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33 Abstract 

34  

35 Coffee (Coffea spp.) is one of the most popular refreshments globally. Coffee lipid diversity has 

36 untapped potential for improving coffee marketability because lipids contribute significantly to both the 

37 health benefits and cup quality of coffee. However, there have not been extensive studies of lipids of C. 

38 canephora genotypes. In this study, Ultra-performance liquid chromatography coupled with mass 

39 spectrometry (UPLC–MS) profiling of lipid molecules was performed for 30 genotypes consisting of 15 

40 cultivated and 15 conserved genotypes of C. canephora in Southwestern Nigeria. We identified nine 

41 classes of lipids in the 30 genotypes which belong to the ‘Niaouli’, ‘Kouillou’ and ‘Java Robusta’ group: 

42 among these, the most abundant lipid class was the triacylglycerols, followed by the fatty acyls group. 

43 Although ‘Niaouli’ diverged from the ‘Kouillou’ and ‘Java Robusta’ genotypes when their lipid profiles 

44 were compared, there was greater similarity in their lipid composition by multivariate analysis, 

45 compared to that observed when their primary metabolites and especially their secondary metabolite 

46 profiles were examined. However, distinctions could be made among genotypes. Members of the fatty 

47 acyls group had the greatest power to discriminate among genotypes, however, lipids that were low in 

48 abundance e.g. a cholesterol ester (20:3), and phosphotidylethanolamine (34:0) were also helpful to 

49 understand the relationships among C. canephora genotypes.  The lipid diversity identified among the C. 

50 canephora genotypes examined correlated with their overall Single Nucleotide Polymorphism diversity 

51 assessed by genotype-by-sequencing, supporting the relevance of this study to coffee cup quality 

52 improvement.

53

54 Keywords: Coffea canephora; bean lipidomics; UPLC-MS; metabolites; SNP
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56 Introduction

57  “Lipids” are any organic compounds that are insoluble in water, but soluble in organic solvents 

58 [1]. Represented in this group are a broad range of molecules such as fatty acids, triacylglycerols, and 

59 phospholipids. Lipids serve diverse and critical biological roles in plants such as maintaining cellular 

60 membrane integrity and homeostasis, acting as key components in cell signaling pathways and being 

61 used as an energy store [2]. In coffee beans, lipids are important reserve compounds and can make up 

62 to 10-17% of fresh weight [2,3].

63 The lipids accumulated in coffee beans are important contributors to beverage organoleptic 

64 properties [4-6], and are excellent discriminators of coffee quality [7-11]. Lipids determine beverage 

65 foam and emulsion formation and stabilization, which in turn influences flavour and aroma 

66 enhancement, especially in espresso brewing [4,12]. Coffee foam and emulsions are responsible for the 

67 characteristic pleasant aroma of coffee  by trapping and retaining the volatile compounds [13]. Further, 

68 the foam created during coffee brewing also influences beverage creaminess and texture [14,15], which 

69 further enhances coffee sensory perception. 

70 Coffee bean lipid composition is influenced by the environment but is largely genotype-

71 dependent [11,16]. Differences are apparent in C. arabica and C. canephora, the two most consumed 

72 types of coffee [11]. Arabica coffees generally have lipid contents of 15% which is higher than that in 

73 Robusta which averages 10% [2,3]. Arabica also has higher palmitic (16:0), arachidic (20:0), stearic (18:0) 

74 and linolenic acids (18:3), but is lower in oleic acid (18:3) compared to C. canephora [17,18]. A recent 

75 genome wide association study of 107 C. arabica accessions found single nucleotide polymorphisms 

76 positioned within or near genomic regions coding for proteins involved in lipid and diterpenes metabolic 

77 pathways [19], indicating the potential genetic diversity of these key metabolites. In addition to 

78 genotype, coffee growth environment e.g. altitude, shade and temperature can also influence lipid 

79 composition [8,9,14,20]. 
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80 Lipidomics in plants is still in its infancy compared to the broader metabolomic profiling, and the 

81 data for C. canephora is comparatively less than that available for C . arabica. C. arabica is known to 

82 have a high lipid content compared to C. canephora [2,3]. However, there have not been extensive 

83 studies of lipids of C. canephora genotypes, so the variability relative to C. arabica still remains largely 

84 undiscovered. This is important because although C. canephora is not as popular as C. arabica, its 

85 production and consumption is increasing, making it important to understand its organoleptic properties 

86 [21]. Further, genetic diversity among tetraploid C. arabica is not as high as diploid C. canephora [22] and 

87 this may be reflected in the metabolomic and lipid species diversity within these species.

