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Abstract

Closely related species of butterfly sampled from southern suture zones in North Amer- 1

ica exhibit a continuous pattern of gene flow and population difference measures (index 2

values) for autosomes, but not for the Z chromosome; When populations are compared 3

through their Z chromosomes, index values obtained from samples of the same species are 4

separated from those of closely related species by a gap of ”missing” values, suggesting a 5

discrete ”on–off” criterion for species delimitation. Here, we explore the possibility that 6

some, or all of the index data for suture zones reflects secondary contact between species 7

formed in glacial refugia. We simulate fusion of butterfly populations limited by negative 8

fitness interactions between genes in hybrids, assuming that interactions between auto- 9

somes and the Z chromosome are stronger than those among autosomes, and that hybrid 10

fitness effects conform to Haldane’s rule. We find that weakly interbreeding populations 11

trace out a path toward equilibrium consistent with the data for butterfly suture zones, 12

in which index values for the Z chromosome lag behind those for autosomes, leading to 13

a similar gap of missing values when species become indistinguishable through their au- 14

tosomes, but no evidence of a sudden change in index values for the Z chromosome on 15

longer timescales. As a result, we find that the gap can be explained by a process in 16

which the pattern of index data for the Z chromosome is, ultimately, continuous. 17
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Introduction 18

A species can be defined as a population of organisms that maintains its genomic 19

integrity despite interbreeding, and exchange of genetic material with other populations 20

[1]. In practice, species are delineated by comparing genomic sequences using simple 21

measures of genetic distance; Genomes sampled from a population describe members 22

of the same species if they are significantly more similar to each other than they are to 23

genomes from closely related populations [2]. A large amount of effort has been devoted to 24

the improvement of methods for comparing and characterizing natural populations [3–7]. 25

However, since speciation and fusion of populations take place over extremely long time 26

scales, the dynamics of these events can only be inferred from simulations, and samples 27

of existing organisms. 28

It is worth noting the resemblance of this situation to the one encountered in a very 29

different problem from the field of astrophysics – specifically, in describing the early evo- 30

lution of stars toward their positions on the main sequence [8]. Long ago, it was found 31

that by observing stars at various stages of their evolution in young galactic clusters, their 32

evolutionary paths could be interpreted from the resulting pattern of points on a plot of 33

stellar luminosity versus temperature, known as a Hertzsprung–Russell diagram [9,10]. In 34

the present context, stars in a galactic cluster might be likened to pairs of interbreeding 35

species belonging to a particular family of organisms, and the pattern of data exhibited by 36

such pairs could provide similar insight into the conditions that regulate species integrity. 37

Recently, Cong et al. have collected exactly this sort of data in their study of but- 38

terfly sister species across suture zones in North America [2]. To determine the status of 39

populations, they likewise employed two basic indicators: (i) The index of gene flow, Igf , 40

a measure of their own invention, which describes the fraction of genes in a population 41

imported from its sister population, and (ii) the fixation index, Fst, a standard genetic 42
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measure of population difference [5]. Multiple genomic samples were collected from each 43

population, and separate indices were computed for autosomes and the Z chromosome. 44

The main results of their work are shown in Fig. 1; 45
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Fig. 1. Index of gene flow (Igf ) and fixation index (Fst) values for autosomes (A) and Z
chromosomes (B) of sister species sampled by Cong et al. The data for Igf is multiplied by
a factor of 4 for agreement with the definition of Igf used in this work. Data points describe
pairs of organisms that have been classified as different species in the literature (green),
closely related organisms for which classification is uncertain (yellow), and organisms of
the same species (red). The dotted lines in panel B are included to guide the eye.

The panels in this figure describe index values for pairs of organisms that have been 46

classified as different species in the literature (green), closely related organisms for which 47

classification is uncertain (yellow), and organisms from the same species (red). When 48

populations are compared through their autosomes (Fig. 1A), the data exhibit a continu- 49

ous pattern across the entire range of index values; However, for the Z chromosome (Fig. 50

1B), the data obtained from samples of the same species (red) are separated from those 51

of closely related species by a gap of ”missing” values, suggesting a sudden transition be- 52
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tween ”phases” – for example, as might result from a sudden gain or loss of incompatible 53

interactions with the Z chromosome in a population destined for speciation, or in sister 54

populations destined for fusion, respectively. The suture zones sampled by Cong et al. 55

appear to result from the migration of species from glacial refugia along the coastlines 56

bordering the gulf of California and the gulf of Mexico [11], which suggests that the latter 57

scenario (secondary, or higher order contact between sister species) may have more rel- 58

evance to their study. For different species (i.e., green and yellow data points), fixation 59

index values for the Z chromosome are always larger than those for the autosomes (Fig. 60

