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Abstract 16 

The image of #theShoe is a derivative image of #theDress which induced vastly different 17 

color experiences across individuals. The majority of people perceive that the shoe has 18 

grey leather with turquoise laces, but others report pink leather with white laces. We 19 

hypothesized #theShoe presents the problem of color constancy, where different people 20 

estimated different illuminants falling onto the shoe. The present study specifically aimed 21 

to understand what cues in the shoe image caused the ambiguity based on the optimal 22 

color hypothesis: our visual system knows the gamut of surface colors under various 23 

illuminants and applies the knowledge for illuminant estimation. The analysis showed 24 

that estimated illuminant chromaticity largely changes depending on the assumed 25 

intensity of the illuminant. When the illuminant intensity was assumed to be low, a high 26 

color temperature was estimated. In contrast, assuming high illuminant intensity led to 27 

the estimation of low color temperature. A simulation based on a von Kries correction 28 

showed that the subtraction of estimated illuminants from the original image shifts the 29 
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appearance of the shoe towards the reported states (i.e. gray-turquoise or pink-white).  30 

These results suggest that the optimal color hypothesis provides a theoretical 31 

interpretation to the #theShoe phenomenon. Moreover, this luminance-dependent color-32 

shift was observed in #theDress phenomenon, supporting the notion that the same 33 

trigger induced #theShoe. 34 

 35 

1. Introduction 36 

In February 2015 a photograph of a dress became a viral internet phenomenon; the 37 

population was divided on whether they saw the image of a dress as blue and black, or 38 

as white and gold. This phenomenon spread as #theDress and convincingly 39 

demonstrated that individual’s color vision systems possess striking variations. One 40 

fascinating aspect of the phenomenon is that different observers experienced different 41 

color appearances whilst conventional color illusions “deceive” people in the same way. 42 

The dress image was recognized as a novel phenomenon in the vision science 43 

community and intensive efforts were made to seek plausible accounts to decode this 44 

mysterious image. 45 

 46 

A substantial amount of studies on #theDress exists to date, but a common claim across 47 

studies seems to be that it presents a problem of color constancy (Brainard & Hurlbert, 48 

2015; Wallisch, 2017; Toscani, Gegenfurtner & Doerschner 2017; Witzel, O’Regan & 49 

Hansmann-Roth, 2017b), which normally enables us to maintain a stable surface color 50 

percept under different lighting environments. Thus, a major focus in past studies was to 51 

identify the factor that causes people to infer different illuminants falling onto the dress. 52 

Proposed accounts range across various stages of visual processing. For example, 53 
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 3 

individual differences in pupil size (Vemuri et al., 2015) and macular pigment density 54 

(Rabin et al., 2016) are reported to show associations with dress appearance. At a post-55 

receptoral level the strength of blue-yellow asymmetry was shown to correlate with the 56 

color naming (Winkler et al., 2015). The importance of the individual variations along 57 

blue-yellow axis is further supported by Feitosa-Santana et al. (2018), who explored 58 

various color tests: color naming and matching, anomaloscope matching, unique white 59 

measurement and color preference rating. One of the earliest studies took a big-data 60 

approach capitalizing upon an online survey (Lafer-Sousa, Hermann & Conway, 2015) 61 

and suggested that age and gender seem to be related to the perception of the dress. 62 

Some studies showed that individuals’ chronotypes are weakly associated with dress 63 

percept (Lafer-Sousa & Conway 2017; Aston et al. 2017). Furthermore, a twin study 64 

reported the impact of genetic factor is limited, and thus environmental factors need to 65 

play a role (Mahroo et al., 2017). Neural mechanisms to underpin the dress phenomenon 66 

were also identified using fMRI (Schlaffke et al., 2015) and more recently 67 

electroencephalogram (Retter et al., 2020). They found that the activation of areas that 68 

are known to be associated with top-down modulation are associated with perception of 69 

#theDress, implying the influence of high-level cognition on judging dress appearance. 70 

