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The structure of the adult brain is the result of
complex physical mechanisms acting through devel-
opment. Accordingly, the brain’s spatial embed-
ding plays a key role in its structural and func-
tional organization, including the gradient-like pat-
terning of gene expression that encodes the molec-
ular underpinning of functional specialization. But
we do not understand how this transcriptional het-
erogeneity is spatially organized across the major al-
terations in brain geometry that occur through de-
velopment. Here we investigate the spatial embed-
ding of transcriptional patterns of over 1800 genes
across seven time points through mouse-brain devel-
opment using data from the Allen Developing Mouse
Brain Atlas. We find that the similarity of transcrip-
tional patterns decreases exponentially with separa-
tion distance across all developmental time points,
with a correlation length scale that satisfies a power-
law scaling relationship with a linear dimension of
brain size. This scaling suggests that the mouse
brain achieves a characteristic spatial balance be-
tween local transcriptional similarity (within func-
tionally specialized brain areas) and longer-range di-
versity (between functionally specialized brain ar-
eas) throughout its development. Extrapolating this
mouse-developmental scaling relationship to predict
the correlation length of gene expression in the hu-
man cortex yields a slight overestimate, consistent
with the human cortex being more molecularly di-
verse and functionally specialized than the mouse
brain. We develop a simple model of brain growth
as spatially autocorrelated gene-expression gradients
that expand through development, which captures
key features of the mouse developmental data. Com-
plementing the well-known exponential distance rule
for structural connectivity, our findings thus char-
acterize an exponential distance rule for transcrip-
tional gradients that scales across mouse-brain devel-
opment, providing new understanding of the molecu-
lar patterns underlying the functional specialization
in the brain.
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Introduction

The brain’s structure is the result of physical mecha-
nisms playing out through development. For example, as
short-range axonal connections incur a lower metabolic
cost than long-range connections, the brain’s structural
connectome encodes a balance between efficient brain
function against this physical cost (1–5). The connec-
tion probability between pairs of neural elements decays
with their separation distance in C. elegans (6), mouse
(7, 8), rat (9), zebrafish (10), non-human primate (11),
and human (12), and is frequently characterized as an
exponential distance rule (13–15). Indeed, very simple
spatial rules can explain much of the high-order statis-
tics of connectome topology, including its modularity,
long-tailed degree distribution, and existence of a net-
work core (12, 14, 16–19). Spatial proximity also plays a
strong role in gradients of gene expression, with nearby
areas exhibiting more similar gene-expression profiles
than more distant areas in the head neurons of C. ele-
gans (6), the mouse brain (7, 20), and the human cortex
(21–26).
The spatial embedding of molecular patterning provides
important clues about how the brain’s functional spe-
cialization is topographically organized. Macroscopic
functional gradients across the human cortex maximize
the spatial distance between areas functionally involved
in sensory perception and those involved in integrative
cognition (27, 28). These hierarchical functional gra-
dients are underpinned by a corresponding variation in
structural microarchitecture (29–31). But given the con-
straint of a fixed brain size, how does the brain strike the
right balance local molecular similarity—similar gene-
expression patterns enable the functional specialization
within a given brain area—while still ‘fitting in’ many
differentially specialized areas into the brain (longer-
range molecular diversity). Furthermore, how does the
spatial embedding of transcriptional gradients emerge
through development: do different rules hold early in
development compared to later? Although macroscopic
brain organization in adult is often attributed to gradi-
ents (e.g., in transcriptional factors) set up during devel-
opment (32), to our knowledge, no study has analyzed
the spatial embedding of gene expression through devel-
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opment.
The Allen Developing Mouse Brain Atlas (ADMBA)
(33) is a comprehensive database of gene-expression
across mouse-brain development. The atlas contains
in situ hybridization measurements for approximately
2100 genes at seven developmental time points, available
in a three-dimensional reference space registered to an
anatomical reference atlas (for each developmental time
point). Many analyses of gene transcription through
mouse-brain development have shed light on how the
spatiotemporal variation of specific genes through devel-
opment shape different aspects of brain structure (33–
36). But these developmental atlas data have not pre-
viously been analyzed from the viewpoint of spatially
embedded gradients of transcriptional similarity. By
characterizing gradients, we can address global questions
about transcriptional patterning through development
in a way that that does not require tracking specific,
anatomically defined areas.
Here we study how the correlated gene expression
(CGE), defined as the similarity in the gene-expression
signature of two points in the brain, is spatially em-
bedded across mouse-brain development. Matching the
well-known exponential distance rule for connectivity,
we find an exponential decay in CGE at each develop-
mental time point, with a spatial correlation length that
scales with a linear dimension of brain size. Extrapo-
lating the relationship fitted on developing mouse-brain
data, allows us to obtain a slight overestimate for the
correlation length of CGE in the human cortex. We
then use a simple model to show that the patterns are
consistent with brain growth in which spatially autocor-
related gene-expression gradients expand with brain size
over time.