88 The aim of this study was to determine the lipid and metabolomics profiles of C. canephora 

89 genotypes conserved in the Cocoa Research Institute of Nigeria (CRIN) coffee repository, and those used 

90 as a source of subsistence by farmers in the southwestern region of Nigeria. Because of the multifaceted 

91 role lipids play in determining coffee sensory quality, we wished to identify potential lipid markers 

92 differentiating among these C. canephora genotypes. These markers would be critical for future coffee 

93 improvement programs in Nigeria. We also wished to broaden the current understanding of lipid 

94 profiles in diverse coffee species for which there is relatively scarce data. An ultraperformance liquid 

95 chromatography method that incorporated a charged surface hybrid (CSH) solid phase was used to 

96 separate the different lipid molecules, followed by electrospray ionization (ESI) quadrupole time of flight 

97 (QTOF) tandem mass spectrometry (MS/MS) i.e. CSH-ESI QTOF MS/MS. These compounds were 

98 subjected to univariate and multivariate analyses to understand their relative abundance. They were 

99 also compared to the primary and secondary metabolites profiled in these same coffees, and their 

100 relatedness based on lipidomics was compared to that based on Genotyping-by-Sequencing data. We 

101 therefore were able to build a comprehensive, multidimensional overview of bean lipids in 

102 Southwestern Nigerian coffees. 

103

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.03.131623doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.131623


5

104 Materials and methods

105 Plant material 

106 Coffee beans (Coffea canephora) were harvested from coffee germplasm repository of Cocoa 

107 Research Institute of Nigeria (CRIN) and coffee farmers’ field. Similar genotypes were used for 

108 metabolomics [23] consisting of ‘Niaouli’, ‘Kouillou’ and ‘Java Robusta’ varieties. They were classified 

109 into six groups based on the result from Single Nucleotide Polymorphism-Genotype by Sequencing 

110 analysis [23]. ‘Niaouli’ is comprised of three genotypes: Nia_1, Nia_2 and Nia_3, (respectively, classified 

111 as Groups 1, 2 and 3), ‘Kouillou’ is comprised of two genotypes: C111 and C36, (respectively, classified as 

112 Groups 4, and 5) and, ‘Java Robusta’ is comprised of one genotype: T1049, and was classified as Group 

113 6. There were five replicates for each group (genotypes) giving a total of 30 samples (Table 1).

114

115 Table 1: Coffee genotypes used in this study and their symbols

Variety ‘Niaouli’ ‘Kouillou’ ‘Java 
Robusta’

Group/
Genotype

Group1
(Nia_1)

Group 2 
(Nia_2)

Group 3
(Nia_3)

Group 4
(C111)

Group 5 
(C36)

Group 6 
(T1049)

Samples’
Symbols

Nia_11
Nia_12
Nia_13
Nia_14
Nia_15

Nia_21
Nia_22
Nia_23
Nia_24
Nia_25

Nia_31
Nia_32
Nia_33
Nia_34
Nia_35

C111_1
C111_2
C111_3
C111_4
C111_5

C36_1
C36_2
C36_3
C36_4
C36_5

T1049_1
T1049_2
T1049_3
T1049_4
T1049_5

116
117

118 Sample Preparation

119 Reddish mature (ripened), coffee beans of these genotypes were collected in ice bags and 

120 immediately transferred to -80oC. The endosperms of the coffee bean were excised using sterile blade 

121 and re-transferred to -80oC. These endosperms were lyophilized, ground into powder with Udy mill (Udy 

II
c
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122 Corporation) and sealed prior to lipidomic analysis. The lipid was extracted following the protocols 

123 according to Matyash et al., [24]. Dried extracts were resuspended using a mixture of methanol/toluene 

124 (9:1, v/v) (60 µL) containing an internal standard [12-[(cyclohexylamino)carbonyl] amino]-dodecanoic 

125 acid (CUDA)] used as a quality control. 

126

127 Data Acquisition

128 Extracted lipids were separated on an Acquity UPLC CSH C18 column (100 × 2.1 mm; 1.7 µm) 

129 maintained at 65 °C. The mobile phases for positive mode consisted of 60:40 ACN:H2O with 10 mM 

130 ammonium formate and 0.1% (v/v) formic acid (A) and 90:10 IPA:ACN with 10 mM ammonium formate 

131 and 0.1% (v/v) formic acid (B). For negative mode, the mobile phase modifier was 10 mM ammonium 

132 acetate instead. The gradient was as follows: 0 min 85% (A); 0–2 min 70% (A); 2–2.5 min 52% (A); 2.5–11 

133 min 18% (A); 11–11.5 min 1% (A); 11.5–12 min 1% (A); 12–12.1 min 85% (A); and 12.1–15 min 85% (A). 