 71 

Interestingly, various studies demonstrated that it was possible to decrease the ambiguity 72 

by manipulating the dress image. Dixon and Shapiro (2017) pointed out that filtering the 73 

dress image by a low- or high-pass filter removes ambiguity, suggesting how individual 74 

visual systems extract low and high spatial frequency chromatic components might 75 

explain the difference. Similarly, it was shown that color naming changes by occluding 76 

the image (Daoudi et al., 2017), by exposing observers to a brightness illusion (Hugrass 77 
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et al., 2017), or by embedding explicit cues about the illuminant (Lafer-Sousa et al., 2015, 78 

Witze, Racey & O’Regan, 2017a). 79 

 80 

#theShoe is a later generation of #theDress, which also elicited observer-dependent 81 

color experiences. A majority of observers reported that the shoe has gray leather and 82 

turquoise lace, but some people perceived the shoe with pink leather and white laces 83 

(Werner et al., 2018). However, the shoe phenomenon has been explored very little 84 

(Daoudi et al., 2020) considering the rich amount of studies on the dress. Consequently, 85 

it largely remains unclear whether findings about the dress image can be applied to 86 

#theShoe phenomenon. 87 

 88 

In our previous study of the dress image (Uchikawa, Morimoto & Matsumoto, 2017) we 89 

applied a computational model which we developed for how observers estimate the color 90 

of light illuminating a scene. In the physical world of lights and reflecting surfaces the set 91 

of observed surface colors depends on the color of the illumination. The model derives 92 

an estimate of the illuminant from this constraint which we called the “optimal color 93 

hypothesis”. In this paper we tackled #theShoe phenomenon based on the optimal color 94 

hypothesis, aiming to extract hidden image cues causing the ambiguity. 95 

 96 

A full description of the optimal color model is available elsewhere (Morimoto et al., 2020), 97 

but here we will introduce the basic concept. An optimal color is a hypothetical surface 98 

that consists of only 0% and 100 % reflectances. There are band-pass and band-stop 99 

types as shown in Figures 1 (a) and (b). If we parametrically vary λ1 and λ2 (λ1 < λ2), we 100 

can define numerous optimal colors. Panels (c) and (d) show the color distribution of 101 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.132993doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.132993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

102,721 optimal colors and 49,667 real objects (SOCS, ISO/TR 16066:2003) under the 102 

illuminants of 3000K, 6500K and 20000K on the black body locus. An important aspect 103 

of optimal colors is that since they have an extreme reflectance function, they have the 104 

highest luminance across any colors that have the same chromaticity. Therefore, the 105 

distribution of optimal colors visualizes a physical upper luminance boundary over 106 

chromaticities under a specific illuminant. Panels (c) and (d) show that the color 107 

distribution of real objects behaves in approximately the same way as those of optimal 108 

colors. Thus, if our visual system internalizes the optimal color distribution, we can refer 109 

to it to estimate what illuminant is plausible in a given scene. 110 

 111 

If the optimal color hypothesis is adopted by human observers the model might be able 112 

to guide us to understand why the shoe image can be interpreted by being illuminated 113 

by different illuminants. Such an attempt revealed that estimated color temperature of 114 

illuminants largely shifted as a function of estimated illuminant intensity. When the 115 

illuminant intensity was estimated to be low, the best-fit color temperature was high. 116 

However, as assumed illuminant intensity increased the estimated color temperature 117 

accordingly decreased. Using the illuminants estimated by the model we applied von 118 

Kries correction to the original image to simulate the appearance of the shoe when the 119 

estimated illuminant influence was subtracted. The corrected images seemed to appear 120 

in a single reported state (i.e. turquoise and gray or pink and white). In summary, our 121 

model accounted for #theShoe phenomenon in a similar way that it explained #theDress 122 

phenomenon. 123 

 124 
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 125 

Figure 1: (a), (b) An example of band-pass and band-stop optimal color. (c), (d) 126 

