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Abstract

In this study, we explore a simulation of a mechanical model of the keratocyte lamellipodium as
previously tested and calibrated for straight steady-state motility [1] and for the process of
polarization and motility initiation [2]. In brief, this model uses the balance of three essential
forces (myosin contraction, adhesive drag and actin network viscosity) to determine the cell’s
mechanical behavior. Cell shape is set by the balance between the actin polymerization-driven
protrusion at the cell boundary and myosin-driven retraction of the actin-myosin network. In
the model, myosin acts to generate contractile stress applied to a viscous actin network with
viscous resistance to actin flow created by adhesion to the substrate. Previous study [3]
demonstrated that similar simple model with uniform constant adhesion predicts a rotating
behavior of the cell; however, this behavior is idealized, and does not mimic observed features
of the keratocyte’s turning behavior. Our goal is to explore what are the consequences of
introducing mechanosensitive adhesions to the model.

Myosin-powered retrograde actin network flow

Experimental and theoretical studies have established that myosin contracts actin arrays and
generates contractile stress and that this stress grows with increasing myosin concentration [4,
5]. We make the simplest assumption that the myosin-generated contractile stress, kM , is
linearly proportional to the myosin density, M . Here k is the proportionality coefficient (typical
force per myosin unit) that in the model depends on blebbistatin/calyculin A treatment. The
contractile force applied to the actin network is the divergence of the stress; in the case of the
scalar stress, its gradient, kVM . Following [6], we assume that adhesion complexes generate
viscous resistance to the flow of F-actin (with velocity U in the lab coordinate system). The

respective resistance force, (U, where ¢ is the effective drag coefficient that we also refer to
as adhesion strength, is balanced by the active contractile stress: é’ﬁ =kVM .

The simple equation 4’0 =kVM does not take into account passive stresses in the F-

actin network due to its deformation during the flow. To add these passive stresses, we follow
[6] and assume that these stresses have viscous character on the relevant time scale of tens of
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seconds. The small elastic component of the stress in the lamellipodium can be neglected [6],
so we model a combination of the shear and deformation stresses in the F-actin with the

formula (%,u+,ubj(v-U)I+,u(V(7+(V(7)T), where u and g, are the shear and bulk

viscosities, respectively, and [ is the identity tensor. Adding the divergence of these passive
stresses to the myosin and adhesion forces results in the force balance equation determining
the flow rate:

[Gy+yijv-ﬁ+wzﬁ}+kVM=a7 (1)
The boundary condition is the zero pressure at the free lamellipodial boundary:
ﬁ-{&wﬂbj(v-lj)uwﬁ+(v0)f)+kM}=o (2)

Here 7 is the local normal unit vector to the lamellipodial boundary. The model
assumes that the F-actin viscosity is spatially constant, independent of the F-actin density.
Note, that due to this assumption we do not simulate and track actin density. Including a more
detailed assumption of the viscosities being a function of the F-actin density does not change
the qualitative pattern of the actin flow [6].

Myosin transport

Following [6], we assume that myosin molecules bind and move with the F-actin
network. Myosin molecules can detach from the F-actin, diffuse in the cytoplasm and reattach.
Here, we assume that detachment and reattachment is rapid, in which case the system of
equations for the actin-associated and diffusing myosin molecules [6] reduces to just one
equation for the actin-associated myosin [1]. In this model, the rapid cycles of the detachment,
diffusion in the cytoplasm and reattachment effectively result in a slow diffusion of the actin-
associated myosin combined with the convective drift of myosin due to coupling with the F-

actin that has a characteristic actin network velocity, U :

Z—AjzDMVZM—V-((U—VH()?—XW))M), 3)

where D,, is an effective diffusion constant. The second term in Eq. (3) has an additional factor
responsible for the observed expulsion of myosin from the center of the cell x,, where the

nucleus is located. This expulsion is achieved with introducing the smoothed Heaviside
function:
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where r, is effective radius of the nucleus and f, is the effective repulsion strength. This
function is approximately equal to f in the area covered by the nucleus and zero outside the

nucleus. The gradient of this function introduces effective drift of myosin away from the
nuclear center at the nuclear boundary.
The boundary conditions for the myosin transport are:

D, VM - MO -VHE-5))|=v.M, ¥, <0 (5)

