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Abstract 32 

Background: Quantitatively predicting the progression of Alzheimer’s disease (AD) in an 33 

individual on a continuous scale, such as AD assessment scale-cognitive (ADAS-cog) scores, is 34 

informative for a personalized approach as opposed to qualitatively classifying the individual into a 35 

broad disease category. We hypothesize that multi-modal data and predictive learning models can 36 

be employed for longitudinally predicting ADAS-cog scores. 37 

Methods: Multivariate regression techniques were employed to model baseline multi-modal data 38 

(demographics, neuroimaging, and cerebrospinal fluid based markers, and genetic factors) and 39 

future ADAS-cog scores. Prediction models were subjected to repeated cross-validation and the 40 

resulting mean absolute error and cross-validated correlation of the model assessed. 41 

Results: Prediction models on multi-modal data outperformed single modal data up to 36 months. 42 

Incorporating baseline ADAS-cog scores to prediction models marginally improved predictive 43 

performance. 44 

Conclusions: Future ADAS-cog scores were successfully estimated via predictive learning aiding 45 

clinicians in identifying those at greater risk of decline and apply interventions at an earlier disease 46 

stage and inform likely future disease progression in individuals enrolled in AD clinical trials. 47 

Keywords: Alzheimer’s disease, Magnetic resonance imaging, Machine Learning, 48 

Neuropsychology, Multivariate, PLS, ADAS-cog 49 
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1 Background 51 

Alzheimer’s disease (AD) is an irreversible and multi-factorial neurodegenerative disease with a 52 

progressive decline in cognitive abilities [1]. AD affects several tens of millions of people globally. 53 

Yet, the pathogenesis of AD remains unclear [2]. Cognitive tests, brain volumetry from magnetic 54 

resonance imaging (MRI), amyloid load and glucose consumption levels from positron emission 55 

tomography (PET), and protein analysis of cerebrospinal fluid (CSF) provide valuable and 56 

complementary disease markers to chart the disease progression [3]. Qualitative manual analysis of 57 

these markers to diagnose patients could be potentially aided by automated algorithms.  58 

 59 

The classification based on clinical diagnosis places an individual into normal, mild cognitive 60 

impairment (MCI), or AD groups [4]. Memory loss (either self-reported or by an associate) is 61 

observed during the initial stages of AD [5]. Declining cognitive skills is also common and can 62 

potentially lead to dementia [6]. Hence, it is imperative that the disease progression is carefully 63 

monitored at the earliest stages [7]. AD risk factors include sociodemographic factors (e.g., 64 

increasing age and fewer years of education), genetic (APOE expression) and patient medical and 65 

family history [8]. A clinical diagnosis of AD is currently a challenge due to lack of clear diagnostic 66 

markers of AD, and overlapping clinical features with other dementia types. However at post-67 

mortem, AD is characterized by the presence of amyloid β-peptide plaques and accumulations of τ 68 

proteins in the brain histology samples [9]. 69 

 70 

The progressive nature of AD makes diagnosing an individual into any of the discrete groups a 71 

challenging proposition [10,11]. Conventional progression tracking analyzes clinical changes in 72 

MRI, CSF and cognitive biomarkers [12,13], but this could be inefficient as the changes can be 73 

slow and difficult to detect [14,15]. The change in these biomarkers is nonlinear with AD’s 74 

progression, further complicating longitudinal tracking. Therefore, quantifying and tracking the 75 
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condition of the patient by continuous measures such as ADAS-cog scores has been advocated 76 

[16,17]. ADAS-cog is widely used clinically (to measure language, memory, praxis, and other 77 

cognitive abilities) and provides an accurate description of the cognitive state on a continuous scale, 78 

making it an ideal choice in our study [18,19]. The availability of standardized multi-modal data 79 

and corresponding longitudinal ADAS-cog scores from research organizations, such as the 80 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) project, has enabled the development of 81 

novel techniques for tracking AD progression by employing machine learning [20]. However, 82 

predicting ADAS-cog scores has been reported as very difficult [21]. In the recent Alzheimer’s 83 