2). At the same time, the fraction of divergent positions in butterfly sister genomes is 61

roughly the same for autosomes and the Z chromosome (see Fig. 5A of reference [2]). 62
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Fig. 2. Correlation between fixation indices for the Z chromosome, F z
st, and the auto-

somes, F a
st. The data and the color scheme is from Fig. 1. The dotted line, F z

st = F a
st,

is included to guide the eye. Included for comparison is a plot of the average, 〈F z
st〉,

versus F a
st (squares) for a model in which hybridization is limited by negative interactions

between genes the autosomes and the Z chromosome (see below). Error bars indicate
standard deviations in the model data; Errors in the means (not shown) fit within the
symbols.
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Together, these results indicate a slower rate of introgression among Z chromosomes, and 63

suggest that mutations on the Z chromosome play a larger role in hybrid incompatibility 64

(i.e., consistent with the large X effect [6, 12]). 65

In this work, we consider the possibility that some, or all of the data sampled by Cong 66

et al. reflects secondary contact between species formed in glacial refugia. To explore 67

the relationship between gene flow and population difference, we simulate fusion [13] of 68

butterfly populations using a model developed by Orr and Turelli to describe the fitness 69

costs of interactions between incompatible genes in hybrids [14–16]. In accord with the 70

butterfly data, we assume that hybrid interactions between genes in autosomes and the 71

Z chromosome are stronger than those among autosomes, and that hybrid fitness effects 72

conform to Haldane’s rule [12]. We find that weakly interbreeding populations trace out 73

a path to equilibrium consistent with the data, in which indices for the Z chromosome 74

approach their equilibrium values more slowly than those for autosomes, leading to a 75

similar gap of missing index values when populations become indistinguishable through 76

their autosomes, but without a sudden change in index values for the Z chromosome on 77

longer timescales. As a result, we find that the missing values can be explained by a 78

process in which the pattern of data for Izgf and F z
st is, ultimately, continuous. 79

Model 80

The dynamics of interbreeding between butterfly populations are obviously very com- 81

plicated, involving effects due to geography, climate, resource availability, mobility, and 82

predation, to name a few [17]; Populations can undergo repeated episodes of contact and 83

isolation, and significant changes in size that can affect the rate of change of indices for 84

the Z chromosome relative to the autosome [6]. Here, we neglect many of these effects 85

in favor of a more intelligible model that still incorporates some of the basic features of 86
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butterfly genetics. 87

In our model, sister species are represented by populations (demes) of equal size that 88

exchange randomly selected pairs of individuals in each generation. Populations evolve by 89

plain Wright–Fisher dynamics, with random mating between male and female individuals: 90

In each generation, a number of individuals (with mean m) are exchanged between demes. 91

In each deme, male and female individuals are selected randomly (with replacement) in 92

proportion to fitness to undergo mating. The genomes of selected individuals undergo 93

explicit meiosis [18], with random recombination in males (meiosis is achiasmatic in female 94

butterflies [6, 19]), producing a single tetrad of gametes for each individual. A single 95

offspring is generated in each mating event by random union of male and female gametes, 96

and the process continues until the initial populations are replenished. 97

To describe the effects of hybridization on fitness, we use a well known model of hybrid 98

incompatibility developed by Orr [15]. The model is an extension of the Dobzhansky– 99

Muller model to arbitrary numbers of interacting loci that Orr used to estimate the rate 100

of increase of negative interactions between pairs of genes in first order hybrids formed 101

from diverging populations. To obtain his estimate, Orr traced the acquisition of fixed 102

mutations at random loci in two, initially identical, isolated populations, assuming that 103

populations are monomorphic between fixation events (e.g. as in the weak mutation / 104

strong selection limit [20]). To explain this process, let g(k) and g′(k) denote genomes 105

representing the two populations after k substitutions. Initially, g(0) = g′(0). It is 106

assumed that mutations in g fix at different loci than mutations in g′, and that g and 107

g′ acquire fixed mutations (substitutions) at the same rate; Multiple substitutions at the 108

same locus are neglected. After the first substitution, each additional substitution in g (for 109

example) occurs on a different background than it would in g′, which leads to potential 110

negative interactions with alleles at loci in g′ that differ from those in g when g and g′ 111
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are combined in hybrids (i.e., because the substitution in g has not been ”tested” in the 112

background of alleles that differ in g′); Similar reasoning also holds for substitutions in g′. 113