Chromaticity versus luminance distributions of 102,721 optimal colors and 49,667 real 127 

objects under illuminants of 3000K, 6500K and 20000K. 128 

 129 

2. Analysis method 130 

2.1 Analyzed image and color distribution 131 

Panel (a) in Figure 2 shows the image of the shoe. For the analysis, we first segregated 132 

the original image to (b) turquoise or white and (c) gray or pink regions. The original 133 

image stored RGB values at each pixel, but the conversion from RGB to cone response 134 

is dependent on a monitor on which the image is presented. In the analysis, we assumed 135 

that we present the image to an ordinary CRT monitor (NEC, FP2141SB, 21 inches, 136 
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 7 

1600 × 1200 pixels). Using the spectral measurement of the RGB phosphor and gamma 137 

function, we converted RGB values to LMS cone responses based on Stockman and 138 

Sharpe cone fundamentals (Stockman & Sharpe, 2000). The cone responses were 139 

further converted to MacLeod-Boynton chromaticity coordinates (MacLeod & Boynton, 140 

1979), where L/(L+M) and S/(L+M) of the equal energy white was scaled to have 0.708 141 

and 1.000. 142 

 143 

 144 

Figure 2: (a) The original image of #theShoe. Color appearance of the image is mainly 145 

divided into two groups: turquoise and gray or white and pink. (b), (c) Segregated regions 146 

that appear turquoise or white and gray or pink, respectively. 147 

 148 

Figure 3 shows the color distribution of the shoe image. The turquoise and gray circles 149 

show the chromaticity and luminance of pixels that belong to the turquoise/white region 150 

(53,398 samples) and the gray/pink region (81,349 samples), respectively. The black 151 

cross symbols indicate mean colors across each region. We used these two mean colors 152 

for the subsequent analysis instead of a whole color distribution. There are two reasons 153 

for this. First, a single pixel is presumably too small to be associated to individual cones 154 

(unless we view the shoe image very closely). Second, our model indiscriminately takes 155 

all colors into equal consideration, therefore it is sensitive to outliers. This use of mean 156 
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color is also consistent with our previous analysis, allowing for compatibility of results 157 

between the present and the previous study. 158 

 159 

 160 

Figure 3: Color distribution of #theShoe image. The left panel show L/(L+M) versus 161 

luminance distribution while the right panel denotes the S/(L+M) versus luminance 162 

distribution. The luminance is normalized by the maximum luminance across all pixels. 163 

Turquoise circles are pixels belonging to the turquoise/white region (panel (b), Figure 2). 164 

Gray circles denote pixels in the gray/pink region (panel (c), Figure 2). Black cross 165 

symbols indicate mean colors across each region that were used for subsequent 166 

analysis.  167 

 168 

2.2 Illuminant estimation based on the optimal color model 169 

We applied the optimal color model to estimate the influence of illuminant on the shoe. 170 

In the model framework, it is assumed that the model stores the chromaticity and 171 

luminance of all possible optimal colors under 3,478 candidate illuminants: 37 color 172 
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temperatures from 2000K to 20000K with 500 steps × 94 intensity levels from 0.671 to 173 

1.25 with 0.00623 steps. The goal of the model is to find illuminants under which the 174 

optimal color distribution and observed color distribution match well, evaluated by 175 

weighted root-mean-squared-error (WRMSE). There were two analyzed colors S1 and S2 176 

(namely, mean colors across the turquoise/white region and the gray/pink region, 177 

respectively), and their luminances can be written as Ls1 and Ls2. If we define the 178 

luminance of the corresponding optimal colors at their chromaticities as Lo1 and Lo2, 179 

WRMSE values for all candidate illuminants are calculated using equation (1). 180 

 181 

𝑊𝑅𝑀𝑆𝐸 = 	()*(,-*	.,/*)
1	2	)1(,-1	.,/1)1

)*	2	)1
 ・・・ (1) 182 

𝑤4 = 	
,-5
,/5

  (i = 1, 2) 183 

 184 

We put a weighting wi on the error to give a greater weighting to lighter surfaces. Note 185 

that wi reaches 1.0 when Lsi (surface luminance) perfectly matches Loi (optimal color 186 

luminance). We excluded any illuminants under which either (or both) of the two colors 187 

exceeds the optimal color distribution. When the illuminant intensity level was lower than 188 