Disease Prediction of Longitudinal Evolution (TADPOLE) Challenge (https://tadpole.grand-84 

challenge.org/), forecasts of clinical diagnosis and ventricle volume were very good, whereas, for 85 

ADAS-cog, no team participating in the challenge was able to generate forecasts that were 86 

significantly better than chance.  87 

 88 

Multivariate regression techniques, such as partial least squares regression (PLSR), support-vector 89 

regression (SVR) and random forest regression, enable modeling complex relationships between 90 

baseline multi-modal ADNI data (predictors) with future ADAS-cog 13 scores [22,23]. The 91 

multivariate nature of the modeling is desirable for the ADAS-cog score trajectory analysis due to 92 

the complementary nature of the AD measures. The resulting trajectory predictions could alert 93 

clinicians to prescribe appropriately (once disease modifying interventions are available). 94 

Moreover, knowing the likely future trajectory of the disease will provide a benchmark with which 95 

to test clinical evolution in patients enrolled in clinical trials. 96 

 97 

We hypothesized that the multivariate regression techniques are well suited for multi-factorial 98 

diseases and that the progression of AD, as indicated by ADAS-cog scores in subsequent timelines, 99 
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can be accurately predicted. Furthermore, the inclusion of baseline ADAS-cog scores could 100 

improve the predictions of the model in subsequent follow-ups. 101 

 102 

2 Methods 103 

2.1 ADNI Dataset 104 

Data in this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 105 

database (http://adni.loni.usc.edu/). In addition to the various summary tables directly provided by 106 

ADNI, we used summary tables prepared for the TADPOLE grand challenge based on ADNI data 107 

at  https://tadpole.grand-challenge) [21,24]. The data are from the TADPOLE tables if not otherwise 108 

stated. Specific variable names are provided as supplementary Table S.1. The ADNI project started 109 

in 2003 as a public-private partnership, led by PI Michael W. Weiner, MD. The main objective of 110 

ADNI is to evaluate the application of serial magnetic resonance imaging (MRI), positron emission 111 

tomography (PET), other biological markers, and clinical and neuropsychological assessment in a 112 

multi-modal approach to determine the longitudinal progression of mild cognitive impairment 113 

(MCI) and early Alzheimer’s disease (AD). We utilized pre-processed ADNI data because of the 114 

standardized processing pipeline that ensured the quality of the data. This multimodal data is readily 115 

available for other researchers enabling a direct comparison of the study results. Readers are 116 

directed to www.adni-info.org for detailed information on the ADNI project and the TADPOLE 117 

challenge https://tadpole.grand-challenge.org constructed by the EuroPOND consortium 118 

(http://europond.eu). 119 

 120 

2.1.1 Subjects 121 

The characteristics of subjects recruited in the ADNI dataset are described in detail here 122 

http://adni.loni.usc.edu/. The trends of the ADAS-cog 13 scores utilized in this study are provided 123 

in Figure S.1 and the details of subject characteristics are provided in Table S.2 of the 124 
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supplementary section. There are fewer subjects in follow-up visits than in the baseline visit due to 125 

subject attrition and missing data. Note that some subjects change diagnostic status over the follow-126 

up period. The roster identification (RID) numbers of the included subjects are provided as comma-127 

separated values in the supplementary section. 128 

 129 

2.1.2 MRI 130 

As MRI features, we used 9 features: intracranial volume (ICV), and volumes of the hippocampus, 131 

entorhinal cortex, and lateral ventricles as well as the latter four divided by the ICV. These features 132 

were selected based on previous studies [25]. We included volumes divided by the ICV as it is 133 

unclear whether raw or ICV-corrected volumes are better predictors of dementia [25,26]. MR 134 

imaging protocol details are provided by ADNI at http://adni.loni.usc.edu/methods/mri-tool/mri-135 

analysis/. Cortical reconstruction and volumetric segmentation had been performed with the 136 