134 Sample temperature was maintained at 4 °C in the autosampler. 2 µL of sample was injected. Vanquish 

135 UHPLC system (ThermoFisher Scientific) was used. Thermo Q-Exactive HF Orbitrap MS instrument was 

136 operated in both positive and negative ESI modes respectively with the following parameters: mass 

137 range 120−1700 m/z; spray voltage 3.6kV (ESI+) and −3kV (ESI−), sheath gas (nitrogen) flow rate 60 

138 units; auxiliary gas (nitrogen) flow rate 25 units, capillary temperature 320 °C, full scan MS1 mass 

139 resolving power 60,000, data-dependent MS/MS (dd-MS/MS) 4 scans per cycle, normalized collision 

140 energy at 20%, 30%, and 40%, dd-MS/MS mass resolving power 15,000. Thermo Xcalibur 4.0.27.19 was 

141 used for data acquisition and analysis. The instrument was tuned and calibrated according to the 

142 manufacturer’s recommendations.

143
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144 Data Processing

145 Raw data files were converted to the mzML format using the ProteoWizard MSConvert utility. 

146 For each m/z values ion chromatogram was extracted with m/z thresholds of 0.005 Da and retention 

147 time threshold of 0.10 min. Apex of the extracted ion chromatograph was used as peak height value and 

148 exported to a .txt file. Peak height files for all the samples were merged together to generate a data 

149 matrix. Targeted peak height signal extraction was performed using an R script that is available 

150 at https://github.com/barupal. Extracted ion chromatograms for each peak were saved as pictures. CSH-

151 POS and CSH-NEG data matrices were generated. No normalization was applied as minimum signal drift 

152 was observed during analysis.

153 Statistical analysis

154 Chroma TOF 4.3X software of LECO Corporation and LECO-Fiehn Rtx5 database were used for 

155 raw peaks exacting, the data baselines filtering and calibration of the baseline, peak alignment, 

156 deconvolution analysis, peak identification and integration of the peak area [25]. The RI (retention time 

157 index) method was used in the peak identification, and the RI tolerance was 5000. Metabolite data were 

158 normalized by dividing each peak area value by the area of internal standard (Ribitol). Data were log10 

159 transformed, mean-centered and divided by the standard deviation of each variable before performing 

160 statistical analysis. The statistical analyses, such as ANOVA, PCA, PLS-DA were performed by using 

161 MetaboAnalyst 3.0 [26]. Univariate and multivariate statistical approaches were performed with 

162 MetaboAnalystR [26]. One-way Analysis of Variance (ANOVA) test was performed to ascertain the 

163 significant variables, and they were expressed as f - and p-values. The level of statistical significance 

164 (Log10(p)) was determined, followed by post-hoc analyses to correct the p-value and thus generate the 

165 False Discovery Rate (FDR). Fisher’s least significant difference method (LSD) was used to identify groups 

166 that differ in their lipid profiles [26]. The Hierarchical Clustering Analysis (HCA) plots for SNPs and lipids 
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167 were generated under the R environment. Pearson correlative analysis was performed using lipid and 

168 metabolism parameters. Two packages in R were used: “psych” [27] and “reshape2” [28] for calculating 

169 Pearson’s correlation coefficient (PCC), p-value and 𝑞FDR. The correlation network was drawn using 

170 MetScape 3.1.3 [29] in the Cytoscape environment [30]. 

171 Results and discussion

172 The primary aim of this work was to determine the lipid profile and potential lipid markers 

173 differentiating C. canephora conserved and cultivated in southwestern Nigeria. The main classes of 

174 lipids, their relative abundance among the genotypes and their ability to discriminate among the 

175 genotypes were determined. Next, how the genotypes associated with each other based on their 

176 primary, secondary and lipid profiles. Finally, the relationship among genotypes based on lipidomics was 

177 compared to genotyping-by-sequencing SNP data, to determine if there was good accordance between 

178 genotypic and functional data i.e. lipids.

179 Identification of lipids 

180 A total of 1824 lipid species consisted of identified (96) and unidentified (1728) lipids were 

181 detected with CSH-ESI QTOF MS/MS. The positive and negative ESI operating modes separated the lipids 

182 into 1171 positive and 653 negative lipids. Six lipid subclasses are typically recognized in living systems 

183 [31], five were found in the C. canephora genotypes studied (Fig 1A). 