0.671, illuminants of any candidate color temperatures were excluded. This is why we 189 

used 0.671 as the lower boundary of candidate intensity level. Then, our goal was to look 190 

for illuminants from the remaining candidates under which the value of WRMSE becomes 191 

small. If the model can find small WRMSE values for multiple candidate illuminants, it 192 

would imply that the shoe image holds the ambiguity about illuminant influence. The 193 

following section describes that this was the case. 194 

 195 
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3. Results 196 

Figure 4 shows the WRMSE plot as a function of the color temperature at five luminance 197 

levels. Notice that some data points are not presented (e.g. there is no data below 198 

19500K for luminance level 0.67). This is because those candidate illuminants were 199 

rejected as one (or two) of the analyzed colors exceeded the optimal color distribution. 200 

Additionally, these five luminance levels were selected arbitrarily, but data exist at other 201 

luminance levels. 202 

 203 

 204 

Figure 4: WRMSE plot as a function of color temperature (2000K to 20000K with 500 205 

steps) at different intensity levels (0.67, 0.73, 0.88, 1.07 and 1.25). Each circle indicates 206 

the WRMSE value for one candidate illuminant that has a specific color temperature and 207 

an intensity level. When one or two analyzed colors exceeded the optimal color 208 

distribution of the candidate illuminant, that illuminant was excluded from the analysis. 209 

This is why some regions have no data (e.g. there is no data points below 19500K for 210 

intensity level 0.67). 211 
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First, the global minimum WRMSE value across all candidate illuminants was found at 212 

color temperature 4500K and luminance level 1.25. However, as we decreased the 213 

luminance level low color temperature illuminants were rejected and the trajectory of 214 

WRMSE curve changed. As a result, the best-fit color temperatures increased from 215 

4500K to 5500K, 6500K, 8000K and eventually 20000K. 216 

 217 

Figure 5 shows schematic illustration of how the best fit optimal color distributions 218 

change as a function of luminance level. At the luminance level 0.67 an optimal color 219 

distribution under 20000K was found to fit the best. This is because that turquoise/white 220 

surface cannot be covered by the optimal color distribution under low color temperature 221 

illuminants when the intensity is low. However, if we increase the intensity level this 222 

excess no longer happens, and the best-fit color temperature consequently decreased. 223 

 224 

Figure 5: Best-fit optimal color distributions at different intensity levels. We see that 225 

estimated color temperature continuously changes from high to low color temperature 226 

as the estimated illuminant intensity increases. 227 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.132993doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.132993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Overall we found that depending on the luminance level of illuminants we are searching 228 

through WRMSE values converged to different color temperatures. It is worth noting that 229 

although we found an illuminant of 4500K as the global minimum (the magenta circle in 230 

Figure 4), the WRMSE value is nearly the same as those of local minimums (cyan circles 231 

in Figure 4). In other words, these candidate illuminants are nearly equally plausible, 232 

which might explain the ambiguity of the shoe image. 233 

 234 

Next, using the estimated illuminants we simulated the color appearance of the shoe 235 

when those illuminant influences are subtracted from the original image. Specifically we 236 

applied a von Kries correction which scales cone signals L, M and S at each pixeI by the 237 

proportion between cone responses under equal energy white (Lw, Mw, and Sw) and 238 

under an estimated illuminant (Le, Me, and Se) to simulate cone signals as if it were placed 239 

under an equal energy white illuminant. This manipulation is written as equation (2). 240 