FreeSurfer 5.1 image analysis suite. A brief description of the processing is provided in the 137 

supplementary material (Section B) [27]. 138 

 139 

2.1.3 AV-45 PET 140 

As AV-45 PET features, we used standardized uptake values (SUVs) in four regions: frontal cortex, 141 

cingulate, lateral parietal cortex, and lateral temporal cortex. The AV-45 PET measures amyloid-142 

beta load in the brain.  AV-45 PET imaging and preprocessing details are available at 143 

http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/ [28]. We used regional SUV 144 

ratios processed according to the UC Berkeley protocol [28–30]. Each AV-45 PET scan was co-145 

registered to the corresponding MRI and the mean AV-45 uptake within the regions of interest and 146 

reference regions was calculated. Regions of interest were composites of frontal regions, 147 

anterior/posterior cingulate regions, lateral parietal regions, and lateral temporal regions [31]. The 148 
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final PET measurements were the average amyloid-beta uptakes in the four ROIs normalized by the 149 

whole cerebellum reference region. 150 

 151 

2.1.4 FDG PET 152 

As FDG-PET features, we used average SUVs in five brain regions: bilateral angular gyri, bilateral 153 

posterior cingulate gyri, and bilateral inferior temporal gyri. The FDG PET data measures glucose 154 

consumption and is shown to be strongly related to dementia and cognitive impairment when 155 

compared to normal control subjects [30,32,33]. Motion correction and co-registration with MRI 156 

was performed on the acquired PET data. The highest 50% of voxel values within a hand-drawn 157 

pons/cerebellar vermis region were selected and their mean was used to normalize each ROI 158 

measurement resulting in the final FDG PET measurements. Regions of interests were bilateral 159 

angular gyri, bilateral posterior cingulate gyri, and bilateral inferior temporal gyri. 160 

 161 

2.1.5 CSF proteins 162 

The baseline CSF Aβ42, t-tau, and p-tau were used as CSF features [34]. CSF was collected in the 163 

morning after an overnight fast using a 20- or 24-gauge spinal needle, frozen within 1 hour of 164 

collection, and transported on dry ice to the ADNI Biomarker Core laboratory at the University of 165 

Pennsylvania Medical Center. The levels of Aβ42, t-tau, and p-tau in CSF were used. 166 

 167 

2.1.6 Neuropsychology and behavioral (NePB) assessments 168 

The NePB assessments reflect the cognitive abilities of the subjects. Subjects underwent a battery of 169 

NePB tests [35]. We selected to include 5 NePB scores as NePB features:  the summary score from 170 

Mini-Mental State Examination (MMSE) [36], three summary scores of Rey’s auditory verbal 171 

learning test (RAVLT; learning, immediate, and percent forgetting) [37], and a summary score from 172 

the functional activities Questionnaire (FAQ) [38]. 173 
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 174 

2.1.7 Risk factors: age, education, and APOE 175 

Past studies have found several risk factors contributing to AD [8]. We considered age, the number 176 

of APOE e4 alleles, and the years of education. With aging, normal cognitive decline is an accepted 177 

phenomenon, but lower education and lower cerebral metabolic activity could accelerate the normal 178 

decline [39]. The APOE e4 allele, present in approximately 10-15% of people, increases the risk for 179 

late-onset AD and lowers the age of onset. One copy of e4 (e3/e4) can increase risk by 2-3 times 180 

while homozygotes (e4/e4) can be at 12 times increased risk [40]. We coded APOE e4 status of 181 

absence, single copy or homozygous coded as 0, 1 and 2 respectively. 182 

 183 

2.1.8 ADAS-cog scores 184 

The ADAS-cog 11 task scale was developed to assess the efficacy of anti-dementia treatments. 185 

Further developments to the scale shifted its sensitivity towards pre-dementia syndromes as well, 186 

primarily mild cognitive impairment (MCI). The ADAS-cog 13 task scale was one such 187 

improvement on the original ADAS-cog 11, with additional memory and attention/executive 188 

function tasks [41]. The final 13 tasks test verbal memory (3 tasks), clinician-rated perception (4 189 

tasks), and general cognition (6 tasks). It was found to perform better than the ADAS-cog 11 at 190 

discriminating between MCI and mild AD patients, as well as have better sensitivity to treatment 191 

effects in MCI [42]. As the ADAS-cog 13 fully encompasses the ADAS-cog 11 tasks, it is also 192 

backward compatible. As such, we used the ADAS-cog 13 scale for our study as a continuous 193 

quantitative measure of a subject’s disease status. The scores at baseline, 12-month, 24-month and 194 

36-month timelines were obtained from the ADNI dataset (Table S.2). The value (0 to 85) of these 195 

scores is lowest for the normal control group and increases with disease progression and the scores 196 

are highest for AD subjects. 197 

 198 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.133645doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.133645


Prakash et al. 