184 Each class of lipid contains multiple molecules of varying lengths and degree of saturation. 

185 Although these lipid classes are diverse, we constructed a simplistic figure of how they may be related to 

186 each other in a metabolic network (Fig 1B). We identified a cholesterol ester (20:3) in this work but 

187 these compounds have not been well studied in plants.

188

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.03.131623doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.131623


9

189 Fig 1. Lipid classes and their interrelationship. A) Lipid classes and subclasses detected in C. canephora beans. 
190 Classification is based on the LIPID MAPS (Metabolites and Pathways Strategy) system, which separates lipids 
191 based on their two fundamental “building blocks” -  the ketoacyl group and the isoprene group [31]. Abbreviations: 
192 FA- Fatty acyls; DG - Diacylglycerol; TG- Triacylglycerols; PE - Phosphatidylethanolamine; PC -Phosphatidylcholine; 
193 LPC Lysophosphatidylcholine; SM-Sphingomyelins; CE- Cholesterol esters. B) A simplified view of a proposed 
194 biochemical interrelationship among the lipid classes according to data in [32,33], as well as in the MetaCyc 
195 database [34] derived from plants. The red dashed arrow indicates data obtained from human cells [35]. 
196

197 Relative amount of lipids variability among genotypes studied

198 Each lipid group i.e. FA, TG, DG, PC, LPC, is made up of multiple chemicals of varying molecular 

199 mass, degree of unsaturation etc. The triacylglycerol (TG) group contained the most chemicals, with 45 

200 different species identified (Figure S1A-S1F). We also identified 13 different fatty acyls (FA), nine 

201 phosphatidylcholines (PC), four lysophosphatidylcholine (LPC), three diacylglycerol (DG) species and one 

202 each of a cholesterol ether, sphingomyelin and phosphotidylethanolamine. 

203 The relative abundance of the chemicals within each lipid class was examined across genotypes. 

204 The ratio of the compounds with the maximum and minimum concentration was determined and was 

205 highest for the TG, FA and DG classes i.e. 2145-, 2923- and 20-fold respectively and lowest for PC, LPC, 

206 CE, SM, and PE (Fig 2). Triacylglycerol (52:2) and was the most abundant lipid molecule, while 

207 Sphingomyelin (SM) was the lowest (Fig 2). the TG and FA were the most abundant lipids in these 

208 genotypes consistent with previous reports [2,3]. Genotype C36_1 (‘Kouillou’) had the highest amount 

209 of TG while Nia_11 (‘Niaouli’) had the highest amount of FA. The ‘Niaouli’ (Nia) genotypes are cultivated 

210 by farmers, while ‘Kouillou’ (C111 and C36) and ‘Java Robusta’ (T1049) are conserved in the CRIN 

211 germplasm. To better understand the lipid composition in coffee beans, we examined the specific lipids 

212 identified within eight of the nine classes (the unknown compounds were not discussed) and compared 

213 them across genotypes. Each class was considered in turn, and all data referenced from 3.2.1 to 3.2.3 is 

214 contained in S1 Figure. 

215 Fig 2. Relative lipid abundance in the C. canephora species studied. We identified nine subclasses of lipids within 
216 the five broader lipid classes described in LIPIDS MAPS. For each subclass, the relative abundance of compounds 
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217 among each genotype was assessed. Values shown are the maximum and minimum values within each compound 
218 class, and the label indicates the genotype in which the highest value was found. 
219

220 Fatty-acyl group (FA). 

221 The predominant fatty acyls among our C. canephora germplasm were linoleic acid (18:2) followed by 

222 palmitic acid (16:0) (S1A Figure), which together encompassed 50% of the total fatty acids. Linoleic and 

223 palmitic were also the predominant FAs in a range of C. arabica and C. canephora genotypes studied by 

224 Speer and  Kölling-Speer [2]. The number of carbons in the fatty acyls in this study ranged from C15 to 

225 C28, also similar to the range i.e. C14 to C24, found by Speer and Kölling-Speer [2]. 

226 The proportion of the major FA among genotypes was also examined, because of their influence 

227 on coffee quality. These FAs are also members of highly related biosynthetic pathways (Fig 3). FA (16:0) 

228 i.e. palmitic acid, was higher in ‘Kouillou’ and ‘Java Robusta’ compared to ‘Niaouli’ (S1A Figure). This is of 

229 interest because palmitic acid was positively associated with the high hedonistic values in some specialty 

230 Brazilian C. arabica coffees [9]. Oleic, linoleic, and linolenic acid levels have also been identified as good 

231 markers for Brazilian C. arabica coffees which had lower acidity, fragrance, body and flavor [9]. Oleic 

232 acid (18:1) was 3-fold lower than linoleic acid (18:2) especially in Nia_11 (S1A Figure). Further, linolenic 

233 acid (18:3) was low (10-fold) relative to linoleic acid (18:2). It is tempting to speculate that there is 

234 differential regulation of the enzymes that catalyze these steps (Fig 3). In Arabidopsis these two fatty 

235 acid desaturases (FAD2 and FAD3) operate independently [36]. 