It was shown by Orr that the number of such interactions increases as the square of the 114

total number of substitutions, in agreement with results for Drosophila [21]. The process 115

is described graphically in Fig. 1 of reference [15]. 116

In this work, we simulate the equilibration of weakly interbreeding populations start- 117

ing from an advanced point in Orr’s model. For simplicity, additional mutations are 118

neglected. To construct the genomes g(k) and g′(k) used to initialize our simulations, 119

we assign an equal number of fixed mutations to random loci in g(0) and g′(0) as pre- 120

scribed above; Each mutation is assigned a random time index, and the temporal order 121

of mutations is used to determine the set of potentially incompatible pairings between 122

alleles in hybrids. Following Orr, we assume that each pairing has a small probability p of 123

being incompatible. This smaller set of pairings (after random selection with probability 124

p) is then assumed to exist in all hybrids formed during a simulation, consistent with the 125

assumed independence of pair interactions in Orr’s model [15]. 126

To define the set of selected pairings, let G denote a general hybrid genome formed 127

during a simulation, and let Gkl denote the allelic state of the gene at locus l in chro- 128

mosome k, where k ∈ [1, n], and n is the total (diploid) number of chromosomes in G; 129

For simplicity, assume that homologous chromosomes are specified by sequential pairs of 130

indices, k ∈ {1, 2}, . . {i − 1, i}, . . {n − 1, n}, with sex chromosomes specified by the last 131

pair of indices, k ∈ {n− 1, n}. To simplify the notation, we alternately use a single greek 132

subscript to denote the pair of indices specifying the location of a particular gene – i.e., 133

such that Gµ (for example) means the same thing as Gkl. Using this notation, we express 134

the set of pairings between locations of genes in hybrids by the matrix pµν , where pµν = 1 135

when a pairing between alleles in g and g′ connects gene location µ in g to gene location ν 136
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in g′, and pµν = 0 otherwise. We can then express the existence of a negative interaction 137

between alleles Gµ and Gν at locations µ and ν by the function, 138

∆µν(G) = pµν δGµ, gµδGν , g′ν + pνµ δGν , gνδGµ, g′µ (1)

where δi,j is the Kronecker function (δi,j = 1 if i = j, and δi,j = 0 otherwise). Note that 139

if pµν = 1 then pνµ = 0, since substitutions in g and g′ occur at different loci. As a result, 140

∆µν = 1 when an interaction exists between alleles Gµ and Gν , and ∆µν = 0 otherwise. 141

Below, we model butterfly genomes by n = 40 binary chromosomes of equal length 142

L (similar to Heliconius genomes [19]) where L = 100 loci. Mutant and ancestral alleles 143

in Orr’s model are represented by binary alleles (1 and 0, respectively) in our model. 144

To construct initial genomes for a simulation, we assign 10 fixed mutations to randomly 145

selected loci in each pair of chromosomes in each genome, subject to the conditions de- 146

scribed above. In selecting a set of pairings, we assume that hybrid interactions between 147

the autosomes and the Z chromosome are dominant; All other pairings are neglected, and 148

the individual fitness effects of mutations are considered neutral; In particular, the W 149

chromosome acts only to determine the sex of an individual. 150

To define the fitness costs of interactions between selected pairs of alleles in hybrids, 151

we explored two different models: In model (i), each pair of interacting alleles in a 152

male genome G is assigned the same log fitness cost s, representing a typical, or aver- 153

age cost for incompatible genes in hybrids; The fitness of a male genome is then given by 154

w(G) = exp−s ∑
µν ∆µν(G). To compute the fitness of a female genome, alleles on the 155

Z chromosome are treated as fixed alleles on the two Z chromosomes in a male genome; 156

In this case, each term with ∆µν = 1 in a female genome contributes an amount −2 s 157

rather than −s to the exponent of w(G). In model (ii), fitness is computed the same 158
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way as in model (i) except that the effect of a pairing is recessive when both loci in ∆µν 159

are heterozygous; In that case, terms with ∆µν = 1 contribute an amount −ε s to the 160

exponent of w(G) where ε < 1. This condition clearly affects male genomes only, since 161

in female genomes, the locus on the Z chromosome is treated as homozygous. As a re- 162

sult, hybrid females are typically less fit than hybrid males in accordance with Haldane’s 163

rule. Since model (ii) is more realistic for butterfly populations, we focus on that model 164

exclusively in this work. In all of the results below, the dominance factor is ε = 0.25, 165

the mean migration rate is m = 1 exchange per generation, and the mean recombination 166

rate is r = 1 crossover per chromosome per meiosis, similar to the recombination rate in 167