 

9 

 

2.2 Multivariate regression analysis 199 

We employed multivariate regression to predict ADAS-cog scores based on predictor variables 200 

detailed in section 2.1. We considered four different prediction tasks: predicting ADAS-cog score at 201 

baseline and at 12, 24, or 36 months after the baseline. In all of these tasks, the predictor variables 202 

are from the baseline visit. The group of features (predictors) used for regression are denoted by the 203 

column vectors Xi, (i = 0, 1, . . ., L), where L is the number of features (Figure S.2). The  ADAS-204 

cog scores (dependent variable or response variable) are denoted by the column vector Y.  205 

 206 

We employed widely used machine learning techniques including partial least squares regression 207 

(PLSR) [43], support vector regression (SVR) [44], and random forest regression (RF) and created 208 

prediction models [45]. Additionally, a genetic algorithm (GA) was utilized to rank the variables in 209 

the order of importance in the multi-modal case [46]. The details on these methods are provided in 210 

the supplementary section. 211 

 212 

2.3 Regression modeling and performance metrics 213 

 214 

Figure 1: Schematic of regression modeling. X is single or multi-modal predictors and Y is the 215 

target value to be predicted. We utilized 5-fold cross-validation repeated 10 times to account for the 216 

random assignment of subjects to different folds. Partial least squares regression (PLSR), support-217 

vector regression (SVR) and random forest regression (RF) models were trained and tuned based on 218 

training folds and evaluated on test folds. The utilized Matlab function and hyperparameter tuning 219 
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are shown in italics. Cross-validated correlation (ρ) and mean absolute error (MAE) metrics were 220 

employed and average performance for 10 runs computed. 221 

 222 

The prediction of the ADAS scores (at baseline, 12-months, 24-months, and 36 months) was 223 

performed by employing PLSR, SVR, and RF. Both single modal (each modality of Section 2.1 224 

alone) and multi-modal predictors (all modalities of Section 2.1 combined,) were considered. All 225 

the predictors were from the baseline visit. We evaluated the prediction models using  5-fold 226 

repeated cross-validation with 10 repeats, see Figure 1 and Figure S.2. Under single modalities 227 

Age, years of education (Edu),  number of APOE e4 alleles (APOE) were exactly 1 variable each, 228 

CSF had 3 variables, AVF45-PET had 4 variables, NePB and FDG had 5 variables each, MRI had 9 229 

variables and hence the multimodal model had a total of 29 variables (Figure S.2). All variables 230 

were assumed to be continuous and we standardized the variables to be zero-mean and unit standard 231 

deviation. The model was evaluated in terms of correlation coefficient (ρ) and the mean absolute 232 

error (MAE) between the actual ADAS-cog 13 scores and its model-predicted values. From the 5-233 

fold cross-validation, we averaged the resulting 5 distinct values and computed 95% confidence 234 

intervals (CIs) using the bootstrapping method. Similarly, MAE and its CIs were computed. The 235 

process was repeated 10 times and its distribution analyzed. For mathematical details of these 236 

performance metrics as well as the CI computation in the case of repeated cross-validation that 237 

takes into account inter-dependency of distinct repeats, readers may consult Lewis et.al. [47].  238 

