

draws and the much larger number of transcriptomic than proteomic features, which made the 462 

“needle in the haystack” problem more difficult for the transcriptomic platform. This curse of 463 

dimensionality was noted when transcriptomic and proteomic features were combined, resulting 464 

in a lower performance estimate for the multi-omics model obtained with the approach of Team 1, 465 

than for proteomics data alone. Although herein the remedy to this issue was to combine the 466 

predictions of each platform into a meta-model (stacked generalization) (Fig. 8), alternative 467 
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approaches focus on biologically plausible sets of features derived by single-cell genomics. This 468 

latter category of methods was demonstrated to predict preeclampsia47,58 and to distinguish 469 

between women with spontaneous preterm labor and the gestational age-matched controls43,44. 470 

 471 
The use of crowdsourcing to evaluate computational approaches and longitudinal multi-omics data 472 

to predict preterm birth is a major strength of this study. The primary advantage of importance is 473 

that many perspectives of this problem were implemented by the machine learning community. 474 

Coincidently, the first and second best-performing teams were the same for both sub-challenges, 475 

which is indicative of the team’s skill as opposed to chance, a fact that has been observed in several 476 

other crowd-sourcing initiatives, e.g., sbv IMPROVER23,59,60, CAGI61-64 and DREAM50,65,66. The 477 

second advantage of the DREAM Challenge framework is that the model development and the 478 

prediction assessment are separate, thus the risk of overstating the prediction performance is 479 

reduced. This robust evaluation of prediction performance, combined with a separate consideration 480 

of preterm birth phenotypes (spontaneous preterm delivery and PPROM), of time points at 481 

sampling, and multi-omic platforms, makes this work one of the most comprehensive longitudinal 482 

omics studies in preterm birth. Finally, the work herein has resulted in computational algorithms 483 

with implementations made available to the community with an open source license, allowing for 484 

reproducible research and applications to other similar research questions based on longitudinal 485 

omics data.  486 

 487 

Methods 488 

Study design 489 

Women who provided blood samples included in the transcriptomic and proteomic studies 490 

described in the Results section were enrolled in a prospective longitudinal study at the Center for 491 
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Advanced Obstetrical Care and Research of the Perinatology Research Branch, 492 

NICHD/NIH/DHHS; the Detroit Medical Center; and the Wayne State University School of 493 

Medicine. Blood samples were collected at the time of prenatal visits, scheduled at four-week 494 

intervals from the first or early second trimester until delivery, during the following gestational-495 

age intervals: 8-<16 weeks, 16-<24 weeks, 24-<28 weeks, 28-<32 weeks, 32-<37 weeks, and >37 496 

weeks. Collection of biological specimens and the ultrasound and clinical data was approved by 497 

the Institutional Review Boards of Wayne State University (WSU IRB#110605MP2F) and 498 

NICHD (OH97-CH-N067) under the protocol entitled “Biological Markers of Disease in the 499 

Prediction of Preterm Delivery, Preeclampsia and Intra-Uterine Growth Restriction: A 500 

Longitudinal Study.” Cases and controls were selected retrospectively.  501 

 502 

Clinical definitions 503 

The first ultrasound scan during pregnancy was used to establish gestational age if this estimate 504 

was more than 7 days from the LMP-based gestational age. The first ultrasound scan was obtained 505 

before 14 weeks of gestation for 70% of the women, and 95% of the women underwent the first 506 

ultrasound before 20 weeks of gestation. Preeclampsia was defined as new-onset hypertension that 507 

developed after 20 weeks of gestation (systolic or diastolic blood pressure ≥140 mm Hg and/or 508 

≥90 mm Hg, respectively, measured on at least two occasions, 4 hours to 1 week apart) and 509 

proteinuria (≥300 mg in a 24-hour urine collection, or two random urine specimens obtained 4 510 

hours to 1 week apart containing ≥1+ by dipstick or one dipstick demonstrating ≥2+ protein)67. 511 

Early preeclampsia was defined as preeclampsia diagnosed before 34 weeks of gestation, and late 512 

preeclampsia was defined by diagnosis at or after 34 weeks of gestation68. The diagnosis of 513 