Methods
Data Retrieval. We analyze an open dataset from the
ADMBA, which contains in situ hybridization (ISH)
expression estimates for approximately 2100 genes in
C57Bl/6J mice across seven developmental stages, span-
ning both embryonic (E11.5, E13.5, E15.5, and E18.5)
and postnatal (P4, P14, and P28) stages (33). These
genes were selected to encompass relevant transcription
factors, neurotransmitters and their receptors, cell-type
or regional marker genes, genes relevant to developmen-
tal signaling pathways, and genes corresponding to com-
mon drug targets or implicated in neurodevelopmental
disorders (33). The raw imaging data, encompassing
434 946 brain sections of high-resolution ISH, are regis-
tered to a three-dimensional mouse-brain atlas at each
time point. We accessed this registered data at the voxel
level via the Allen Software Development Kit (SDK,
2015). Our code for retrieving data (in python) and
for data processing and analysis (Matlab) is available
at https://github.com/NeuralSystemsAndSignals/
DevelopingMouse. At each time point, we retrieved ex-
pression data for all available genes. Expression data for

each gene was obtained as ‘expression energy’ (ISH sig-
nal intensity) in each voxel in the three-dimensional grid.
Distances between pairs of voxels were computed as Eu-
clidean distances in three-dimensional space. This com-
putation required transforming between (integer-valued)
coordinate space and physical space using the spatial
resolution used at each time point: E11.5 (0.08mm),
E13.5 (0.1mm); E15.5 (0.12mm), E18.5 (0.14mm), P4
(0.16mm), P14 (0.2mm), and P28 (0.2mm).

Filtering and Normalization. At each developmental
time point, we first filtered out voxels that were labeled
as spinal cord or were unannotated. We kept genes with
a valid expression value for at least 70% of the remain-
ing voxels (i.e., not labeled as missing). A total of 1861
genes satisfied these quality control criteria at all seven
time points. To ensure temporal consistency of our an-
alyzed genes, we restricted our analysis to these 1861
genes. We then retained only voxels with valid expres-
sion data for at least 70% of these genes. For voxels and
genes that survived these filtering steps, we generated a
voxel × gene expression matrix. The number of voxels
varied across time as 5034 (E11.5), 9473 (E13.5), 11 314
(E15.5), 11 313 (E18.5), 19 754 (P4), 21 579 (P14), and
24 822 (P28).
Raw expression values measured using in situ hybridiza-
tion are not comparable between genes (37). We ac-
counted for this at each time point by normalizing
expression values of each gene using a standard sig-
moidal transformation, S(x) = [1+exp(−x)]−1, followed
by linear rescaling to the unit interval (for visualization)
(7, 21). The resulting voxel× gene matrix, Gt, at a given
time point, t, was used for further analysis.

Quantifying the spatial embedding of CGE. To under-
stand the spatial embedding of gene-expression patterns,
we analyzed the distance-dependence of correlated gene
expression (CGE) at each developmental time point.
CGE is a measure of gene-expression similarity between
a pair of voxels and was computed as the Pearson cor-
relation coefficient between normalized gene-expression
vectors (rows of a given voxel × gene matrix, Gt, de-
fined above). At each time point, we computed CGE
for every pair of voxels. Because the distribution of
pairwise distances is concentrated near lower distances,
we wanted to prevent the exponential fitting from be-
ing biased towards fitting these smaller length scales,
but to instead fit well across the full range of dis-
tances. To do this, we first performed an equiprob-
able distance binning of the data using twenty bins,
and computed the mean CGE value in each bin (and
summarizing each bin as its center). To this binned
data, we then fitted a three-parameter exponential func-
tion, CGE(d) = Aexp(−d/λ) +f0, using nonlinear least
squares and identified the fitted parameters as: spatial
correlation length, λ, strength A, offset, f0. Adjusted
R2 was used as a goodness-of-fit statistic. Note that
CGE(d = 0) = 1 corresponds to self-correlations, and
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Fig. 1. Schematic analysis
pipeline. A We analyze gene-
expression atlases across seven
developmental time points. B At
each time point, we created a
voxel × gene expression matrix
(data shown for E11.5). We
then compared the correlated
gene expression (CGE) between
each pair of voxels as a function
of their physical separation
distance, d. C Plotting CGE(d)
across equiprobable distance
bins allowed us to analyze
the spatial embedding of gene
expression at each time point.
We fitted an exponential form
CGE(d) = Aexp(−d/λ) + f0.
Here we focus on the correlation
length, λ, and how it scales with
brain development.