 241 

6
𝐿′
𝑀′
𝑆′
9 = 6

𝐿𝑤/𝐿𝑒 0 0
0 𝑀𝑤/𝑀𝑒 0
0 0 𝑆𝑤/𝑆𝑒

96
𝐿
𝑀
𝑆
9 ・・・ (2) 242 

 243 

Obtained L’, M’, and S’ values were then converted to RGB values for the display 244 

presentation. Figure 6 provides a summary of the analysis with von Kries corrected 245 

images. The gray small and colored circles together show how the best-fit color 246 

temperatures change as a function of assumed illuminance (47 levels from 0.67 to 1.25 247 

with 0.0125 steps). The five colored circles are representative data points used as 248 

examples in Figure 4 and 5. We see that estimated color temperature continuously 249 

changes as opposed to bimodally. The von Kries scaled images shown at the upper part 250 
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of the figure demonstrates that the color appearance of the shoes dramatically changes 251 

depending on the color temperature of corrected illuminants. When the image is 252 

corrected by high color temperature (e.g. ①), the shoe potentially appears white and 253 

pink. In contrast, the correction by low color temperature (e.g. ⑤) seems to yield a 254 

turquoise and gray appearance. Note that the effect of this simulation depends on 255 

presented monitor and individuals. 256 

 257 

Figure 6: The gray small and colored circles together show the estimated color 258 

temperatures (CT) as a function of assumed at 47 luminance levels from 0.67 to 1.25 259 

with 0.0125 steps. Five colored circles are five representatives estimated color 260 

temperatures: 20000K, 8000K, 6500K, 5500K and 4500K. Images above show corrected 261 

images where the influence of illuminant was subtracted from the original image based 262 

on von Kries scaling (detailed in the main text). Color appearance of the shoe largely 263 

changes depending on the corrected color temperatures. 264 
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4. Discussion 265 

A major finding in the present study is that our model suggested more than one plausible 266 

illuminant. The WRMSE values for the global minimum and local minima were found to 267 

be fairly close, which provides a potential reason why the image is open to various 268 

interpretations about the illuminations. Estimated illuminant color temperatures changed 269 

depending on the assumed illuminance of illuminants. Because the turquoise/white 270 

region has higher luminance than gray/pink region (as demonstrated in Figure 5), the 271 

low color temperature cannot be a candidate illuminant when the illuminant intensity is 272 

assumed to be low. This observation suggests that how luminance values of surfaces 273 

are associated with their chromaticities (e.g. geometry of color distribution) plays a 274 

crucial role. 275 

 276 

A similar intensity-dependent color-shift was also found in the analysis of the dress 277 

(Uchikawa, Morimoto & Matsumoto 2017). For comparison, Figure 7 shows a 278 

chromaticity versus luminance distribution of the dress image, formed by 20 pixels 279 

sampled from each of the blue/white and black/gold regions. Figure 3 and 7 allow us to 280 

see that the geometry of chromaticity versus luminance distributions for the dress and 281 

shoe image are somewhat similar, although the range of chromaticity seems to be much 282 

wider for the dress. This similarity in the relative shape of color distributions seems to 283 

underlie ambiguities in both images. 284 
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 285 

Figure 7: Chromaticity versus luminance distribution of the #theDress image. Blue and 286 

brown circles are 20 pixels sampled from the blue/white and the black/gold region in the 287 

image, respectively. Black cross symbols indicate mean chromaticities across each 288 

region. Green and gray cross symbols are the mean color across turquoise/white and 289 

gray/pink regions in the shoe image for the sake of comparison. 290 

 291 

Figure 6 suggests that best-fit color temperature changes continuously as a function of 292 

assumed intensity as opposed to discretely. In other words, it is possible the color 293 

appearance of the shoe image might also vary gradually from one individual to another, 294 

which seems to be demonstrated by a set of von Kries corrected images in Figure 6. 295 

This casts doubt on the notion that #theShoe and #theDress are a bi-modal phenomenon. 296 

Regarding the #theShoe phenomenon, Werner et al. (2018) indeed showed that 297 

observers were divided into three groups: gray-turquoise (53%), pink-white (34%) and 298 

pink-turquoise (11%). Some studies also reported that the dress phenomenon does not 299 

seem to be bi-modal (Gegenfurtner, Bloj & Toscani, 2015; Lafer-Sousa & Conway 2017). 300 