Heliconius [19]. 168

Results 169

To compare model (ii) with the data in Fig. 1, we conduct simulations for various 170

population sizes (N) and interaction frequencies (p), with fitness costs (s) selected so that 171

Fst values for the model roughly approximate the data in Fig. 2. To generate data for 172

a given N , p and s we conduct multiple simulations in parallel on 128 nodes of a high 173

performance computer: On each node, we generate a different random interaction model 174

(with frequency p), and for each model we conduct 10 trials; In each trial, populations 175

begin in monomorphic states (Fst = 1) and are allowed to equilibrate via genetic drift 176

and selection until they reach a state with (typically) Fst ' 0.1 for the autosomes, as in 177

Fig. 1A (yellow and green data points). 178

The fixation index, and the index of gene flow are computed using methods similar to 179

those described by Cong et al.; To define these objects, let Dk(G,G
′) denote the number 180

of pairwise differences (Hamming distance) between chromosome k in genome G and 181

chromosome k in genome G′, and let 182
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D(G,G′) = D1(G,G
′) + D3(G,G

′) + . . Dn−3(G,G
′) (2)

denote the total distance between autosomes (for simplicity, we restrict genome compar- 183

isons to odd numbered chromosomes). The fixation index for autosomes is then 184

Fst = 1 − 〈D〉11 + 〈D〉22
2 〈D〉12

(3)

where braces, 〈 〉ij, denote averaging over genomes G and G′ sampled from populations i 185

and j, respectively, and i, j ∈ {1, 2}. Due to the lower complexity of our model, we define 186

the index of gene flow (Igf ) as the fraction of chromosomes (i.e., as opposed to transcript 187

windows [2]) with Gmin ≤ 0.25, where 188

Gmin,k =
minDk

〈Dk〉12
(4)

and minDk is the minimal value of Dk(G,G
′) obtained for the samples of genomes used 189

to compute 〈Dk〉12. Indices for the Z chromosome are obtained by substituting Dn−1 190

for D and Dk in Eq.s (3) and (4) (by convention, the W chromosome is always the last 191

chromosome in a female genome, so it plays no part in these expressions). Further details 192

are provided in the Appendix. 193

We selected the model parameters s and p so that the data for F z
st conforms, to 194

varying degrees, with the pattern of data in Fig. 2 (see Fig. 5); Under these conditions, 195

populations equilibrate more rapidly through their autosomes than their Z chromosomes 196

leading to a pattern of data similar to that in Fig. 1; 197

To demonstrate this, we first averaged the index values over trials in a simulation at 198
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regular points in time. Figure 3 provides a sample of these averages for simulations with 199

N = 8 × 103, where, for example, 〈F x
st〉(t) is the average value of F x

st over all 1280 trials 200

in a simulation after t generations, and x ∈ {z, a}; 201

10 k
0.1
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t

〈F
st
〉

(a)

0 10 k
0

0.5

t

〈I
g
f
〉

(b)

Fig. 3. Index of fixation Fst(t) (A) and index of gene flow Igf (t) (B) averaged over
trials sampled after t generations. Index values for the Z chromosome (autosomes) are
described by solid (dashed) lines. The data describe simulations with p = 0.00065 (blue),
p = 0.0013 (red), p = 0.0026 (yellow), and p = 0.0065 (green) corresponding to about
2, 5, 10, and 23 negative pairings per Z chromosome (on average) of strength Ns = 92,
60, 30, and 2.9, respectively. In both panels, colored triangles indicate the points in time
when 〈F z

st〉(t) = 0.3. For clarity, the results are represented by high precision polynomial
fits to the averages (see supplementary Fig.s S1–S2 for a description of the fits and data
statistics).