thus fitting data that includes self-correlations should
have a fixed strength parameter A = 1. However, here
we excluded self-correlations and allowed A < 1. When
characterizing distances relative to brain size, as drel =
d/dmax, we defined dmax as the maximum extent along
the anterior–posterior axis of the brain. For compu-
tational efficiency, we restricted our analysis to a ran-
dom subset of 1000 voxels at each developmental time
point. Our results do not strongly depend on this spatial
downsampling—the variance in our statistical estimate
of λ across 100 random subsamples saturated well before
the level of 1000 voxels (and was less than 0.01 at 1000
voxels), as shown in Fig. S1.
Note that our definition of λ as a length scale (m) is con-
sistent with its conventional use to denote wavelength in
physics (units of length), but differs by an inverse rela-
tionship from its use as a decay rate with units of inverse
length (m−1) used to characterize the exponential dis-
tance rule for structural connectivity (9, 13–15).

Modeling. To better understand patterns found in the
empirical data, we simulated simple spatial models
of gene expression patterning and brain growth. At
each developmental time point, we first simulated gene-
expression patterns for each of the 1861 genes. We first
defined the geometry by approximating the brain as a
rectangular prism with dimensions (anterior–posterior
× superior–inferior × left–right) equal to that of the de-
velopmental reference atlas at that time point: 3.52×
4.72× 1.20mm (E11.5), 5.70× 3.30× 1.20mm (E13.5),
6.60 × 3.72 × 1.68mm (E15.5), 7.84 × 4.06 × 2.10mm
(E18.5), 10.56 × 5.44 × 3.04mm (P4), 12.80 × 6.60 ×
4.20mm (P14), and 13.60× 7.40× 4.20mm (P28). We
formed a grid over this idealized geometry by divid-
ing each dimension into 50 equally spaced points. We
then generated a random spatially autocorrelated map
independently for each of 1861 genes using a spatial-
lag model (29, 38, 39). The model defines a depen-
dence between samples using an exponential kernel as

Wij = exp(−dij/d0), for pairwise distances, dij , and a
characteristic spatial scale, d0. From this weighting ma-
trix, Wij , an autocorrelated spatial map can be gener-
ated as xi = (I + ρWij)uj , where I is the identity and
uj ∼ N (0,1) is i.i.d. Gaussian noise. This defines the
second model parameter: the spatial autocorrelation
strength, ρ. By setting d0 as a fixed fraction of brain
size, d0 = dmax/d

scale
0 , we simulated a brain-size scaling

rule consistent with a linear rescaling of space (spatial
expansion through development). Values for ρ and dscale

0
were set through a gradient descent optimization proce-
dure to best fit the empirical values of λ and A, yielding
ρ= 0.16 and dscale

0 = 8.41. Some illustrative examples of
the expression patterns generated are plotted in Fig. 5A.
Note that at small distances, all grid points are included
in the CGE calculation. But due to the grid’s finite size,
beyond a critical distance, only a subset of grid points
are included in the CGE calculation (e.g., in the extreme
case of the maximum distance, only the corners of the
cube are included). This finite-size spatial sampling ef-
fect can bias the CGE(d) curve at large distances. For
example, distance bins that are affected by this are la-
beled pink in Fig. 5B.
For each simulated gene-expression dataset, we per-
formed the same processing and analysis methodology
as was applied to the empirical data: (i) a random sub-
sample of 1000 points was taken; (ii) voxel × gene ex-
pression data were normalized using a scaled sigmoid;
(iii) CGE was computed; (iv) CGE(d) data were binned
using 20 equiprobable bins; (v) exponential decay was
fit. We repeated the process 50 times to estimate er-
ror bars on each parameter estimate under the sources
of stochasticity in the model: the generation of spa-
tially autocorrelated gene-expression maps, and the ran-
dom spatial subsampling. We were then able to com-
pare the parameter estimates from this model with the
empirical data. Code for the modeling is available
at https://github.com/NeuralSystemsAndSignals/
DevelopmentalExpressionModeling.
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Results
Our approach to investigating the spatial embedding
of transcriptional gradients across mouse-brain develop-
ment is shown schematically in Fig. 1. At each of the
seven time points in the ADMBA (33), shown in Fig. 1A,
we obtained the expression of 1861 genes across voxels
of the mouse brain (Fig. 1B). We then computed the
correlated gene expression (CGE) for each pair of voxels
as the Pearson correlation coefficient between their ex-
pression signatures (rows of the matrix in Fig. 1B). We
fit an exponential function to the decay of CGE(d) as a
function of separation distance, d, shown in Fig. 1C, to
quantify how transcriptional similarity is spatially em-
bedded. Variation in the parameters of this fit, partic-
ularly that of the characteristic length scale over which
genes are correlated, λ, tell us how the spatial embed-
ding of gene transcription varies through mouse-brain
development.