M =0, V, >0 (6)
where 7 is the outward normal at the cell boundary. The left hand side of Eq. (5) is the total
(diffusion-drift) flux of myosin at the retracting boundary. When the boundary is not moving
(¥, =0), Eq. (5) becomes the usual no flux boundary condition. When the boundary is moving
inward (V, <0), additional inward myosin flux arises due to the fact that the total myosin is
conserved, so the inward-moving cell edge collects the myosin (with local density M ) at the
edge and advects this myosin into the cell interior. To conserve the myosin density, this
advection flux is the expression in the right hand side of Eq. (5). Eq. (6) describes the
approximate no flux condition at the protruding boundary (¥, > 0). Due to effective diffusion,
we have to use the total (diffusion-drift) flux of myosin at the protruding boundary. However,
the effective diffusion is very slow. Thus, we can use the approximation that the myosin flux at
the protruding boundary is equal to zero, which means M =0 at this part of the boundary (Eqg.
6). This approximate boundary condition, where we treat the minuscule myosin concentration
at the protruding edge as zero, does produce a very small loss of conservation of total myosin
density (typically < 0.02% of myosin per second is lost), so to restore the conservation of total
myosin density we have added an additional step of uniformly re-normalizing the myosin
density to each time step. This procedure amounts to assuming that there is a reservoir of
unbound myosin that is in equilibrium with the bound pool.

Mobile Cell Boundary

The cell boundary evolves according to the superposition of the inward boundary
displacement from myosin-induced contraction and the outward displacement from actin
polymerization. The net rate of boundary displacement,V in the locally normal direction is

expressed in the model as:

TN _ 21,
V.()=U(s) n(S)+[Vp R(s)] (7)

where s is the arclength parameter marking the position along the cell boundary, 7(s) is the
outward pointing locally normal vector and U(s)-7i(s) is the local actin centripetal flow given
by Eq. (1) projected onto the normal to the boundary. The term in the square brackets is the
net actin polymerization rate, where ¥, is the polymerization rate, and the second term
accounts for the effect of the membrane tension on decreasing the polymerization rate.
Experimentally, it has been established that the lamellipodial area is conserved, likely due to a

fixed amount of plasma membrane area [1]. As the membrane is effectively unstretchable, the
membrane tension would increase as the cell area increases, decreasing the polymerization
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rate. We model this mechanics by assuming that V/, is constant along the boundary but

decreases when the cell area increases. The second term in the square brackets is the effective
Laplace pressure which prevents development of sharp corners at the boundary. This term is
small and does not affect the global cell behavior, and scales with the local boundary curvature

1/R(s) = —ii(s)-0,7i(s). The proportionality coefficient z,=0c,/;/n, where o, is effective
membrane tension (along the boundary), /; is a length scale of molecular dimension and 7, is
the effective drag coefficient for the membrane as the surface evolves. In essence, 20,/R, is
the Laplace pressure, multiplied by Z(f gives us the total force on a patch membrane of size 102.
If we divide the total force 20'015/R by the drag coefficient associated with the patch of
membrane, then we get the velocity at which the patch of membrane is moving. Note that 7,
has the same dimension as a diffusion constant.

Adhesion

Adhesion strength £ appearing in Eqg. (1) varies spatially [6,7] so { =¢(X). We model
function {(x) using patterns base on experimentally measured traction forces and distribution

of adhesion molecules [7]. It is known that the traction force is weakest at the rear and
strongest at the sides of cell. This implies that adhesion strength should be the greatest at the
sides and the smallest at the rear and the strength of adhesion at the leading edge should be in
between that of the rear and of the sides (Fig. 1A).

To come up with a mathematical description for the pattern shown in Fig. 1A, it is best
to work in the cell frame of reference and for convenience we can use the center of mass x_,

(center of the cell body in the model) as the origin of our coordinate system. To define the x
and y axes, we first compute the eigenvectors of the gyration tensor as defined by

R, = |x,y,d4 where the integration is over the whole cell. Because this is a symmetric real
tensor, it will diagonalize to create two unique orthogonal eigenvectors {¢ ¢} as long as the
cell is not circularly symmetric. These two eigenvectors by construction point along the longest
and the shortest dimensions of the cell. We next construct a dynamical vector variable Nce,,
which acts like a compass that follows the shortest dimension (é,) corresponding to the rear-
front direction. This vector evolves according to:

%:_yn(ﬁcell_és) (8)

where 1/y, is the characteristic fast response time the exact value of which does not affect the
predicted behavior. At the beginning of the run, we set Nce,,(tZO)ZéS(tZO) as our initial

condition. Since Nce,, points along the short dimension of the cell we may designate it as the y

axis and use the perpendicular line crossing x_, as the x axis. Using this coordinate system,

n

we initially place two sites of locally maximal adhesion to the sides of the cell where the
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adhesion strength peaks are at the coordinates (—#,,td,/2) (Fig. 1A).
To define the dynamic position of the adhesion peaks at the cell sides, we define a
generalized Heaviside step function, keeping in mind that we are using the Ncel, coordinate

system:

H(X,X,,d,8) = %[l—tanh{(i _fo)((f_’?O)Ta)_lﬂ . (9)
&

In this expression, vector quantities should be interpreted as column vectors so that (¥ —%,)"
which stands for the transpose of (X —X,) is a row vector. Just like the regular step function,
the value of this function is 1 inside some region and 0 outside of this region with a transition
zone width approximated by g|c?|_1/2. The shape of the region defined by this function is such

that if the argument of the tanh function is negative/positive, then position X is inside/outside
the given region, respectively. To see how this function works, notice that if we multiply out the
vectorial quantities in the function argument using ¥ = (x, )", X, = (x,,,)", and d = (ax,ay)T,
then

(X=X -%) @) -1=a,(x~x)" +a,(y=»,)" -1 (10)
ifweleta, =a, = 1/r*, we get

(F—%)(F-%,) d@)—1= (x_rfo)z + (y_rzyﬂ)z 1, (11)

which tells us that the shape of the given region is a circle with radius r centered at X,. If

a, #a,, then we have an ellipse.

We define £ with the help of function H and the coordinate system N, so that it
matches closely with the adhesion pattern shown in Fig. 1A:

C®) =&+ CH[R(=dy2.~hy) L (Urd V) e+ & 7 (dy2=hy) (U2 1) L€ (12)
+ & (1= H[E 0.~y 4ldZ 1R €)).

Here &, is the baseline value for the adhesion strength (light blue region at the rear shown in

Fig. 1A), ¢, is the adhesion strength value at the leading edge, and £, and ¢, are the adhesion

strength values at the left and right sides of the cell respectively.

Varying adhesion strengths £, and ¢, in time

To test how adhesion asymmetry causes the cell to turn dynamically, we allow the
adhesion strengths at the sides, ¢, and ¢, to oscillate in time according to equations:

£, =¢ +Ag, sin2an), (13)
£ =& —AL, sin(2awr), (14)

where ¢ and ¢ are the baseline adhesion strengths at the two sides. A is the maximum

r

deviation from £, and 1/v is the period of oscillation. We also used other functions of time
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(that are always bounded from below and above) to model more stochastic variance of the
adhesion strengths. For example, we used Ornstein-Uhlenbeck stochastic process (random walk
in time of an overdamped harmonic oscillator perturbed by the white Gaussian noise). Results
did not depend strongly on the nature of the time-dependent variation.

Adhesion dynamics and boundary-crossing simulation

We modeled cells crossing boundaries of different adhesion strength, by first taking
S (%) and £(¥) to denote the adhesion strength of the cell when the cell is crawling on
high and low adhesivity substrate respectively. To smoothly let the cell cross between the two
different substrates and thus transition between ™" and ¢ (and reverse), we again use a
different type of Heaviside step function £ which gives a value of one to the region in space
with high adhesion and a value of zero to the areas with low adhesion substrate.
Mathematically, this may be expressed as (using the lab coordinate system)

C(F) =" [1- LE)+ L), (15)

The precise form of L is similar to that for H (Eq. 9) with a different argument function.

Simulation setup

The initial condition for our simulation was a circular cell of area4=600um?>. We
initially spread myosin uniformly over the whole cell. Symmetry was then broken by choosing a

A

fixed orientation of the short axis of the cell, N

Ci

. and biasing spatially the adhesion strength
for the first minute minute, of the simulation. During this first minute, cells typically evolved
into the characteristic crescent shape, after which Nceu was allowed to evolve according to Eq.
(8).

All calculations are carried out using LGPL-licensed finite-element solver FreeFem++
(www.freefem.org) as described in detail in [1].

Model parameters

The model variables and parameters are listed in the Tables below. Most of the
parameter values are taken directly from our previous publications [1, 6] with minor changes. In
the following sections, we discuss the physically relevant parameters.

Viscous actin-myosin network

We take the characteristic length to be the typical cell size L, =104 m [1] and the
characteristic speed to be the characteristic cell speed, ¥, =0.24 m/s [1] which is comparable
to the retrograde flow rate of the actin network. The shear viscosity, =35 kPaxs [6], the bulk
viscosity is normally higher than the shear viscosity, as the gels are more resistant to
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compression than shear so we use the value g, =100 kPaxs [6].