236

237 Fig 3. Desaturation of C18 fatty acids. This pathway is found in plastids (catalyzed by fatty acid desaturases - FAD6 
238 and FAD7/8) and in the endoplasmic reticulum (catalyzed by FAD2 and FAD3). Arrows indicate the relative amount 
239 of each compound based on data derived from this study.
240
241
242 Triacylglycerol (TG). 
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243 This group can comprise up to 75% of the lipids in coffee beans [37], and during coffee roasting, they 

244 become the carriers of the emerging flavor volatiles [4,12]. There were 45 classes of TGs identified, 

245 varying in acyl carbons from C48 to C60 in this study. The farmer cultivated accessions i.e. the ‘Niaouli’ 

246 genotypes had a greater proportion of high-carbon triacylglycerols i.e. C56, C58 lipids compared to 

247 ‘Kouillou’ which had more C48-C52 compounds (S1B Figure). The C52 triacylglycerols showed great 

248 structural diversity containing up to six double chain triacylglycerols i.e. (52:1) to (52:6). 

249

250 Cholesterol ester (CE). 

251 Cholesterol esters are cholesterol molecules with a long-chain fatty acid linked to the hydroxyl group 

252 [38]. Cholesterol was thought to only be important in animal metabolism with low amounts found in 

253 plants, however, this molecule has now been identified as a key precursor for thousands of bioactive 

254 plant metabolites [39]. Cholesterol ester (20:3) was very low in abundance in C. canephora relative to 

255 the other lipid classes (Fig 2), however, levels were notably higher in ‘Niaouli’ when compared to 

256 ‘Kouillou’ and ‘Java Robusta’ (S1B Figure). 

257

258 Lysophosphatidylcholine LPC), Phosphatidylcholine (PC) and 

259 Phosphotidylethanolamine (PE).  

260 Phospholipids are potentially important to food sensory perception [37,40]. PCs accumulated to higher 

261 levels than LPCs which makes sense given their relative position the lipid biosynthetic pathway (Fig 1B). 

262 Generally, the relative levels of these lipids did not vary among genotypes. PEs are usually found in plant 

263 membranes [41]. Their levels were low among the genotypes studied, but there was a significant 

264 difference found between ‘Java Robusta’ which did not accumulate as much PE as the other genotypes.

265
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266 Discriminatory lipid markers

267 Univariate analysis. 

268 Several studies indicate that lipids can be used as a marker to discriminate among coffee types 

269 [13,15,19,42].  One-way analysis of variance (p<0.05; Table 3), was used to identify lipid species that 

270 could broadly discriminate among coffees genotypes. Twenty-four lipids separated metabolites in the 

271 farmer’s genotypes from those conserved at CRIN, since the data for ‘Kouillou’ and ‘Java Robusta’ were 

272 identical. ‘Kouillou’ and ‘Java Robusta’ were treated as a single group i.e. ‘Kouillou/Java Robusta’ 

273 because of the similarities detected. Fourteen of these lipid species were higher in ‘Niaouli’ and ten 

274 were higher in ‘Kouillou/Java Robusta’ (Table 3). 

275
276 Table 3. One-way Analysis of Variance and Fisher’s Least Square Difference (LSD) for discriminating genotypes 
277 based on lipid content. The Farmer’s cultivated accessions (‘Niaouli’ i.e. Nia_1, Nia_2, Nia_3) and those from the 
278 conserved genotypes (‘Kouillou’ i.e. C111, C36 and ‘Java Robusta’ i.e. T1049) were compared. The f-value is derived 
279 from the F. statistic test for significance, the p-value tests variability between two groups, –LOG10(p) determines 
280 the significant levels, and FDR means False Discovery Rate.