The data in Fig. 3 describe models with about 2 (blue), 5 (red), 10 (yellow), and 23 (green) 202

negative pairings per Z chromosome (on average) of strength Ns = 92, 60, 30, and 2.9 203

respectively. It is evident by inspection of this data that, for certain sets of parameters, 204

〈Izgf〉(t) is much smaller than its final value when 〈F z
st〉(t) ∼ 0.3 (triangles), the smallest 205

value of F z
st attained for different species in Fig. 1B. For example, for p = 0.0013 and 206
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Ns = 60 (solid red lines), 〈Izgf〉(t) is about 1/3 of its final value when 〈F z
st〉(t) ∼ 0.3 (red 207

triangles). At the same time, 〈F a
st〉(t) is close to 0.1 and 〈Iagf〉(t) is close to its final value, 208

consistent with Fig. 1A. Note, however, that the final value of 〈Iagf〉(t) reached in Fig. 3B 209

is clearly smaller than expected from Fig. 1A. This discrepancy appears to result from 210

the low complexity of our model – specifically, from the use of chromosomes rather than 211

transcripts to compute Gmin and Igf in Eq. (4). We discuss this problem in more detail 212

later below. 213
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Fig. 4. Index of gene flow Igf for the autosomes (A) and the Z chromosome (B) averaged
over samples with a given value of Fst. The color scheme and simulation parameters
correspond with those in Fig. 3. Butterfly data from Fig. 1 is included in respective
panels for comparison. For clarity, the results are represented by high precision polynomial
fits to the averages (see supplementary Fig. S2–S3 for a description of the fits and data
statistics).

Similar results are obtained by averaging the index data over samples irrespective of 214

time, as shown in Fig.s 4–5. In particular, for the simulation discussed above (red data), 215

when F a
st ' 0.13 in Fig. 5 we obtain 〈F z

st〉 ' 0.3, similar to Fig. 3A, and when F z
st ' 0.3 216
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in Fig. 4B, 〈Izgf〉|F zst=0.3 ' 0.1 is only about 1/4 of its maximum, or ”same species” value, 217

〈Izgf〉|F zst=0.1 ' 0.4. Again, 〈Iagf〉 is smaller than expected from Fig. 1A when F a
st

∼
< 0.5. 218

Interestingly, there is a steep drop in 〈F z
st〉 with F a

st for all simulations when F a
st

∼
< 0.2 in 219

Fig. 5, while there is no sudden change in 〈F z
st〉(t) with time in Fig. 3A. Data statistics, 220

errors in the means, and fits to the data in Fig.s 3–5 are described in the Supplementary 221

Material. 222
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Fig. 5. Index of fixation for the Z chromosome, F z
st, averaged over samples with a given

value of F a
st. The color scheme and the simulation parameters correspond with those in

Fig. 3. Butterfly data from Fig. 2 is included for comparison. Errors in the means, and
data widths are similar to those described for the model data in Fig. 2.

Because the correct population size needed to model suture zone data is unknown, 223

and could be very large, it is also important to understand how the results of the model 224

vary with N . For population sizes N ∼ 105 (a small but reasonable value for Heliconius 225

populations [6]), the amount of time needed to complete a simulation is about one month. 226

Thus, for practical reasons, we decided to limit our study to a smaller range of population 227

sizes, N
∼
< 104 – again, with s and p selected to approximate the data in Fig. 2 (recall that 228
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the migration rate is fixed at m = 1 exchange per generation on average, regardless of N). 229

Under these conditions, we find that the number of generations needed for a simulation to 230

reach a state with 〈F a
st〉(t) ' 0.1 is on the order of N . The value of s needed to maintain 231

a gap between F z
st and F a

st increases with N , and increases more rapidly for smaller values 232

of p (i.e., for fewer pairings between loci in the Z chromosome and the autosomes). For 233

example, when p = 0.0065, each Z chromosome in a male F1 hybrid is paired with about 234

20 random loci in the autosomes, as noted above; In this case, the value of s needed 235

for agreement with Fig. 2 increases only slightly with increasing population size, from 236

about Ns ∼ 2 when N = 103 to about Ns ∼ 3 when N = 8 × 103. By contrast, when 237

p = 0.00065, the required value of s increases from about Ns ∼ 20 when N = 103 to 238

about Ns ∼ 100 when N = 8 × 103. As a result, the gap between F z
st and F a

st in the 239

model is roughly related to the total fitness cost of hybridization. For the case p = 0 (no 240

pairings), there is no gap between F z
st and F a

st (on average), as expected. Overall, the 241

results seem to indicate that a pattern of data similar to Figs 3–5 will emerge for larger 242

populations. Data for smaller population sizes, and C++ code used to generate the data 243

in this work are available from the authors on request. 244

Discussion 245

We have shown that under certain conditions, the statistical relationship between 246