 301 
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One question raised from the shoe and the dress images is whether such ambiguous 302 

images happen because the object has only two color categories. It is worth reminding 303 

ourselves that regardless of whether the image is the shoe or the dress, color constancy 304 

always imposes a challenge of ambiguity about surface and illuminant colors to our visual 305 

system. In an extreme scene where only one surface exists, color constancy is 306 

essentially lost. In this sense the success of color constancy heavily depends on the 307 

number of surface colors available in a scene. Many influential color constancy 308 

algorithms such as mean chromaticity (Buchsbaum, 1980) or chromaticity-luminance 309 

correlation (Golz & MacLeod, 2002) requires a sufficient number of surfaces. Our optimal 310 

color model is not an exception. As more surface colors become available in a scene, 311 

the shape of color distribution becomes clearer, leading to better and unique model fitting. 312 

It is worth emphasizing that the basis of the optimal color model is that if the chromaticity 313 

versus luminance distribution of a given scene behaves in a similar way as those of 314 

optimal colors, the visual system can effectively estimate the illuminant color. It is 315 

probably not the case for the shoe image (and the dress image), which presumably 316 

provides the main reason why our model estimated more than one candidate illuminant 317 

in the analysis. 318 

 319 

Recent papers by Wallisch & Karlovich (2019) and Witzel & Toscani (2020) proposed a 320 

way to generate an ambiguous image. It was importantly shown that the ambiguity still 321 

remains when the chromatic property of the dress image was mapped onto a different 322 

bicolored object. This result supports the importance of color distribution which is 323 

consistent with the finding in the present study. Also, we agree with the view that 324 

generating ambiguous images freely is a powerful way to show that we understood why 325 
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ambiguity happens. Based on the analysis in this study we would suspect that following 326 

conditions seem to be keys to generating a bi-stable image. Firstly, a scene needs to 327 

have a color distribution such that it does not well agree well with optimal color 328 

distribution and best-fit color temperature (preferably largely) changes depending on 329 

assumed intensity level. Second, by correcting the influence of estimated illuminants 330 

from the image the chromatic coordinates must cross the border of color categories so 331 

that people use a different color name. Figure S1 in supplementary material shows how 332 

chromaticities change in response to von Kries correction. Thirdly, the image needs to 333 

pose an ambiguity about illuminant intensity. This would be important because if the 334 

intensity of illuminant is obvious we may not need to search candidate illuminants over 335 

various intensity levels. It is an open question as to whether these are necessary 336 

conditions, or sufficient conditions. For example, the spatial structure was shown to be 337 

important in #theDress phenomenon (Hesslinger & Carbon, 2016; Jonauskaite et al, 338 

2018). In any case, one advantage to having a computational model is that we can 339 

theoretically test whether a newly generated image is likely to induce a bi-stable percept. 340 

We believe that extending this study towards this direction will help further in 341 

understanding of the nature of these curious bi-stable images. 342 

 343 

Supplementary material 344 

The effect of von Kries correction on mean chromaticity 345 

Figure S1 shows how the mean chromaticities of the lace part and leather part change 346 

in response to a von Kries correction. Note that this figure shows a result of subtracting 347 

an illuminant color, which thus indicate illuminant-free reflectance-based representation 348 

of chromaticities. The black circles and the black triangle symbols denote the mean color 349 
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across lace part and leather part of the original image, respectively. We see that when 350 

we correct the original image by low color temperature (as in the case of ⑤), the mean 351 

color shifts towards high L/(L+M) and low S/(L+M), being closer to the white point. In 352 

contrast, when the image is corrected by high color temperature(as in the case of ①) 353 

colors shift towards the direction of low L/(L+M) and high S/(L+M). We suspect that as a 354 

result of these transformations chromatic coordinates cross color categories, which 355 

consequently induces observer-dependent color naming. 356 

 357 

 358 

Figure S1: How chromaticities of the lace (circle symbols) and leather part (triangle 359 

symbols) changes in response to a von Kries correction. These chromaticities 360 

correspond to reflectance-based representation which is free from illuminant influence. 361 