In order for the myosin stress to generate the observed flow of the order of
V, =0.2u m/s inside a lamellipodium with characteristic thickness of 4 ~ 0.2 m [6], the typical
force scale is whV,= f,=200pN: In our calculations, we multiply the viscosities by the
characteristic thickness of the lamellipodium %2=0.2 g m in order to convert the 3D stress
derivatives into the 2D surface force densities. To non-dimensionalize Eq. (1), we choose
k= uV,L; =100 nNx zm based on dimensional analysis. Using this coefficient &, 100 units of
myosin in our scheme are expected to generate an average force density on the order of
100k/L, and hence capable of generating an average traction force on the order of

100kh/L3 ~ 200 Pa, comparable to known traction force data [7, 8]. For all our simulation runs,

unless stated otherwise, we use total amount of myosin M, =80 non-dimensional units.

total

(Note that M, is conserved in the model.) We set the diffusion coefficient D,, =1.2 um?/s

to be sufficiently small to keep the dimensionless Peclét number Pe = >>1 such that the

0=M
actin flow dominates over diffusion [9] when the adhesion strength is minimal ({ = ¢, ).

Myosin dynamics with fixed cell boundary

As part of our test calculation, we consider what happens when the shape of the cell is
fixed (V, =0), but the cell is turning. To simulate such a situation, we solve Eq. (3) while taking
the motion of the turning cell explicitly into account. This is done by adding a kinematic flow to
Eqg. (3) so that it becomes:

L D M (0 + T ~VHG=7,) ), (16
Uinenaic = —CEX (X~ %,).

Here X, is the center of pivoting motion and —QZ is the angular velocity of the cell. The
negative sign accounts for the fact that myosin should drift in the direction opposite to the cell
motion. Z is the unit vector pointing out of the surface on which the cell crawls. For these
computational runs, we choose X, = (40 £ m,-5 uzm) relative to the cell center-of-mass and
Q=1/250 s'. These values mean that the cell is moving at a linear speed of
V ~Q|%, |~02um/s and angular speed about V/(27 | %, |)*x360° ~0.23 deg/s, comparable
to measured speed and angular speed in the experiments.

Magnitude of adhesion strength

The strength of adhesion is characterized by the coefficients introduced in Eq. (12),
namely {£,,<,,¢,,¢,} . We fix the baseline strength at ¢, =0.03 nN s/ zm*for all of our runs.

This value is comparable to the low adhesion strength we previously reported in [1]. The value
for the other coefficients varies depending on what system we are studying but we try to keep
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them all comparable to the 'medium' values that we have reported previously E~0.4
nNxs/zm* [1]. Note that with the 'medium' values of adhesion strength as the characteristic
retrograde flow rate in our simulation of U ~ 0.2 £ m/s, the characteristic traction force is

g:ljh ~16 Pa which is comparable to the experimentally measured traction force (5-10 Pa).

The nucleus

In our two-dimensional model the nucleus is represented as a disc with radius
r,=7.5um centered at the cell center-of-mass X, . To effectively repel both myosin and

adhesion from the region where the nucleus resides, we need to choose
foexp(l)/r, ~|VH||_ . >V, for the repulsion to be strong enough to counteract the actin
X—Xo=r,

flow. We choose f, =1um? /s, which yields f, exp(1)/r, ~0.35um/s.

Cell shape dynamics

The dynamics of the cell boundary is dictated by the balance of net local
protrusion/retraction rate and the Laplace pressure. The strength of the Laplace pressure term

is governed by 7,=0,/;/n,. We choose tension o, to be ~0.1nN/um [10]. The drag
coefficient for the membrane 7, scales, according to Stoke's Law, as ~ 67yl,, where u, =1cP
is the viscosity of water. As for [, it should be the size of lipid molecule, approximately 1nm.
Using these numbers, 7, ~0.5u mZ/s. In this study, we used a comparable value of

7, =0.1um * /s, which means that the tension is slightly smaller than 0.1nN/ gz m.

Dependence of the model behavior on the parameters

The most important parameters in the model are the myosin strength k£, the adhesion
strength £, the actin viscosity 1z, and the characteristic cell speed V. The model behavior is

sensitive to these parameters in the sense that for the shape and movement of the model cell
to resemble the real cell, there is a number of constraints on these parameters that have to be
in place, analyzed in detail in [1, 6]. These constraints are not rigid: a fewfold changes of these
parameter values (Table 3) still predicts qualitatively all the observed behavior. Similarly, the
model is robust to a few fold change of all characteristic adhesion strengths used (Table 4). The
model is even less sensitive to all other parameters listed in Table 3: changes of up to an order
of magnitude of their values (one at a time, of course) do not change the predicted behavior
gualitatively. We emphasize that most of the parameters orders of magnitude are known from
extensive studies of keratocyte cells.