Igf and Fst for model butterfly species, interbreeding with negative interactions between 247

genes in the autosomes and Z chromosomes in hybrids, agrees qualitatively with the data 248

for butterfly sister species along suture zones; This suggests one possible explanation for 249

the ”missing” values in Fig. 1B – namely, that sister species have not been in contact 250

long enough to traverse the index region F z
st < 0.3. However, there are some significant 251

differences between the model and real populations that are important to discuss. 252
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First, as we have noted above, model averages for Igf do not always conform well to 253

the data for Igf in Fig. 1. In particular, 〈Iagf〉(t) and 〈Iagf〉(F a
st) are both smaller than 254

expected from Fig. 1A, while 〈Izgf〉(t) and 〈Izgf〉(F z
st) are somewhat larger than expected 255

when p
∼
> 0.003. These discrepancies appear to result from the low complexity of our 256

model genomes: Clearly, smaller values of Gmin ≤ 0.25 (and therefore larger values of 257

Igf ) will occur more frequently if the distribution of distance values is skewed toward 258

smaller values of D. To compute Igf , we have measured the distance between whole 259

chromosomes. However, chromosomes are subject to a much higher rate of recombination 260

than genomic transcripts. As a result, the probability of sampling a pair of individuals 261

from different populations with the same, or similar sequences (i.e., in the tail of the 262

distribution, D ≤ 0.25 〈D〉) is probably larger for transcripts, since they maintain their 263

integrity longer, and are usually exchanged between populations intact. Similarly, for 264

p
∼
> 0.003 in the model, the number of negative pairings per Z chromosome is comparable 265

to the number of mutated loci. In this case, only those Z chromosomes with certain 266

patterns of mutated loci (i.e., in which loci with strong negative effects have been removed 267

by purifying selection) will have the ability to propagate in both populations, which should 268

again increase the probability of sampling sequences from different populations with D in 269

the tail of the distribution, D ≤ 0.25 〈D〉. For a number of reasons (see below), we defer 270

further investigation of Gmin to future work. 271

Finally, it is important to note that real populations of butterflies are often much 272

larger than the populations simulated in this work. For example, the effective population 273

size for species of Heliconius butterflies, which we have used as a kind of model organism 274

in this work, ranges from about 105 to as many as 107 individuals [6]. Based on the results 275

in hand, there seems to be no reason to expect a different pattern of data to emerge from 276

the model for larger populations. However, the interbreeding dynamic used in the model 277
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completely neglects the spatial structure of butterfly populations. In real populations, 278

interbreeding is limited by distance and mobility, whereas in the model, male and female 279

individuals can interbreed as long as they occupy the same deme. For this reason, the 280

parameters of the model can not be compared consistently with those of real populations, 281

except perhaps in the case of populations that completely overlap. Accordingly, the model 282

should probably be interpreted as a description of the suture zone itself, which typically 283

contains a small fraction of the total population. For models that include the effects of 284

geography and fluctuations in population size, it may still be possible that index values 285

for the Z chromosome undergo some kind of sudden transition within butterfly suture 286

zones. More detailed work is needed to understand these processes. 287
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Appendix 291

Equations (3) and (4) are computed by sampling an equal number genomes at ran- 292

dom from each population. To compute Fst from Eq. (3) we sample 100 genomes per 293

population. Alternatively, we compute Fst using the expression given by Bhatia et al. for 294

individual sites [5], 295

F site
st =

(p1 − p2)2 − p1(1− p1)/(n1 − 1) − p2(1− p2)/(n2 − 1)

p1(1− p2) + p2(1− p1)
(5)

where pi is the frequency of a mutated allele in population i, and ni is the number 296

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.134494doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.134494
http://creativecommons.org/licenses/by-nc-nd/4.0/


18

of genomes sampled from population i (see Eq. (10) of reference). In our work, pi is 297

computed by sampling the entire population (ni = N). To compute the genomic value 298

of Fst, we average the numerator and denominator of Eq. (5) over mutated sites, as 299

recommended by Bhatia et al. in reference [5]. We find that the two methods agree to a 300

precision of about 10−3. Thus, for practical purposes, the methods are interchangeable. 301

Because the probability of obtaining a genome comparison with Gmin ≤ 0.25 will depend 302

on the number genomes sampled, we compute Igf by sampling only 10 genomes per 303

population [3], about twice the number sampled from butterfly populations by Cong et 304

al. [2]. 305
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