Color label indicates the corrected color temperature as shown at the left part of the 362 

figure (corrected by ①: 20000K, ②: 8000K, ③: 6500K, ④: 5500K, and ⑤: 4500K). 363 

The black circle and black triangle symbols indicate the chromatic coordinates of original 364 

image. Note that the color label is kept the same as Figure 6.  365 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.132993doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.132993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Acknowledgement 366 
This work was supported by JSPS KAKENHI Grant Number JP19K22881, JP17K04503 367 
and 26780413. TM is supported by a Sir Henry Wellcome Postdoctoral Fellowship 368 
awarded from the Wellcome Trust (218657/Z/19/Z). The authors thank Tanner DeLawyer 369 
for careful grammatical correction. 370 
 371 
Reference 372 
Aston, S., & Hurlbert, A. (2017). What #theDress reveals about the role of illumination 373 

priors in color perception and color constancy. Journal of Vision, 17(9), 1–18. 374 
https://doi.org/10.1167/17.9.4 375 

Brainard, D. H., & Hurlbert, A. C. (2015). Colour Vision: Understanding # TheDress. 376 
Current Biology, 25, R551–R554. 377 

Buchsbaum, G. (1980). A spatial processor model for object colour perception. Journal 378 
of the Franklin Institute, 310, 1, 1–26. 379 

Daoudi, L. D., Doerig, A., Parkosadze, K., Kunchulia, M., & Herzog, M. H. (2017). The 380 
role of one-shot learning in # TheDress. Journal of Vision, 17(3), 1–7. 381 
https://doi.org/10.1167/17.3.15.doi 382 

Daoudi, L. D., Doerig, A., Parkosadze, K., Kunchulia, M., & Herzog, M. H. (2020). How 383 
stable is perception in #TheDress and #TheShoe? Vision Research, 169, 1–5. 384 
https://doi.org/10.1016/j.visres.2020.01.007 385 

Dixon, E. L., & Shapiro, A. G. (2017). Spatial filtering, color constancy, and the color-386 
changing dress. Journal of Vision, 17(3), 1–20. https://doi.org/10.1167/17.3.7 387 

Feitosa-Santana, C., Lutze, M., Barrionuevo, P. A., & Cao, D. (2018). Assessment of 388 
#TheDress With Traditional Color Vision Tests: Perception Differences Are Associated 389 
With Blueness. i-Perception, 9(2), 1–17.  390 

Gegenfurtner, K. R., Bloj, M., & Toscani, M. (2015). The many colours of ‘the dress’’.’ 391 
Current Biology, 25, R1–R2. 392 

Golz. J., and MacLeod. D. I. A (2002) Influence of scene statistics on colour constancy. 393 
Nature, 415, 637–640. 394 

Hesslinger, V. M., & Carbon, C. C. (2016). TheDress: The role of illumination information 395 
and individual differences in the psychophysics of perceiving white-blue ambiguities. I-396 
Perception, 7(2), 1–10. https://doi.org/10.1177/2041669516645592 397 

Hugrass, L., Slavikova, J., Horvat, M., Musawi, A. Al, & Crewther, D. (2017). Temporal 398 
brightness illusion changes color perception of “‘the dress.’” Journal of Vision, 17(5), 399 
1–7. https://doi.org/10.1167/17.5.6 400 

Jonauskaite, D., Dael, N., Parraga, C. A., Chèvre, L., García Sánchez, A., & Mohr, C. 401 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.132993doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.132993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

(2018). Stripping #The Dress: the importance of contextual information on inter-402 
individual differences in colour perception. Psychological Research. 403 

Lafer-Sousa, R., Hermann, K. L., & Conway, B. R. (2015). Striking individual differences 404 
in color perception uncovered by ‘the dress’ photograph. Current Biology, 25, R1–R2. 405 

Lafer-Sousa, R., & Conway, B. R. (2017). #TheDress: Categorical perception of an 406 
ambiguous color image. Journal of Vision, 17(12), 1–30.  407 

MacLeod, D. I. A., & Boynton, R. M. (1979) Chromaticity diagram showing cone 408 
excitation by stimuli of equal luminance. Journal of the Optical Society of America A, 409 
69, 1183–1186. 410 