Simulation results
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Asymmetries in myosin distribution, actin flow and traction forces in
turning cell

We first considered a cell with a fixed shape (Fig. 1B), chosen to approximate an
experimentally measured turning cell shape (Fig. 3f in [11] and [12]). Similar to the observed
turning cells, there is a lower aspect ratio on the slower side and a higher aspect ratio on the
faster side, i.e. the outer wing is more elongated than the inner wing. For simplicity, in these
simulations we removed the nucleus and its effects from the cell center. With the fixed cell
boundary, we used the kinematic actin-myosin flow of a turning cell as explained above in Eq.
(16), as well as a fixed adhesion distribution in time. We tested two distributions of adhesions
to see which could replicate observed measurements of actin flow, myosin distribution and
traction forces. In one simulation, adhesion was constant in space, while in the other it varied in
space with adhesion higher on the inner side of the turning cell. The adhesion distribution with
resulting simulation results are presented in Fig. 1B. We observed that the myosin distribution
in both cases was biased toward the fast side of the cell due to the kinematic actin flow, with
only slight insignificant differences in myosin distributions between these two cases. However,
only an asymmetric adhesion distribution could replicate experimental measurements of
traction forces [12].

The model reproduces characteristic cell turning behavior

We used the free-boundary model of the cell to simulate the evolution of the cell from
the symmetric stationary disc-like shape when initially the adhesion at the left is increased (Fig.
2A). First, we used the model in which the adhesion relaxes to the uniform, constant adhesion.
In this case, the symmetric shape of the cell moving along the straight trajectory evolved (data
not shown). Then, we simulated the model with the mechanosensitive adhesion, as described
above. The steady asymmetric cell shape and turning with a constant-radius trajectory evolved
from this initial condition, with the shape and patterns of myosin distribution, actin flow and
traction forces (Fig. 2A) mimicking those observed in the experiment [12].

Boundary crossing and myosin asymmetry

We used the free-boundary model of the cell to simulate the cell movement while
crossing a boundary between high and low adhesions, as described above. In the simulations at
each time step, we scaled the adhesion strength pattern depicted in Fig. 1A by a factor
dependent on the parts of the cell that were on higher or lower adhesion, respectively. The
results are shown in Fig. 2B. We found that, matching experimental results, cells would turn
towards the side of higher adhesion after an asymmetry in adhesion developed at the cell rear.
We also simulated the situation where the density of myosin was increased on one side of the
cell (data not shown). The simulation demonstrated that an asymmetry in myosin produces a
steady turn away from the side of increased myosin. Yet, once the externally imposed bias in
myosin concentration is removed, myosin re-distributes around the cell, the cytoskeletal
symmetry is restored, and the cell starts to move straight. This matched experimental findings
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from asymmetric exposure to the myosin activating small molecule calyculin (Figure 6A in [12]).
The results indicate that the positive feedback between the kinematics of turning and myosin
distribution are sufficient for transient but not persistent turning.

Turning behavior with myosin-adhesion feedback

As the computations with the free-boundary model were computationally expensive,
we developed the following combined analytic-computational theory to examine the long time
scale cell trajectories. We first fixed the difference A between the left and right adhesion
strengths. As a result, the cell, after a brief transient relaxation, started to move with steady
shape and angular speed, @, along the trajectory with constant radius of curvature, R. Also as a
result, a steady difference in myosin concentrations AM , between the left and right parts of
the cell developed. We repeated such simulations varying the value of A{ from 0 to the
maximum (no adhesion at one side) and measured AM , w and R for each adhesion asymmetry
(Fig. 3A-C). We found a strong relationship between the asymmetry in adhesion and the
predicted rate of turning and myosin asymmetry. In comparison, when we varied the adhesion
strength at the leading edge, we found that such variance did not affect cell turning behavior
significantly (Fig. 3A,B).

We found that the angular speed is an approximately linear function of the left-right
adhesion difference: w = @A , and the myosin concentration difference in the left and right
sides of the cell is an approximately linear function of the angular speed: AM = fw (Fig. 3A-C).
Here o and S are defines as constant parameters identified in the simulations.