PPROM was determined by a sterile speculum examination with documentation of either vaginal 514 
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pooling or a positive nitrazine or ferning test69. Spontaneous preterm labor and delivery was 515 

defined as the spontaneous onset of labor with intact membranes and delivery occurring prior to 516 

the 37th week of gestation70. 517 

 518 

Maternal whole blood transcriptomics 519 

RNA was isolated from PAXgene® Blood RNA collection tubes (BD Biosciences, San Jose, CA; 520 

Catalog #762165) and hybridized to GeneChip™ Human Transcriptome Arrays (HTA) 2.0 (P/N 521 

902162), as we previously described29. Microarray experiments were carried out at the University 522 

of Michigan Advanced Genomics Core, a part of the Biomedical Research Core Facilities, Office 523 

of Research (Ann Arbor, MI, USA). Raw intensity data (CEL files) were generated from array 524 

images using the Affymetrix AGCC software. CEL files from this study and those for the Calgary 525 

cohort were preprocessed separately for each platform. ENTREZID gene level expression 526 

summaries were obtained with Robust Multi-array Average (RMA)71 implemented in the oligo 527 

package72 using suitable chip definition files from http://brainarray.mbni.med.umich.edu. Since 528 

samples in the Detroit cohort were profiled in several batches, correction for potential batch effects 529 

was performed using the removeBatchEffect function of the limma73 package in Bioconductor74. 530 

Cross-study/platform analyses were performed on a combined dataset after quantile normalizing 531 

data across all samples for the set of common genes, followed by platform effect-removal.  532 

  533 
Maternal plasma proteomics 534 

Maternal plasma protein abundance was determined by using the SOMAmer (Slow Off-rate 535 

Modified Aptamer) platform and reagents to profile 1,125 proteins38,39. Proteomic profiling 536 

services were provided by SomaLogic, Inc. (Boulder, CO, USA). The plasma samples were diluted 537 

and then incubated with the respective SOMAmer mixes, and after following a suite of steps 538 
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described elsewhere38,39, the signal from the SOMAmer reagents was measured using microarrays. 539 

The protein abundance in relative fluorescence units was obtained by scanning the microarrays. A 540 

sample-by-sample adjustment in the overall signal within a single plate was performed in three 541 

steps per manufacturer’s protocol, as we previously described22,40. Outlier values (larger than 2× 542 

the 98th percentile of all samples) were set to 2× the 98th percentile of all samples. Data was log2 543 

transformed before applying machine learning and differential abundance analyses. 544 

 545 

Sub-Challenge 1 organization 546 

For sub-challenge 1, aimed at predicting gestational age at sampling from whole blood 547 

transcriptomic data in normal and complicated pregnancies, a training set and a test set were 548 

generated (Fig. S1). Transcriptomic gene expression data were made available to participants for 549 

both the training and test sets. Gestational age was provided for the training set and participants 550 

were required to submit predicted gestational-age values for the test set, which were compared in 551 

real time against the gold standard; the RMSE was posted to a leaderboard that was live from May 552 

22, 2019, to August 15, 2019. Up to five submissions per team were allowed, and they were ranked 553 

by the RMSE, and the smallest value was retained as entry for each unique team (Table S1). Only 554 

the teams who described their approach and provided the analysis code were retained in the final 555 

team rankings.  556 

  557 

Sub-Challenge 1 team rank stability analysis 558 

To determine whether differences in gestational-age prediction accuracy between the different 559 

teams were substantial, we have simulated the challenge by drawing 1000 bootstrap samples of 560 

the test set. RMSE values were calculated for each submission (1 to at most 5) for each team, and 561 
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we retained the submission with the smallest RMSE. Team ranks were calculated and the Bayes 562 

factors were then calculated as the ratio between the number of iterations in which the team k 563 

performed better than the team ranked next (k+1) relative to the number of iterations when the 564 

reverse was true. A Bayes factor >3 was considered a significant difference in ranking.  565 

  566 

Sub-Challenge 1 top two algorithms  567 

Team 1: The first-ranked team in this sub-challenge (authors B.A.P. and I.C.) used gene-level 568 

expression data after filtering out samples considered as outliers, followed by the standardization 569 

of gene expression for each microarray experiment batch separately. Genes were ranked by using 570 

singular value decomposition, and those genes having higher dot products with singular vectors 571 

that correspond to large singular values across the training samples were assigned a higher score.  572 