Spatial embedding of gene transcription through de-
velopment. Binned CGE(d) data with exponential fits
are shown for each of the seven developmental time
points in Figs 2A–G. The exponential form captured the
data well at all time points (all adjusted R2 > 0.94). De-
viations from the exponential form are seen as a ‘hump’
at moderate relative distances which is most clearly seen
at E15.5–P14.
To better understand how CGE varies as a function of
brain size through development, we plotted the fitted
CGE(d) exponential curves at all time points in Fig. 3A.
The plot reveals an increase in the correlation length of
CGE through development. When distances are propor-
tionally rescaled by brain size, dmax (maximal anterior–
posterior distance), as d̂ = d/dmax, shown in Fig. 3B,
the curves approximately collapse to a common scale
of spatial correlation. This suggests that the correla-
tion length scale may be approximately conserved with
a characteristic rescaling of brain size.
To quantify this relationship, we plotted the fitted tran-
scriptional correlation length, λ, as a function of brain
size, dmax, in Fig. 4A. We find that λ increases with dmax
through development (Pearson’s r = 0.98, p = 10−4).
Although there are only seven points across only ∼ a
decade of brain sizes, dmax (preventing rigorous infer-
ence of power-law scaling (40)), we have physical rea-
sons to expect a scaling relationship across brain ex-
pansion (15). To explore this possibility, we fitted a
power-law, λ= 0.0632×d1.45

max, shown in Fig. 4B. We then
tested whether this relationship could give an accurate
prediction of the correlation length of transcriptional
coupling in human cortex, which has dmax ≈ 148mm
(maximal anterior–posterior distance in the Glasser par-
cellation (41)) (21). The power-law function fitted to
mouse development predicted λpred

human = 86.9mm. De-
spite differences in data type (ISH for < 2000 genes in
mouse, microarray for > 20000 genes in human), spa-
tial discretization (at the level of voxels in mouse and

a multimodal parcellation in human (41)), and anatom-
ical extent (whole brain in mouse versus the left cor-
tical hemisphere in human), our prediction is close to
the measured value in human, λmeas

human = 61.4mm (95%
confidence interval: 54.1–71.0mm (21)). The extrapola-
tion of the relationship fitted to the mouse-development
data along with the measured value, λmeas

human, is shown
in Fig. 4C. The predictions from mouse development
give a slight overestimate, but reasonable prediction,
λpred

human = 86.9mm, for the correlation length of human
cortical transcriptional gradients. This overestimation,
λpred

human > λmeas
human, suggests that, for its size, transcrip-

tional patterns in the human cortex have a shorter cor-
relation distance than in the mouse brain. This is con-
sistent with a greater degree of molecular diversity (and
functional specialization) in the human cortex compared
to the mouse brain. It will be important for future
work to verify the results of this extrapolation using
more comprehensive spatiotemporal transcriptomic data
across species.
The spatial embedding strength, A, controls the
strength of the exponential relationship in CGE relative
to other effects such as noise. As shown in Fig. 4D, this
strength is similar across development, A ≈ 0.6 (Pear-
son’s r = 0.69, p = 0.08). The offset, f0, corresponds
to the CGE in the limit of large distances, d. As plot-
ted in Fig. 4E, f0 decreases with brain size (Pearson’s
r = −0.80, p = 0.03), approaching zero as the brain
approaches adult size (P14 and P28). This is consis-
tent with a base level of transcriptional coupling at the
longest spatial scales at earlier time points (where the
most spatially distant areas have positive CGE), com-
pared a more transcriptionally diverse brain at P14 and
P28 (where average CGE ≈ 0 at the longest spatial
scales).