We then followed the experimental and theoretical findings in [2] of the negative
feedback between local contraction and adhesion strength. In [2], the adhesion strength was
the function of the local actin flow rate, but as the flow rate V is proportional to the ratio of the
myosin concentration to the adhesion strength, here for simplicity we assume that the
adhesion strength is the following function of the myosin concentration:

§=§1+(§0—(1)(0.5—arctan(s(m—%))/;z), so that the adhesion strength is a decreasing

function of the myosin concentrationm (Fig. 3D). This is also consistent with the observed and
predicted biphasic relationship between actin retrograde flow speed and traction stress [13],
and the hypothetical “molecular-clutch” model of adhesions [14]. At the inner rear of the
turning keratocyte, inward actin flow is slow and the molecular clutch of adhesions is in place,
creating large traction forces. At the outer rear of the turning keratocyte, inward actin flow is
high secondary to myosin contractility and the molecular clutch of adhesions fails, leading to
small traction forces. To appropriately model our data, it is important that the adhesion
strength decreases slowly at low myosin densities, faster at moderate myosin densities and
slower again at high myosin densities, as in Fig. 3D. However, the exact functional form of this
dependence is not critical, and we also note that such functional dependencies are ubiquitous

in biology [15]. In theé’(m) relation, ¢, is the high adhesion strength (Table 4), and§, =¢,/2is

the low adhesion strength, s = 20 is the parameter determining how fast the adhesion drops at
threshold myosin density m [2]; we choosem = 1.2 where M = 1 corresponds to average myosin
density at the cell rear in the state of the straight movement.
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According to this assumption of negative feedback of myosin contractility on adhesion
strength, if the cell moves with angular speed @, then there will be the resulting difference in
myosin concentrations at the cell left and right sides, @, then due to the resulting difference in
myosin concentrations at the cell sides, M +mand M —m;2m = fw . Then, there will be the

following side-to-side difference in the centripetal flow: V, ~(M +m)/ ¢V, ~(M -m)/¢,,
where ¢, Eg“l+(§’0—§1)(O.5—arctan(s(M+m—n_1))/7r)and
¢, E{l—i-(é’o—gl)(O.S—arctan(s(M—m—m))/ﬂ). The resulting angular velocity s

proportional to the difference (¥, -V, ), and so:

Cl_gr §1+§r
=f(m),f(m)=M m )
o= m S m)=M=pem=er (1)

gz,r = é/l +(é/0 _41)(0'5_arCtan(S(Mim_%))/ﬂ)

On the other hand, we have:

2m
~ (18)
=

The system of Eq. (17,18) is shown graphically in Fig. 7C and the intersections of the two
relationships determines the steady turning state of a cell. We investigate the behavior of this
model when the average myosin density (or strength) (parameter M) changes. In this figure, we
can see that for greater myosin strength, there are three steady states, one of which
corresponds to straight migration and equal adhesion at the sides (w=0,A{ =0), and two
others correspond to finite angular speeds and adhesion strength differences at the sides.
These two finite angular speeds are the same in magnitude and opposite in sign, and they
correspond to rotation in the clockwise and counter-clockwise directions. The movement
with @ = 0 is unstable, while the two other ones are stable, so a cell with this described negative
feedback between local myosin concentration and adhesion strength will switch between
turning persistently in two opposite directions, matching the behavior of experimentally
observed trajectories [12]. On the other hand, when myosin strength is low, the only stable
state corresponds to straight migration and equal adhesion at the sides (w=0,A{ =0).

In order to illustrate that point, we numerically solved the system of two dynamic

equations:
do 1 dm 1
= m)=e) G = (Pl 2m)+ B(1) (19)

for the angular speed and adhesion strength difference that produce the steady solutions given
by Eq. (17) and (18), and describe the relaxation of the angular speed and myosin difference to
their steady states with characteristic times 7, andr,, respectively. In the second equation of

Eg. (19), the term B(t)is used to describe stochastic uncorrelated noise. Numerically, we can
solve Eq. (19) using the Forward Euler method as follows:

w(t+At):w(t)+§( f(m(t))—w(z)),m(rm):m(z)+§(ﬂw(t)/z—m(t))+m2 (20)

2] m
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Here in the stochastic term D is the effective diffusion (random steps of adhesion change) of
adhesion, and Z is the standard normal random variable. Note, that the same results can be
achieved if the angular speed is noisy, or both speed and adhesion are noisy, with the
magnitude of the noise adjusted to fit the results.

We simulated Eq. 20 numerically using parameters M =1.1for control value of the myosin
strength and M = 0.8 for low value of the myosin strength, D = 0.01, #=0.45 (other parameter
are listed above) and recorded the time series of cell angular speed (Fig. 2C). When the
parameter M > 1, the negative myosin-adhesion feedback is strong enough to provide the
bistable cell switching behavior (Fig. 2C) that results in peaks in the angular speed distribution,
which correspond to persistent turning with rates on the order of ~ 1 degree per second, as
observed [12]. Simulations produce trajectories illustrated in Figure 3, which agrees with
experimental results [12].