In the next step, ~6000 genes were selected based on the described ranking, which was based on 573 

cross-validation results on the training set using a ridge regression model. Ridge regression75 574 

models were fitted using the Sklearn package in Python (version 3).  575 

Team 2: The second-ranked team in this sub-challenge (author Y.G.) applied quantile 576 

normalization to gene level expression data, followed by the modeling of the gestational-age 577 

values using Generalized Process Regression and Support Vector Regression. Model tuning 578 

parameters were optimized using a grid search, and predictions by the two approaches were 579 

weighted equally. Models were fit using Octave.  580 

 581 

Sub-Challenge 2 organization 582 

In the first phase of sub-challenge 2, participants were invited to develop preterm birth prediction 583 

algorithms using gene expression data from longitudinal transcriptomic data collected at 17-36 584 
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weeks of gestation from women with a normal pregnancy and from cases of preterm birth 585 

(spontaneous preterm delivery and PPROM) illustrated in Fig. 2. The training set was composed 586 

of data from the Calgary cohort and a fraction of the Detroit cohort (Fig. 2), while the test set 587 

comprised the remainder of the Detroit cohort. Teams were requested to submit a risk value 588 

(probability) for all samples when classifying test samples as sPTD versus Control, and as PPROM 589 

versus Control. The AUROC and AUPRC were calculated separately for each prediction task and 590 

the ranks for each of the resulting four performance measures were calculated for each team and 591 

aggregated by summation. Two predictions per team were allowed and performance results on the 592 

test set were posted to a live leaderboard from August 15, 2019, to December 5, 2019. Because 593 

the prediction models developed in this phase of the Challenge could have captured eventual 594 

differences between the cases and controls in terms of the timing and number of samples, a second 595 

phase of the Challenge was organized (December 5, 2019 to January 3, 2020) for which teams 596 

were asked to provide prediction algorithms (computer code) instead of predictions of a given test 597 

dataset. The algorithms were applied as implemented by the participants without any tuning to the 598 

70 pairs of training and test datasets described in Table 1. In each of the 7 scenarios in Table 1, 599 

there were 2 outcomes predicted (sPTD vs Control; and PPROM vs Control), except for proteomic 600 

data (scenario DP2), where the feasible comparisons were sPTD versus control and PTB versus 601 

control; the PTB group was defined as the union of sPTD and PPROM cases. As in the first phase 602 

of the challenge, the AUROC and AUPRC were used to assess predictions for each outcome. The 603 

resulting 28 prediction performance scores (7 scenarios x 2 outcomes x 2 metrics) for each team 604 

were converted into Z-scores by subtracting the mean and dividing by the standard deviation of 605 

these metrics obtained from 1,000 random predictions (random uniform posterior probabilities). 606 

Further, only the combinations of scenarios and outcomes resulting in a significant prediction 607 
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performance (False Discovery Rate-adjusted p-value, q<0.05) for at least one of the 13 teams, were 608 

considered further for team ranking, resulting in 20 performance criteria for each team. Teams 609 

were ranked by each of the 20 prediction performance criteria (columns in Fig. 8), and a final rank 610 

was generated based on the sum of the ranks over all criteria (Table S5).  611 

 612 

Sub-challenge 2 team rank robustness analysis  613 

To assess the significance of the differences in prediction performance of preterm birth among the 614 

teams based on omics data, we have used the same ranking procedure described above in more 615 

than 1,000 simulated iterations of the sub-challenge. At each iteration, the rankings were calculated 616 

by using prediction performance results that correspond to a bootstrap sample of the 10 train/test 617 

instances pertaining to each scenario (Table 1) and, at the same time, taking a bootstrap sample of 618 

the prediction criteria (columns in the Fig. 8). Bayes factors were then calculated as the ratio 619 

between the number of iterations in which the team k performed better than the team ranked next 620 

(k+1) relative to the number of iterations when the reverse was true. A Bayes factor >3 was 621 

considered a significant difference among rankings.  622 

 623 
Sub-Challenge 2, the top three algorithms  624 

Team 1: The algorithm of the first-ranked team in this sub-challenge (authors B.A.P. and I.C.) 625 

starts with standardizing the input omics data so that they have a zero mean and a standard 626 

deviation of 1 for each omics platform (if more than one in an input set, which was the case while 627 

training and testing across the platforms). A random forest classifier with 100 trees was fit to each 628 

prediction task (sPTD versus Control and PPROM versus Control). The top 50 features, ranked by 629 

importance metric derived from the random forest, were selected for each task separately and used 630 
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to fit a final model on the training data. Random forest repressors were fitted using the Sklearn 631 

package in Python (version 3).  632 

 633 

Team 2: The approach of the second-ranked team in this sub-challenge (author Y.G.) first centers 634 

the data of each feature around the mean for each platform (if more than one) in a given input set. 635 