Lipid species more abundant in 
‘Niaouli’                f.value                  p.value               -LOG10(p)                FDR
TG (56:2) 15.454 7.86E-07 6.1044 3.20E-05
TG (58:4)A 15.260 8.79E-07 6.0562 3.20E-05
PE (34:2) 15.037 1.00E-06 6.0000 3.20E-05
CSH_negESI (19:2) 11.988 6.84E-06 5.1650 0.000131
TG (58:3) 11.987 6.84E-06 5.1648 0.000131
CE (20:3) 11.212 1.18E-05 4.9299 0.000188
CSH_posESI (11:6) 9.9478 3.00E-05 4.5229 0.000411
FA (28:0) 9.0851 5.94E-05 4.2263 0.000713
TG (58:2) 6.4147 0.000645 3.1901 0.006197
TG (56:3) 5.2852 0.002060 2.6862 0.014124
TG (56:1) 5.1318 0.002431 2.6142 0.014586
FA (22:0) 5.0736 0.002590 2.5867 0.014627
FA (20:1) 4.4342 0.005305 2.2754 0.025462
TG (56:4) 3.9802 0.009030 2.0443 0.037692

Lipid species more abundant in 
‘Kouillou’ /‘Java Robusta’
FA (16:0) 7.3943 0.000255 3.5933 0.002721
FA (20:0) 6.2489 0.000760 3.1189 0.006637
TG (50:1)_1 5.9483 0.001029 2.9874 0.008235
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281

282 The lipid with the highest discriminatory power between the two groups of genotypes were TG (56:2), 

283 TG (58:4)A, and PE (34:2) which accumulated to high levels in ‘Niaouli’ relative to other genotypes. The 

284 lipid species which differentiates ‘Kouillou/Java Robusta’ from ‘Niaouli’ were two saturated fatty acids, 

285 palmitic (16:0) arachidic acids (20:0) and TG (50:1). Based on our data analysis we show in Table 4, the 

286 lipids that have a high discriminatory power in the coffees in our study, were compared with 

287 information from data that was published by others. Fatty acids were the most discriminatory of all 

288 lipids, although the types varied with respect to the species examined (Table 4).

289
290 Table 4. Fatty acids with high discriminatory power among coffee genotypes. Included are the two main 
291 varieties of C. canephora (‘Niaouli’ and ‘Kouillou’) used in this study, two cultivated Coffea species (C. arabica 
292 and C. canephora) and specialty or high-quality coffee. Citations to the referenced data are included.
293

‘Niaouli’   ‘Kouillou’      C. arabica  C. canephora      Specialty coffees 
 FA (22:0)
Behenic acid.

FA (16:0)
Palmitic acid

 FA (18:2)
   Linoleic acid [17] 

 FA (18:1)
    Oleic acid [17]

 FA (14:0) 
   Myristic acid [6]1

 FA (20:1)
Arachidic acid.
 FA (28:0)
Montanic acid

 FA (20:0)
Arachidic acid

 Polyunsaturated
Fatty acids [16]

 Monounsaturated fatty 
acids [17]

 FA (20:0)
Arachidic acid.
 FA (18:0)

Stearic acid 
  FA (16:0)
     Palmitic acid [9] 2

294 1 C. canephora; 2: C. arabica

295

296 Multivariate analysis – Partial Least Square Projections

297 Variable influence (or importance) of projection (VIP) scores were used as another tool to 

298 identify the lipids that contribute most to differences among genotypes (Fig 4). This analysis predicted 

CSH_posESI (17:6) 5.7749 0.00123 2.9102 0.009082
CSH_posESI (29:8) 5.1657 0.002343 2.6302 0.014586
CSH_posESI (04:1) 4.6549 0.004124 2.3847 0.021996
CSH_posESI (28:2) 4.5120 0.004852 2.3141 0.024513
TG (52:2) 4.2978 0.006211 2.2069 0.028392
TG (48:1) 4.1161 0.007685 2.1144 0.033535
CSH_posESI (14:1) 3.8540 0.010507 1.9785 0.042028
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299 that PE 34:2, a negative unknown lipid, CSH_negESI (19:2), and FA (28:0) i.e. dodecanoic acid could 

300 distinguish ‘Niaouli’ from the conserved genotypes. The ANOVA data in Table 3, also indicated that these 

301 three compounds accumulated to higher levels in the ‘Niaouli’ genotype.                             

302

303 Fig 4. Potential lipidomic markers differentiating ‘Niaouli’ (genotypes groups 1–3) from ‘Kouillou’ (groups 4–5) 
304 and ‘Java’ (group 6). The variable importance in projection (VIP) scores on the x-axis provide an estimate of the 
305 contribution of a given predictor (lipid species shown on the y-axis) to the Partial Least Square (PLS) regression 
306 above.  The higher the VIP score, the better the lipid species is as a predictor of the discrimination among the 
307 genotypes.
308

309 Understanding the lipid networks in C. canephora coffee beans

310 We examined the lipid-to-lipid correlations among C. canephora beans. Many compounds in 

311 related pathways tend to occur within defined stoichiometries and kinetics parameters [43,44]. 