Mahroo, O. A., Williams, K. M., Hossain, I. T., Yonova-Doing, E., Kozareva, D., Yusuf, A., 411 
Hammond, C. J. (2017). Do twins share the same dress code? Quantifying relative 412 
genetic and environmental contributions to subjective perceptions of “‘the dress’” in a 413 
classical twin study. Journal of Vision, 17(1), 1–7. https://doi.org/10.1167/17.1.29 414 

Morimoto, T., Kusuyama, T., Fukuda, K., & Uchikawa, K. (2020). Color constancy based 415 
on the geometry of color distribution. bioRxiv. 416 
https://doi.org/10.1101/2020.05.19.105254 417 

Rabin, J., Houser, B., Talbert, C., & Patel, R. (2016). Blue-black or white-gold? Early 418 
stage processing and the color of “the dress.” PLoS ONE, 11(8), 1–10. 419 

Retter, T. L., Gwinn, O. S., O’Neil, S. F., Jiang, F., & Webster, M. A. (2020). Neural 420 
correlates of perceptual color inferences as revealed by #thedress. Journal of Vision, 421 
20(3), 1–20. 422 

Schlaffke, L., Golisch, A., Haag, L. M., Lenz, M., Heba, S., Lissek, S., Tegenthoff, M. 423 
(2015). The brain’s dress code: How The Dress allows to decode the neuronal pathway 424 
of an optical illusion. Cortex, 73, 271–275. 425 

Stockman, A. and Sharpe, L. T. (2000) The spectral sensitivities of the middle- and long-426 
wavelength-sensitive cones derived from measurements in observers of known 427 
genotype. Vision Research, 40, 1711–1737. 428 

Toscani, M., Gegenfurtner, K. R., & Doerschner, K. (2017). Differences in illumination 429 
estimation in #thedress. Journal of Vision, 17(1), 1–14. 430 

Uchikawa, K., Morimoto, T., & Matsumoto, T. (2017). Understanding individual 431 
differences in color appearance of #TheDress’’ based on the optimal color hypothesis. 432 
Journal of Vision, 17, 1-14. 433 

Vemuri, K., Bisla, K., Mulpuru, S., & Varadharajan, S. (2016). Do normal pupil diameter 434 
differences in the population underlie the color selection of #thedress? Journal of the 435 
Optical Society of America A, 33(3), A137–A142. 436 

Wallisch, P. (2017). Illumination assumptions account for individual differences in the 437 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.132993doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.132993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

perceptual interpretation of a profoundly ambiguous stimulus in the color domain: “‘The 438 
dress.’” Journal of Vision, 17(4), 1–14. https://doi.org/10.1167/17.4.5 439 

Wallisch, P., & Karlovich, M. (2019). Disagreeing about Crocs and socks: Creating 440 
profoundly ambiguous color displays. BioRxiv, 1–24. 441 

Werner, A., Fuchs, S., Kersten, Y., Salinas, M. (2018). #TheShoe is the new #TheDress 442 
- a colour ambiguity involving the red-green axis needs a new explanation. Journal of 443 
Vision 18(10) 891. (Vision Sciences Society Annual Meeting Abstract) 444 

Winkler, A. D., Spillmann, L., Werner, J. S., & Webster, M. A. (2015). Asymmetries in 445 
blue–yellow color perception and in the color of ‘the dress.’ Current Biology, 25, R1–446 
R2. 447 

Witzel, C., Racey, C., & O’Regan, J. K. (2017a). The most reasonable explanation of “the 448 
dress”: Implicit assumptions about illumination. Journal of Vision, 17(2), 1–19. 449 

Witzel, C., O’Regan, J. K., & Hansmann-Roth, S. (2017b). The dress and individual 450 
differences in the perception of surface properties. Vision Research, 141, 76–94. 451 

Witzel, C., & Toscani, M. (2020). How to make a #theDress. Journal of the Optical Society 452 
of America A, 37(4), A202–A211. 453 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.132993doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.132993
http://creativecommons.org/licenses/by-nc-nd/4.0/