Then, data is quantile normalized to make identical the distributions of feature data across the 636 

samples. Next, the top 50 features with the highest average over all samples are retained, and the 637 

feature values for the last-available two time points for each subject are used as predictors (100 638 

predictors) in a Generalized Process Regression model, a Bayesian non-parametric regression 639 

technique. The two parameters of GPR regression were preset to an eye value of 0.75, which 640 

represents how much noise is assumed in the data, and a sigma of 10, a data normalization factor. 641 

Models were fitted using Octave.  642 

 643 

Team 3: The approach of the third-ranked team in this sub-challenge (author R.K.) starts with the 644 

selection of the top 50 features ranked by statistical significance p-value derived from a t-test or 645 

Wilcoxon test, depending on the normality of the data, and determined by a Shapiro test. Then, 646 

using the selected features, linear, sigmoid and radial Support Vector Machines models are fitted 647 

and compared via 5-fold cross validation, and the predictions for the best method were averaged 648 

over the five trained models. Models were fit using the e1071 package76 in R.  649 

 650 
Post-challenge differential expression and abundance analyses 651 

Differences in gene expression or protein abundance between the cases and controls were assessed 652 

based on linear models implemented in the limma package77 in Bioconductor. When data across 653 

time points and/or cohorts were combined, these factors were included as fixed effects in the linear 654 
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models. Downstream analyses of the differentially expressed genes involved enrichment analysis 655 

via a hypergeometric test implemented in the GOstats package78 to determine the over-656 

representation of Gene Ontology79 biological processes among the significant genes. The 657 

background list in the enrichment analyses featured all genes profiled on the microarray platform. 658 

For proteomic-based enrichment analyses, protein-to-gene annotations from the manufacturer 659 

(SomaLogic) were used as input in the stringApp version (1.5.0)80 in Cytoscape (version 3.7.2)81 660 

using the whole genome as background. A false discovery rate adjusted q<0.05 was used in 661 

enrichment analyses to infer significance. Networks of high-confidence protein-protein 662 

interactions (STRING confidence score > 0.7) were constructed from the lists of significant 663 

genes/proteins using stringApp in Cytoscape. For visualization, the most interconnected sub-664 

networks were displayed and nodes were annotated to significantly enriched biological processes.  665 

 666 
Identification of a core transcriptome predicting gestational age 667 

To identify a core transcriptome that can predict gestational age in normal and complicated 668 

pregnancies, linear mixed-effects models with splines were applied to prioritize genes that change 669 

with gestational age while accounting for the possible non-linear relation and for the repeated 670 

observations from each individual, as we previously described29. Of note, participating teams could 671 

have not used such an approach given that sample-to-patient annotations were not provided on the 672 

training data. Then, the genes that did not change in average expression by at least 10% over the 673 

10-40-week span were filtered out, and the remaining genes were ranked by p-values from the 674 

linear mixed-effects models. The top 300 genes were then used as input in a LASSO regression 675 

model (elastic net mixing parameter alpha =0.01) for which the shrinkage coefficient (lambda) 676 

was determined by cross-validation, leading to 249 genes with non-zero coefficients in the model 677 
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(Table S2). Of note, using more than 300 genes as input in the ridge regression model did not 678 

further reduce the RMSE on the test set. LASSO models were fit using the glmnet package82 in R. 679 

 680 

Data availability 681 

The transcriptomic and proteomic data from the Detroit cohort described herein is available as a 682 

Gene Expression Omnibus super-series (GSE149440) and GSE150167, respectively. They were 683 

also submitted to the March of Dimes repository 684 

(https://www.immport.org/shared/study/SDY1636). 685 

 686 

Code availability 687 

Analysis scripts for transcriptomic data preprocessing and for building prediction models based on 688 

the approaches of the participating teams in sub-challenges 1 and 2 are available from the 689 

Challenge website (www.synapse.org/pretermbirth). Direct links to method write-up and computer 690 

implementations for prediction of gestational age and preterm birth are also available in Tables 691 