312 Neighbouring compounds may be correlated with each other. This is also true of metabolites that are in 

313 chemical equilibrium, show mass conservation, or are highly sensitive to a common parameter [43,45]. 

314 Using Pearson’s correlation coefficient at a cut-off of ≥ | ± 0.75|, we identified those lipids that co-

315 occurred at similar relative levels across the C. canephora genotypes studied. Highly specific interactions 

316 between lipids are essential for regulation of cell physiology [46,47] (Fig 5 and detailed in S2 Table). 

317 The most notable observation was the very strong negative correlations between CE (20:3) and 

318 other lipids, many of which were uncharacterized (Fig 5). Negative correlations were also found with CE 

319 (20.3) and TG (54.1), TG (52.1), but most notably with TG (50.1). Based on the number of carbons in 

320 their acyl chains, it seems likely that these three TGs are closely connected in the TG biosynthetic 

321 pathway. Negative correlations among metabolites are sometimes due to regulatory mechanisms 

322 controlling metabolites that have conserved moieties, or metabolites connected by enzymes with high 

323 variance which can cause negative correlations between its substrate and product metabolites [43,48]. 

324 Based on the simplified pathway in Figure 1B, a relationship between the CE and TGs can be envisaged. 
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325 Not all of the relationships between CE (20:3) and other lipids were negative. There was a positive 

326 correlation between CE (20:3) and TG (58.2), TG (58.4), and FA (22.0) respectively. Most triacylglycerols 

327 were positively associated with other lipids except, TG (52:0) and TG (50:1), which showed a negative 

328 correlation (Fig 5). 

329

330 Fig 5. Pearson’s correlation network illustrating correlation patterns among lipids. Correlations found among lipid 
331 data are shown as attribute circular layout. The blue lines indicate lipids whose occurrence negatively correlate, 
332 while the pink lines denote lipids that show a positive correlation. Line thickness indicates the strength of 
333 correlation. A permissive threshold level of ≥ | ± 0.75| was set for the Pearson’s correlation coefficient and a 𝑞FDR 
334 of <0.05 was chosen for the identification of significant correlations within the lipid data. 
335

336 Comparing the primary, secondary metabolites and lipid 

337 profiles among C. canephora

338 Metabolomics and lipidomics are powerful strategies to qualitatively and quantitatively analyze 

339 a wide range of small molecules in a biological sample, which represent endpoints of genome expression 

340 [49]. The metabolomics data from our recent work [21] was subjected to PLS-DA analysis for both 

341 primary and secondary metabolites and compared to the lipidomics profile of these coffees. Our aim 

342 was to determine the diversity of metabolism across genotypes. We expected greater similarity in 

343 primary metabolism across genotypes, and that specialized metabolites would be more divergent [50]. 

344 Lipids are primary metabolites but in coffee beans, it is not known the extent to which they are part of 

345 the fundamental or specialized metabolic machinery.   

346 We found that there was clearer differentiation between ‘Niaouli’ genotypes which clustered 

347 together and away from the ‘Kouillou’ and ‘Java Robusta’ when secondary metabolites were examined 

348 (Fig 6B) compared to primary metabolites (Fig 6A). No clear difference was observed among the groups 

349 with PLS-DA on lipid (Fig 6C) but SPLS-DA - (Fig 6D) was able to reveal more similarity between ‘Java’ and 

350 the ‘Niaouli’ types, while the ‘Kouillou’ genotypes were separate from the rest. This is noteworthy 
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351 because of the many studies that show 1) that lipids are valuable components of the sensory attributes 

352 of coffee and 2) that they are excellent at discriminating genotypes and growing environment [8,9,14].  

353

354 Fig 6. Differentiating among the C. canephora genotypes using multivariate analyses.  A) Primary metabolites 
355 analyzed by PLS-DA, B) Secondary metabolites analyzed by PLS-DA, C) lipids analyzed by PLS and D) lipids analyzed 
356 by Sparse-PLS. (PCA = Principal Component Analysis, PLS-DA = Partial Least Square –discriminate analysis. 
357 Genotypes 1-3 belong to the ‘Niaouli’ group i.e. Nia_1, Nia_2 and Nia_3, Genotypes 4-5 are members of the 
358 ‘Kouillou’ group i.e. C111 and C36, and Genotype 6 is ‘Java Robusta’ i.e. T1049. The primary and secondary 
359 metabolite data were derived from Anagbogu et al., 2019b [21].
360

361

362 Comparing the lipid variability among accessions with their 

363 Single Nucleotide Polymorphism diversity

364 In spite of the importance of lipids in coffee cup quality improvement, as far as we know, it has 

365 not been fully integrated into coffee breeding strategies. The DNA of coffees extracted in this study was 

366 analyzed using Genotype-by-Sequencing and their relatedness compared using hierarchical clustering. 