Model of brain growth. To understand potential mech-
anisms underlying the scaling of transcriptional gradi-
ents through brain growth, we developed a simple spatial
model of transcriptional patterning and tested its pre-
dictions against the empirical data characterized above.
As described in Methods, we generated a random spa-
tially autocorrelated map independently for each gene’s
expression pattern, evaluated in an idealized prism ge-
ometry that matches the brain’s three-dimensional spa-
tial extent at each developmental time point. To test
whether the observed patterns are consistent with a
simple rescaling of space in these expression maps, we
rescaled the spatial autocorrelation length, d0, as a func-
tion of brain size, dmax. The model is therefore simi-
lar to uniform, isotropic stretching of three-dimensional
gene-expression patterns that exist at the earliest devel-
opmental time point (it reduces to a model of this case
when all brains have the same relative dimensions). The
types of spatially autocorrelated patterns that were gen-
erated are illustrated in Fig. 5A. We first verified that
our model reproduces an approximately exponential de-
pendence of CGE with distance at a given time point,
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Fig. 2. Correlated gene expression (CGE) exhibits an approximately exponential decay with distance at all developmental time points. A–G: Across twenty
equiprobable distance bins, mean CGE of all pairs of voxels in each bin is plotted as circles, with horizontal lines showing the extent of each bin. Dashed lines indicate one
standard deviation either side of the mean of each bin. Fitted exponential curves, CGE(d) = Aexp(−d/λ) +f0, are shown solid.
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Fig. 3. Rescaling distances by a linear measure of brain size, dmax, reveals a
similarity in the spatial embedding of correlated gene expression (CGE). Fitted
exponential curves are plotted for all seven time points (colored as in Fig. 2) for: A
Distance, d (mm), and B Relative distance, d/dmax. The measure of brain size,
dmax, is taken as the maximum extent along the anterior–posterior axis.

shown in Fig. 5B for E11.5. Apart from a slight decrease
of CGE< 0 at moderate distances, and an increase back
to CGE ≈ 0 at the highest distances (especially where
finite-size effects appear, labeled pink, see Methods), we
find a good fit to an exponential form. This suggests
that the exponential distance dependence of CGE ob-
served in the ADMBA is compatible with an ensemble
of genes with independent random, spatially autocorre-
lated transcriptional patterns.

After fitting the two parameters of our model, ρ and
dscale

0 , to the empirical data (see Methods), the model
approximately reproduces the scaling of the correlation
length, λ, with brain size, dmax, seen in empirical data
(Fig. 5C), and the strength, A (Fig. 5D). The model
did not reproduce the positive offsets, f0, corresponding
to the CGE at the longest separation distances, but in-
stead predicted negative offsets, f0 < 0 (Fig. 5E, see also
Fig. 5B). This may be in part due to the idealized prism
brain geometry used in the simulation, and the lack of
anatomical specificity in the simulated expression gradi-
ents.

Discussion

In this work we used data from the ADMBA to char-
acterize how gene transcriptional gradients are spatially
embedded across brain development. Complementing
the well-known exponential distance rules for structural
connectivity in mammals (8, 9, 13, 14) that are con-
nected by a scaling rule (15), we show that correlated
gene expression is also well characterized by an expo-
nential distance rule at each point in mouse-brain de-
velopment. Furthermore, the characteristic correlation
length, λ, of this embedding was found to scale with a
linear dimension of brain size, dmax, as λ∼ d1.45

max. More
functionally specialized brains may be expected to en-
code more molecularly distinctive brain areas within the
constraints of its brain size, corresponding to a shorter
relative λ. We may therefore interpret how λ scales with
brain size as measure of the spatial trade-off between
local molecular coordination (uniform gene expression
within a specialized brain area) and longer-range molec-
ular differentiation (between molecularly distinct, func-
tionally specialized areas). The scaling of λ seen across
mouse-brain development provided a slight overesti-
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Fig. 4. The correlation length of transcriptional coupling, λ, increases with brain size. The three fitted parameters of the exponential form CGE(d) =Aexp(−d/λ)+
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expression (CGE) with distance, d, as CGE(d) = Aexp(−d/λ) +f0. Binned, model-simulated data (black) and fit (dotted blue) are plotted here for E11.5. Distance bins
for which not all grid points were sampled (due to finite-size effects) are filled pink. Exponential fit parameters of the model-simulated data (shown with dark colors) and
empirical data (shown with light colors) are plotted across development for: C spatial correlation length, λ; D strength, A; and E offset, f0. To aid visibility, empirical values
are slightly offset horizontally.