 239 

The analyses were performed on MATLAB 2018b (The Mathworks Inc, Natick, MA) using native 240 

machine learning functions. The PLSR was executed with plsregress function and the optimal 241 

number of PLS components was manually selected based on the least root mean square error for 242 

training data [48]. SVR was executed with fitrsvm and RF with fitrensemble and in both methods 243 

the models were tuned by setting OptimizeHyperparameters argument as auto [49,50]. 244 
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Additionally, Additionally, GA-PLS was utilized to analyze the importance of each modality in the 245 

multimodal PLSR regression models [51]. 246 

(The main codes and resulting .mat file are available on GitHub: 247 

https://github.com/mithp/ADAS_multimodal.git)  248 

 249 

3 Results 250 

As depicted in Figure 1, we created single modality and multi-modal regression models and 251 

compared their performance. The comparison (Figure 3) shows that multi-modal based prediction 252 

models outperform single modality consistently in all the timelines (baseline and subsequent 12, 24 253 

and 36-month follow-up) in all subjects tested (i.e., collapsing over diagnostic categories). The 254 

correlation between the predicted ADAS-Cog 13 based on multi-modal data and that observed at 255 

12, 24 and 36 months, reached 0.86, 0.82, and 0.75, respectively. The performance comparison 256 

(Figure S.3) shows that the differences among PLSR, SVR, and RF were not significant (i.e., p > 257 

0.05), except for some instances where PLSR underperformed compared to RF (baseline and 12 258 

months: MRI, CSF, and FDG; 24 and 36 months: APOE and multi-modal). However, PLSR models 259 

were computationally faster and performed consistently.  260 

 261 

By analyzing the importance of measures (Figure 2) contributing to PLSR’s correlation we observe 262 

that the neuropsychological and behavioral parameters (NePB) were most important and consistent 263 

across time periods for predicting ADAS score, followed by CSF and MRI biomarkers. Despite the 264 

association of age at baseline, years of education (Edu.) and APOE e4 status with AD risk, thers 265 

parameters were found to be least important, perhaps because these factors are somehow reflected 266 

in other parameters. By contrast, the importance of amyloid and τ increased when predictions were 267 

made 36 months in advance (Figure 2). Additionally, metabolic activity in temporal right and left 268 

sides were on the opposite ends of the importance in the ADAS-cog score predictions. 269 
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 270 

Figure 2: Genetic algorithm-based importance of parameters in correlations as observed for 100 271 

runs for every time period. The frequency indicates the proportional contribution in ADAS-cog 13 272 

score prediction. The modality group is prefixed to the variable names. 273 
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 274 

 275 

Figure 3: Comparison of single and multi-modal dataset performance – collapsing across 276 

diagnostic status – with partial least squares regression. The performance measures cross-validation 277 

correlation (ρ) and mean absolute error (MAE) for ADAS-cog scores are plotted for predictions at 278 

0, 12, 24 and 36 months in advance. 279 

 280 

Grouping data based on diagnosis at baseline (Figure 4) and analyzing the performance further 281 

magnified the poor correlation when a single modality approach was employed to predict this multi-282 

factorial disease. We observe that NePB, single modal, data shows the best predictive performance, 283 

in keeping with the fact that the to-be-predicted variable (ADAS-Cog 13) also contains NeBP 284 

outcomes. However, the multimodal approach performs better than MCI and AD groups especially 285 
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during 24- and 36-month time periods. Due to the high variation in ADAS scores in AD groups the 286 

correlation (ρ) and MAE were not inversely proportional to each other.  287 

 288 

 289 

Figure 4: Performance of PLSR on single- and multi-modal data stratified according to baseline 290 

clinical diagnosis [normal cognition (NC), mild cognitive impairment (MCI) and Alzheimer’s 291 

disease (AD)]. The performance measures cross-validation correlation (ρ) and mean absolute error 292 

(MAE) for ADAS-cog scores are plotted for predictions at 0, 12, 24 and 36 months in advance. 293 
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 294 

Figure 5: Performance comparison of prediction models utilizing only ADAS scores vs. 295 

multimodal data with and without the combination with baseline ADAS scores. The p-values 296 

correspond to pair-wise differences between the three prediction models at different time periods. 297 

 298 

 299 

Figure 6: The mean of actual ADAS-cog 13 scores of subjects over 36 months is plotted (solid line) 300 

for the 3 diagnostic groups (normal cognition (NC), mild cognitive impairment (MCI) and 301 

Alzheimer’s disease (AD)). The learning model predicted scores for these time periods are also 302 

plotted (dashed lines) for each diagnostic group (model predictions indicated with a caret (^) 303 

symbol).   304 
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 305 

Our multimodal approach (multivariate) based prediction models with the inclusion of baseline 306 