Finally, the experiment with cell motion in the electric field [12] showed that the cell in general
moved along the direction to the cathode, but the directionality oscillated, so the cell followed
a sinusoidal trajectory (Fig. 31). The model reproduces this observation as follows. We assume
that the electric field tends to orient the leading edge of the cell in the direction of the cathode.
We model this tendency by adding the term —r@ to the equation for the rate of change of

the angular velocity, where @is the angle at which the cell moves relative to the cathode
direction. Essentially, the angular velocity of the cell rear is slowed down by the leading edge
pull proportionally to the deviation from the cathode direction when the cell is turning away
from this direction, and accelerated when the cell is approaching this direction. Respective
system of equation is:

do 1
Ezr—w(f(m)—a))—ré?
dm 1

do

— =

dt

Numerical solutions of these equations with r = 0.3 and all other parameters
the same as above are shown in (Fig. 31) for both weak (M = 0.8) and strong (M = 1) myosin
contractility.

Summary
Free-boundary mechanical model of the keratocyte lamellipodium, with

mechanosensitive adhesion and positive feedback between cell movement, myosin distribution
and actin network flow, reproduces experimentally observed cell turning behavior.
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Figures

Figure 1. Simulations of a turning cell with fixed shape.

(A) Schematic of the spatial distribution of adhesion strength. The two circles at the cell sides
represent the regions where the adhesion strength is the highest (red). Adhesion strength is
medium at the front (yellow/orange) and weakest at the rear (blue).

(B) Detailed simulations of cytoskeletal asymmetries in the steadily turning cell with the fixed
shape. In the simulations, adhesion distribution is pre-determined and is constant in time.
Myosin distribution, actin flow and traction forces are computed according to the model
dynamics. Left column: adhesion (top) is constant. Myosin (2nd row) is swept by the flow to the
outer side of the cell. Both actin flow (3™ row) and traction forces are high at the outer side of
the cell. Right column: adhesion is moderate in the band along the leading edge, low at the cell
rear, and high at the inner rear corner of the cell. Myosin is swept by the flow to the outer side
and actin flow is high at the outer side of the cell with little change due to an asymmetric
adhesion distribution.

Figure 2. Characteristics of cell turning can be reproduced with a mechanical model.

(A) The results of a free-boundary simulation of cell migration where cell shape and migration
evolved with the initial assumption of increased adhesion strength on the left side of the cell.
Cell outlines are shown at time points as labeled in minutes (red), with the first two time points
not presented in their actual location in space. Note that we observe expected changes in cell
shape, actin flow (3:20), adhesion asymmetry (8:20), myosin distribution (15:00) and traction
forces (25:00).

(B) Simulation with free-boundary model of cell migration of cells migrating from high to low
adhesion (orange contours) and from low to high adhesion (magenta contours). Cell shape and
parameters at the point of crossing are presented on the sides as labeled, with scale bars as in
panel A. Matching experimental observations [12], cells turn towards the side of the substrate
with higher adhesion in both cases. Scale bar indicates 10 um.

(C) From the combination of the linear relationship between angular speed and myosin
asymmetry dictated by asymmetric delivery of myosin Il to the outer side of the cell inducing
turning (red) and the non-linear relationship between angular speed and myosin Il asymmetry
dictated by the weakening of adhesion by myosin Il contractility according to a stick-slip model
(blue), the stable turning state of a cell can be determined. When myosin contractility is too
weak to break adhesion (M = 0.8) then a single stable solution can be obtained as would be
seen for a meandering cell (left). When myosin contractility is stronger (M = 1.1) and weakens
adhesions promoting further turning, then a cell will be stable in either of two persistent

turning states (right).
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Figure 3. Modeling of asymmetries in adhesion and incorporation into a comprehensive model
reproducing cell turning behavior.

(A-C) For the free boundary model of cell migration the side-to-side difference in adhesion
strength ( A¢ ) was fixed and in panel E the radius of curvature of the path (R), in panel F the
angular velocity of the cell (w), and in panel G the side-to-side difference in myosin
concentration were calculated as the cell turned to the left. For each simulation adhesion
strength at the front was either kept constant from side to side (black points), set as the left
being 80% of the right (red points), or set as the right being 80% of the left (blue points).
Differences of myosin concentration and adhesion strength are measured in units of average
myosin concentration and adhesion strength, respectively. Note that changing adhesion
strength at the leading edge made little contribution to cell turning.