mate of the transcriptional correlation length in the
adult human cortex, λpred = 86.9mm>λmeas = 61.4mm
(Fig. 4C). The overestimation of λhuman when predicted

from mouse data is consistent with the more function-
ally specialized human cortex exhibiting a greater level
of molecular diversity (for its brain size) than mouse.
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However, this difference could also be due to the limi-
tations of performing such a wide extrapolation from a
power-law function fitted to less than a decade of mouse
brain sizes, or uncertainties related to mouse–human dif-
ferences in the measurement of gene expression, number
of genes compared, the discretization of space, and dif-
ferent anatomical scope (whole brain in mouse versus
cortex in human). These differences notwithstanding,
Given the recent finding that the brain-related genes ex-
hibit strong consistency in their hierarchical patterning
between mouse and human (31), it will be interesting for
future work to further investigate these cross-species cor-
respondences, including characterizing whether specific
classes of genes drive similarities or differences in the
spatial organization of gene expression across species.
Our analysis was performed at the voxel level using in
situ hybridization data from the ADMBA. This allowed
us to explore CGE(d) at a much finer spatial resolution
than previous analyses of correlated gene expression,
performed at the level of parcellations in adult mouse
brain (7) and human cortex (21). Nevertheless, each
spatial element in our analysis still contains transcrip-
tional contributions from a large number of molecularly
distinct brain cells. The advent of three-dimensional in
situ single-cell transcriptome profiling (42–45), preserves
spatial and transcriptomic information at the cellular
level, allowing future analyses of correlated gene expres-
sion to be performed at even finer spatial scales. For ex-
ample, this could allow testing of whether the bulk scal-
ing rule for CGE characterized here applies at the finer
scale of neuronal circuits. As transcriptomic atlas data
become available for other species, such as Drosophila
melanogaster (46, 47) and zebrafish (48), we will also be
able to more comprehensively compare the spatial orga-
nization of the brain’s molecular diversity, and assess the
cross-species validity of the scaling rule proposed here.
A simple model of independent, spatially autocorrelated
transcriptional maps that scale with brain size (sim-
ilar to the isotropic expansion of transcriptional pat-
terns set up early in development) reproduced key fea-
tures of CGE(d) scaling observed empirically. We kept
the spatial autocorrelation scale for our simulated gene-
expression maps at a fixed proportion of brain size, con-
sistent with linear, isotropic brain growth (but allow-
ing us to use realistic brain dimensions from empirical
measurements). Our results are thus consistent with
molecular specialization occurring very early in devel-
opment, with brain expansion stretching the correlation
length through development. While our idealized model
could reproduce some key elements of the data, there is
much room for improvement, including the inability of
our model to underestimate baseline levels of CGE (pre-
dicting CGE< 0 at moderate–high distances). The dis-
crepancy may be in part due to the idealized prism brain
geometry used in the simulation, or the simplistic lack
of anatomical specificity in the random spatially auto-
correlated expression gradients that we simulate. While

our model reproduces much of the CGE(d) relationship,
our model is only evaluated against these coarse-grained
properties, having blurred the contribution of the many
individual genes that display precise developmental spa-
tiotemporal programs. It will be important for future
work to precisely investigate and model these important
properties of brain development that are not considered
here. By characterizing a generic variation in CGE, the
current work may have a role to play in this research
effort. For example, genes that most strongly buck the
generic trends in CGE(d) could be considered as candi-
dates for playing a more specific, targeted role in shap-
ing brain development, facilitating data-driven identifi-
cation of genes that play important developmental roles.
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Supplementary Information
Robustness to voxel resampling. This number was chosen based on computation of variance in exponential decay
constant (see later). Briefly, we sampled different numbers of voxels (100 to 1000 in increments of 100), each 100
times, to calculate the inverse decay constant, λ−1, and then determined the variance of λ−1 for each sample size.
We found that variance in λ−1 plateaued at 1000 voxels (Fig. S1), indicating that 1000 was a sufficiently large sample
size to obtain reliable λ−1 estimates.

Fig. S1. Variance in λ−1 estimates due to random voxel sampling. Variance was estimated across 100 trials each of different
voxel sample sizes throughout development. Curves are plotted for each developmental time point using colors from the main text (e.g.,
Fig. 2). The variance in λ−1 estimates across random samples plateaus to a low value < 0.01 by the 1000 voxels used here.
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