ADAS-cog scores were better (ρ = 0.80 to 0.90, Figure 5) than prediction models based only on 307 

baseline ADAS-cog scores (univariate, ρ = 0.75 to 0.87). The inclusion of the ADAS-cog score 308 

with other baseline multi-modal predictors was observed with improvements (p = 0.002 to 0.18) in 309 

the correlations. Overall, the prediction models predict well across the time periods and this can be 310 

observed when we compare the mean predicted values versus the actual mean values (Figure 6). 311 

 312 

4 Discussion 313 

We present a multi-modal regression approach to quantitatively track the progression of 314 

Alzheimer’s disease and show that it outperforms the conventional single modal approach. 315 

Quantification of AD aids clinicians in decisions with treatment and a multi-modal approach 316 

ensures that the prediction models consider all biomarkers contributing to the disease condition. 317 

Furthermore, conventional classification of patients into normal, MCI or AD could be avoided as a 318 

clear distinction amongst the group is a challenging task [52]. 319 

 320 

The classification of subjects based on a few modalities has been the focus of most recent studies. 321 

Although high classification accuracy (>80%) has been reported [11], we speculate that the impact 322 

of mislabeling a subject in the wrong category (and hence, wrong therapy prescribed) is higher than 323 

the error in predicting ADAS-cog scores (<5 units). Additionally, ADAS-cog scores are easy to 324 

interpret and follow the longitudinal tracking of AD progression. In agreement with the 325 

classification-based studies [4], the multi-modal approach outperforms the single modality, 326 

however, in this study multi-modal data were used for predicting the ADAS-cog scores. 327 

Furthermore, our multi-modal approach shows that ADAS-cog scores are conducive to longitudinal 328 

predictions contrary to Marinescu et al [21], where ADAS-cog scores were concluded not 329 
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predictable. We, however, acknowledge that studies were not set up equally as there were time 330 

constraints, differences in subjects and underutilization of longitudinal data. 331 

 332 

Clinically, NePB tests and ADAS-cog scores measure the subject’s cognitive abilities and this 333 

similarity was showcased with the observance of higher correlations (Figure 3). CSF biomarkers 334 

showed high correlations several studies support this strong relationship between CSF biomarkers 335 

and AD state [34]. As the precise pathophysiology and relative contribution of different pathogenic 336 

factors to AD at different phases of disease progression are currently still under investigation, the 337 

results advocate that instead of manually estimating the best markers, a multi-modal approach is 338 

beneficial. However, we acknowledge that the variable selection methods can be utilized to select 339 

the best AD measures (or create sparse models) utilized in multimodal modeling further improving 340 

the robustness of the prediction model. 341 

 342 

The multivariate techniques (i.e., PLSR, SVR, and RF) were observed to perform very similarly in 343 

their predictions but the computation times were different, and this prompted us to favor PLSR. 344 

Other nonlinear model selection techniques could improve current results [53]. The subject attrition 345 

during follow-ups may have diminished the predictive performance of the model.  346 

 347 

5 Conclusion 348 

ADAS-cog 13 scores reflect the current cognitive state of individuals, and through multivariate 349 

regression and a multi-modal dataset, our results show that quantitative longitudinal prediction of 350 

AD progression is possible. Thus, the automated multi-modal approach may help clinicians make 351 

timely decisions for interventions at all stages of AD and inform likely disease progression at the 352 

start of clinical trials. 353 

 354 
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 511 

7 Figure legends 512 

Figure 1: Schematic of regression modeling. X is single or multi-modal predictors and Y is the 513 

target value to be predicted. We utilized 5-fold cross-validation repeated 10 times to account for the 514 

random assignment of subjects to different folds. Partial least squares regression (PLSR), support-515 

vector regression (SVR) and random forest regression (RF) models were trained and tuned based on 516 

training folds and evaluated on test folds. The utilized Matlab function and hyperparameter tuning 517 

are shown in italics. Cross-validated correlation (ρ) and mean absolute error (MAE) metrics were 518 

employed and average performance for 10 runs computed. 519 

 520 

Figure 2: Genetic algorithm-based importance of parameters in correlations as observed for 100 521 

runs for every time period. The frequency indicates the proportional contribution in ADAS-cog 13 522 

score prediction. The modality group is prefixed to the variable names. 523 

 524 

Figure 3: Comparison of single and multi-modal dataset performance – collapsing across 525 

diagnostic status – with partial least squares regression. The performance measures cross-validation 526 

correlation (ρ) and mean absolute error (MAE) for ADAS-cog scores are plotted for predictions at 527 