S2 and Table S5, respectively. Moreover, R code vignettes demonstrating the use of participant 692 

methods and key post-challenge analyses were also provided at www.synapse.org/pretermbirth.   693 
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Figure Legends 1043 
 1044 
Figure 1. Study overview. Whole blood transcriptomic and/or plasma proteomic profiles were 1045 
generated from 216 women with either normal pregnancy, spontaneous preterm birth with intact 1046 
(sPTD) or ruptured membranes (PPROM), or preeclampsia. Sub-challenge 1: Whole blood 1047 
transcriptomic data were generated from samples collected in normal pregnancies and those 1048 
complicated by spontaneous preterm birth with intact (sPTD) or ruptured membranes (PPROM), 1049 
or preeclampsia. Participating teams were provided gene expression data to develop their own 1050 
prediction models for gestational age at blood draw defined by last menstrual period (LMP) and 1051 
ultrasound (gold standard). Participants submitted predictions on a blinded test set (see Fig. S1 for 1052 
training/test partition). In a post challenge analysis, the approach of the top team in sub-challenge 1053 
1 (smallest test set Root Mean Squared Error) was applied to predict time to delivery. Sub-1054 
challenge 2: Participating teams submitted risk prediction algorithms designed to use as input 1055 
omics data at two or more time points from individual women coupled with outcome information 1056 
(control, sPTD or PPROM) for a subset of them (training set), and return disease risk scores for 1057 
women with blinded outcomes (test set). The algorithms were applied to 70 training/test pairs of 1058 
datasets (see Table 1) to assess within- and across-cohort predictions of preterm birth by whole 1059 
blood transcriptomics and within-cohort prediction by multi-omics data. Predictions were assessed 1060 
by Area Under the Receiver Operating Characteristic and Area Under the Precision-Recall curves 1061 
and aggregated across datasets and prediction scenarios (see Methods). 1062 
 1063 
Figure 2. Prediction of gestational age by whole blood transcriptomics. A) Detroit cohort 1064 
whole blood transcriptomics study design. Each line corresponds to one patient and each dot 1065 
represents a sample. Gestational ages at delivery are marked by a triangle. B) Test set prediction 1066 
of gestational age by the model of the top-ranked team (M_GA_Team1). Samples are colored 1067 
according to the phenotypic group of patients. R: Pearson correlation coefficient; RMSE: Root 1068 
Mean Squared Error. C) Protein-protein interaction network modules for genes part of the 249-1069 
gene core transcriptome predicting gestational age (M_GA_Core). A select group of biological 1070 
processes enriched among these genes are shown in the pie charts. 1071 
 1072 
Figure 3. Prediction of time to delivery by whole blood transcriptomics. A) The top panel 1073 
shows the test set time-to-delivery (TTD) estimates from the M_sTD_TTD model plotted against 1074 
actual values. The bottom panel shows the distribution of prediction errors (TTD observed - TTD 1075 
predicted). A negative error means that delivery occurred sooner than expected/predicted, while 1076 
positive values indicate the opposite. TTD was estimated using RNA measurements from the 1077 
first- (T1), second- (T2), and third- (T3) trimester samples separately. For comparison, trimesters 1078 
are defined as in Ngo et al12. T1: <12 weeks; T2 = 12-24 weeks, and T3 = 24-37 weeks of 1079 
gestation. B) Prediction of time-to-delivery in women with spontaneous preterm birth by a gene 1080 
expression model established in women with spontaneous term delivery (M_sTD_TTD).  1081 
 1082 
Figure 4. Prediction of preterm birth in asymptomatic women by Detroit omics datasets. 1083 
From the transcriptomic study in Fig. 2A, only controls and preterm birth groups were included. 1084 
A) Cases were selected if they were asymptomatic at 17-23-week and 27-33-week intervals or B) 1085 
at 17-22-week, 22-27-week, and 27-33–week intervals. C) Plasma proteomic samples in cases 1086 
and controls at 17-23-week and 27-33-week intervals. 1087 
 1088 
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Figure 5. Prediction performance and team ranking in sub-challenge 2. Prediction 1089 
performance for preterm birth of the approaches of 13 teams under 7 scenarios (Table 1). 1090 
AUROC and AUPRC metrics were converted into Z-scores and shown as a heatmap.  1091 
 1092 
Figure 6. Prediction of preterm prelabor rupture of the membranes from samples collected 1093 
in asymptomatic women. A) Receiver operating characteristic curve (ROC) representing 1094 
prediction of preterm prelabor rupture of the membranes (PPROM) by 50 genes across the cohorts 1095 
and microarray platforms using the Team 1 approach. B) Heatmap of 402 genes differentially 1096 
expressed in PPROM across the cohorts and time points. Bars on the left indicate gene inclusion 1097 
as a predictor by the methods of the top 3 teams in sub-challenge 2. C) STRING network 1098 
constructed from among the 402 genes with differential expression in PPROM. Significantly 1099 
enriched biological processes are highlighted.  1100 
 1101 
Figure 7. Prediction of spontaneous preterm delivery by plasma proteomic data. A) Receiver 1102 
operating characteristic (ROC) curve represents the predictions of spontaneous preterm delivery 1103 
(sPTD) and spontaneous preterm birth (sPTB) [which includes sPTD and preterm prelabor rupture 1104 
of the membranes (PPROM)] for Team 1. B) Plasma protein abundance for all proteins deemed as 1105 
significant according to a moderated t-test (q-value<0.1), of which those selected by the top teams 1106 
as predictors in their models are marked on the left side of the heatmap. C) Overlap of protein 1107 
changes in those with sPTD at an earlier time point (17-22 weeks of gestation) and with PPROM 1108 
at 27-33 weeks of gestation. D) Network of proteins among those shown in panel B: each protein 1109 
node is annotated to biological processes based on corresponding gene ontology. 1110 
 1111 
Figure 8. Comparison of prediction performance of spontaneous preterm delivery between 1112 
platforms. Receiver operating characteristic curve (ROC) for prediction of spontaneous preterm 1113 
delivery by models obtained with the approach of Team 1 based on a subset of samples for which 1114 
data from both platforms were available. The multi-omics model was obtained applying the same 1115 
approach on a concatenated set of proteomic and transcriptomic features. The multi-omics stacked 1116 
generalization approach involved combining predictions from models based on each platform via 1117 
logistic regression. 1118 
 1119 
  1120 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.05.130971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.130971
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data
RNA