(D) A plot of the assumed adhesion strength, £, as a function of myosin concentration, M,

M; . . . I
where ¢ = — g - . Increasing myosin concentration and hence contractility is assumed
M;+M
to decrease the effective adhesion strength according to a non-linear stick-slip model of
adhesion.

(E-H) The results of a free-boundary simulation of cell migration where cell shape and migration
evolved with an initial assumption of increased adhesion strength on the left side of the cell
(pink zone) and after 5,000 seconds with reversed adhesion asymmetry (blue zone). The
normalized left-right asymmetry of traction forces, adhesion strength, myosin density as well as
the path curvature are plotted as a time series for a single simulation in (E) with myosin
contractility having no effect on adhesion strength, and (F) with increased myosin contractility
negatively regulating adhesion strength. Tracks for each of these simulations are presented in
(G) and (H) respectively. Each cell starts at the position marked with a red circle and migrates
toward the blue arrow. Without the negative feedback of myosin contractility on adhesion
strength, turning is unstable and lower in magnitude. With this negative feedback included in
the simulation turning is higher in magnitude and more persistent. The normalized asymmetry

is defined as((XL>—<XR>)/<X> .

(I) Simulated trajectories of cells in an electric field under control conditions (blue) and with
inhibition of myosin contractility (orange).
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Tables
Table 1: Model variables.
Variable | Meaning Dimension
t time s
S arc length “m
X two-dimensional coordinate um
M(x,t) myosin concentration units/ um 3
U(X) local F-actin flow velocity umf/s
n(x) local normal unit vector to the lamellipodial edge | non-dimensional
S(x,1) adhesion strength/drag-coefficient nN's/um?*
V. (s) net local protrusion/retraction rate um/s
v, local polymerization rate umfs
R(s) local radius of curvature um
Table 2: Definition of adhesion strength parameters
Meaning Dimension
Parameter
<, baseline adhesion strength nN's/ zm 4
- adhesion strength coefficient for the left wing nN's/ um 4
g, adhesion strength coefficient for the right wing nN's/um*
- adhesion strength coefficient for the leading | nN s/ i m?
edge (front)
510 baseline adhesion strength for the left wing nN's/ um 4
éVrO baseline adhesion strength for the right wing nNs/ zzm 4
AL maximum amplitude of adhesion strength | nN s/ u m*
perturbation
v frequency of modulating adhesion strength s7!
h, y-displacement relative to the cell center for the | £ m
side adhesion patches
h, front-back length parameter for front adhesion | um
patch size
d, x-displacement relative to the cell center for the | xm
side adhesion patches
h, width parameter for front adhesion patch size um
7, side adhesion patch size um
& adhesion transition zone width parameter dimensionless
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Table 3: Non-adhesion related constant model parameters.

Parameter | Meaning Value

Vs characteristic cell speed 0.2 um/s
L, characteristic radius 10 um

h cell thickness 0.2um

A cell area 600 u#m”
M., total myosin 80 units
D,, effective myosin diffusion coefficient 1.2 um 2 /s
H shear F-actin viscosity 5kPas

Uy bulk F-actin viscosity 100 kPa s

k myosin force parameter 100 nN #m
fo nucleus repulsion strength 1um 2 /s

v, nucleus radius 75 um

7, membrane tension parameter 03 um?/s
Y decay constant for the director N_, /55"

Table 4: The values of adhesion strength parameters used

Parameter Standard | High Low Mild Turn Tight Turn
Adhesion Adhesion
¢,[nNs/zm*] | 0.03 0.03 0.03 0.03 0.03
¢ [nNs/um*] | 0.4 0.4 0.12 0.4 0.4
S InNs/um 1105 0.5 0.15 N/A N/A
¢, [nNs/lum4] 0.5 0.5 0.15 N/A N/A
é'lo [nNs/,um‘*] N/A N/A N/A 0.5 0.5
¢ [InNs/ um*] | N/A N/A N/A 0.5 0.5
AC [nNs/ um*] | N/A N/A N/A 0.1 0.45
v I[s™'] N/A N/A N/A 0.5 0.5
hy [ m] 2 2 2 2 2
hy [ um] 13 13 13 13 13
dy [1m] 14 14 14 14 14
d, [um] 22 22 22 22 22
ry [pm] 2.5 2.5 2.5 2.5 2.5
& [dim/less] 0.25 0.25 0.25 0.25 0.25
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