0, 12, 24 and 36 months in advance. 528 

 529 
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Figure 4: Performance of PLSR on single- and multi-modal data stratified according to baseline 530 

clinical diagnosis [normal cognition (NC), mild cognitive impairment (MCI) and Alzheimer’s 531 

disease (AD)]. The performance measures cross-validation correlation (ρ) and mean absolute error 532 

(MAE) for ADAS-cog scores are plotted for predictions at 0, 12, 24 and 36 months in advance. 533 

 534 

Figure 5: Performance comparison of prediction models utilizing only ADAS scores vs. 535 

multimodal data with and without the combination with baseline ADAS scores. The p-values 536 

correspond to pair-wise differences between the three prediction models at different time periods. 537 

 538 

Figure 6: The mean of actual ADAS-cog 13 scores of subjects over 36 months is plotted (solid line) 539 

for the 3 diagnostic groups (normal cognition (NC), mild cognitive impairment (MCI) and 540 

Alzheimer’s disease (AD)). The learning model predicted scores for these time periods are also 541 

plotted (dashed lines) for each diagnostic group (model predictions indicated with a caret (^) 542 

symbol). 543 

 544 

 545 

Figures in supplementary section 546 

 547 

Figure S.1: The mean ADAS-cog 13 scores of subjects for different time periods and conversion of 548 

subjects in different categories. The subjects are grouped by the diagnosis as normal cognition 549 

(NC), mild cognitive impairment (MCI) and Alzheimer’s disease (AD).  550 

 551 

Figure S.2: Regression modeling structure. Single modality uses one predictor at a time while 552 

multi-modal uses all the predictors as indicated above. The sample size for baseline (N = 757), 12-553 

months (N = 629), 24-months (N = 563) and 36-months (N = 314) were different due to missing 554 
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values (cohort attrition). The predictors consist of age at baseline, years of formal education (Edu.), 555 

APOE e4 status (absence, single copy or homozygous coded as 0, 1 and 2 respectively), MRI-556 

derived parameters, neuropsychiatric and behavioral assessment (NePB), AV45-PET 557 

measurements, CSF biomarkers (amyloid-β, τ, pτ) and FDG-PET measures. The number of features 558 

is indicated above each modality abbreviations. All the variables were considered as continuous and 559 

standardized to be zero-mean and unit standard deviation. 560 

 561 

Figure S.3: Comparison of single and multi-modal dataset performance – collapsing across 562 

diagnostic status – with partial least squares regression (PLSR), support-vector regression (SVR) 563 

and random forest regression (RF). The performances are shown for cross-validation correlation (ρ) 564 

and mean absolute error (MAE). 565 

 566 

Figure S.4: Genetic algorithm-based importance of parameters in contributing to increasing 567 

correlation as observed for 100 runs for the 36-month time period. The frequency indicates the 568 

proportional contribution in ADAS-cog 13 score prediction. 569 

 570 

8 Table legends 571 

 572 

Table S.1: Specific variable names from the TADPOLE D1_D2 dataset (1 to 5, details as in 573 

TADPOLE_D1_D2_Dict.csv) and FDG-PET from UCBERKELEYFDG_07_30_15 table.  574 

 575 

Table S.2: Summary of the subject demographics and ADAS-cog 13 scores. 576 

577 
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9 Highlights 607 

• A quantitative approach to track Alzheimer’s disease. 608 

• The multi-modal approach enabled predicting ADAS-cog scores from 12 to 36 months. 609 

• The combination of multimodal data and baseline ADAS scores enhanced the predictions of future 610 
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