Proteomics
Sub-challenge 2

Whole-Blood

Plasma

n= 735 samples from 149 women
Controls 65; Preeclampsia 13; sPTD 34; PPROM 37

n= 210 samples from 105 women Controls 39; sPTD 62; PPROM 4

Sub-challenge 1:  Prediction of gestational age.

Sub-challenge 2:  Prediction of spontaneous 
 preterm birth

Sub-challenge 1 
and 

Sub-challenge 2

Challenge

Gestational age at blood draw 
by LMP & Ultrasound (weeks)

8 34 37 40
Predict

Control

PPROM
sPTD

Preeclampsia

Time to delivery (weeks)

-30 -20 -10 0

Predict

Term no labor
Term labor

Spontaneous
preterm birth

Asymptomatic
Symptomatic
Delivery

T1
8-12

T2
12-24

T3
24-37 (weeks)

Detroit cohort Detroit cohort

Sub-challenge 1
Detroit cohort

Gestational Age (weeks)

30 4020

Calgary cohort

Predict

37

Cross-cohort
validation

Term

Within-cohort
cross-validation

T1 T2

T1
17-23

T2
27-33 (weeks)

T1
17-23

T2
27-33 (weeks)

T1
17-22

T2
22-27 (weeks)

T3
27-33

Detroit cohort

T3

Preterm

Sub-challenge 2

RNA

Proteomics

RNA

Design

Detroit cohort

Post sub-challenge 1

533 registered particpants

 May 4 - Aug 15, 2019

 Aug 15, 2019 - January 3, 2020 

Assessment  Sub-challenge 1: 87 unique teams submitted predictions of gestational ages of samples
in the test set. Predictions were assessed by Root Mean Squared Error 

 Sub-challenge 2:
13 teams submitted computer algorthms that were applied by 
challenge organizers to 70 pairs of training/test to generate and test
models. Predictions were assessed by Area Under the Receiver 
Operating Characteristic and Area Under Precision Recall curves. 
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Detroit cohort; Plasma Proteomics; Team 1
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Transcriptomics AUC = 0.59(0.37−0.8)
Proteomics AUC = 0.86(0.7−1)
Multi−omics AUC = 0.69(0.49−0.88)
Multi−omics Stacked AUC = 0.89(0.78−1)
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