367 The lipidomics data was also analyzed similarly. Overall, there was good agreement between the DNA- 

368 and metabolite-based clustering (Fig 7A). From the genetic perpective, we observed three clusters I, II 

369 and III representing ‘Niaouli’, ‘Kouillou’, and ‘Java’ respectively (Fig 7A). The lipidomic analysis of the 

370 genotypes based on the mean values (Fig 7B) revealed two main clusters, separating the ‘Niaouli’ from 

371 ‘Kouillou’/‘Java Robusta’ respectively (Fig 7B). However there were notable exceptions: SNP analysis 

372 indicated that C36 and C111 (‘Kouillou’) were highly related, while T1049 (‘Java Robusta’)was divergent, 

373 in contrast, lipidomics indicted that  T1049 and C111 formed a distinguishable subgroup (cluster IIa) 

374 while C36 was more distant. (Fig 7C). 

375 All lipid analyses (Figs 7B and C) revealed a clear disparity between the ‘Niaouli’ and ‘Kouilou/ 

376 Java Robusta’ genotypes. We suggest that there are two lipid diversity structures within the population 
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377 studied which can be used for future coffee improvement in Nigeria. From this study, FA(16:0) and 

378 FA(20:0) were higher (p<0.05) in the ‘Kouillou’ genotypes (Table 3), and these fatty acids are among the 

379 precursors of good quality coffee (Table 3). Incorporating these important traits into the genome of 

380 cultivated variety (‘Niaouli’) will be of great help towards its improvement. Also, further study on the 

381 SNP data to detect sources or causes of this great difference between ‘Kouilou’ and ‘Niaouli’ is needed.

382

383 Fig 7. Comparative analysis of the genomics and lipidomic analysis based on their hierarchical structure. A) 
384 genetic analysis based on ~100,000 SNP, B) lipidomic analysis indicating the mean value of each genotype from five 
385 biological replicates and C) lipidomic analysis including all replicates. The genotypes and replicates names were 
386 described in Table 1 as follows: Nia_11- Nia_15 were Genotype 1, Nia_21-Nia_25 were genotype 2, Nia_31-Nia35 
387 were Genotype 3 and belong to the ‘Niaouli’ group; Members of the ‘Kouilou’ group have been referred to as 
388 Genotypes 4 and 5 in this study and included C111_1-C111_5 and C36_1 to C36_5. ‘Java Robusta’ coffee has been 
389 described as Genotype 6 included T1049_1-T1049_5.
390

391 Conclusion

392

393 There is much interest in using lipid profiles to identify biomarkers for coffee cup quality 

394 improvement. In this study, we used various data mining tools to better understand variations in lipid 

395 profiles of South western Nigerian coffee genotypes, and how these lipids relate to other metabolites, 

396 and to other studies done on coffee. Our findings can be summarized as following: 1) Lipids that could 

397 discriminate among the genotypes studied were identified, even though there was less variability for 

398 lipids among genotypes compared with other types of metabolites. 2) ‘Java Robusta’ and ‘Kouillou’ 

399 especially ‘Kouillou’ genotype C36, contained more saturated fatty acyls species such as FA(26:0), 

400 FA(16:0), FA(20:0), while ‘Niaouli’ contained more unsaturated FAs such as FA(16:1), FA(20:1). It should 

401 be interesting to study the SNPs of gene such as FADs which are responsible for desaturation in coffee 

402 bean. 3) Unexpected observations were made with respect to Cholesterol ester (20:3) which was one of 
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403 the least abundant lipids in our analysis. The levels of CE(20:3) and some TG compounds, showed some 

404 of the strongest negative correlations. Further, CE(20:3) can discriminate between ‘Niaouli’ and 

405 ‘‘Kouillou’ and Java Robusta’ indicating its value as a genotypic marker. 4) Lipids as a class of compounds 

406 in this analysis did not discriminate among the genotype studied, as well as secondary metabolites but 

407 grouped genotypes into two lipid diversity structures. 5) There was a good correlation between 

408 classification of genotypes based on SNP variability and lipidomic profile.

409
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