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Abstract 

 

The integration of orthogonal data modalities greatly supports the interpretation of transcriptomic 

landscapes in complex tissues. In particular, spatially resolved gene expression profiles are key to 

understand tissue organization and function. However, spatial transcriptomics (ST) profiling techniques 

lack single-cell resolution and require a combination with single-cell RNA sequencing (scRNA-seq) 

information to deconvolute the spatially indexed datasets. Leveraging the strengths of both data types, we 

developed SPOTlight, a computational tool that enables the integration of ST with scRNA-seq data to 

infer the location of cell types and states within a complex tissue. SPOTlight is centered around a seeded 

non-negative matrix factorization (NMF) regression, initialized using cell-type marker genes, and non-

negative least squares (NNLS) to subsequently deconvolute ST capture locations (spots). Using synthetic 

spots, simulating varying reference quantities and qualities, we confirmed high prediction accuracy also 

with shallowly sequenced or small-sized scRNA-seq reference datasets. We trained the NMF regression 

model with sample-matched or external datasets, resulting in accurate and sensitive spatial predictions. 

SPOTlight deconvolution of the mouse brain correctly mapped subtle neuronal cell states of the cortical 

layers and the defined architecture of the hippocampus. In human pancreatic cancer, we successfully 

segmented patient sections into healthy and cancerous areas, and further fine-mapped normal and 

neoplastic cell states. Trained on an external pancreatic tumor immune reference, we charted the 

localization of clinical-relevant and tumor-specific immune cell states. Using SPOTlight to detect 

regional enrichment of immune cells and their co-localization with tumor and adjacent stroma provides an 

illustrative example in its flexible application spectrum and future potential in digital pathology.    
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Introduction 

 

Spatially resolved transcriptomics is key in advancing our understanding of tissue architectures. 

Unveiling the spatial disposition of cells enables researchers to determine cell-cell interactions and tissue 

reconstruction for a better knowledge of homeostasis and disease mechanisms. Array-based spatial 

transcriptomics (ST) is an unbiased and high-throughput approach to map genes within their spatial 

context. ST has been applied to chart the organizational landscape of tissues and diseases, such as prostate 

and pancreatic cancer1,2, melanoma3, amyotrophic lateral sclerosis4 or the developmental human heart5. 

Furthermore, recent studies successfully implemented ST to define the spatial topography of the human 

dorsolateral prefrontal cortex and its association with schizophrenia and autism6.  

Several technologies enable the spatial indexing of transcripts and the subsequent mapping of gene 

expression profiles, their main trade-off being a loss of single-cell resolution. Here, transcripts detected at 

capture locations (spots) are generally sampled from a mixture of cells which may be homo or 

heterogeneous. While widely used microarray-based ST techniques utilize 50-100 um spot diameters7,8 

(10-20 cells, Stahl P et al 2016, 10x Genomics Visium), bead array-based methods further minimized spot 

sizes to capture cell locations more precisely (2-10 um; Vickovic S et al 2019, Rodrigues SG et al 

2019)9,10. On the other hand, single-cell RNA sequencing (scRNA-seq) enables the profiling of thousands 

of single-cell transcriptomes without preserving the spatial context and potentially introducing recovery 

biases of cell composition. Successful integration of both data modalities could enable an in-depth study 

of tissue and organ architecture, elucidate cellular cross-talk, spatially track dynamic cell trajectories, and 

identify disease-specific interaction networks (e.g. between tumors and their microenvironment). 

Intersecting cell-type-specific genes from scRNA-seq with ST capture sites previously identified local 

enrichments, sufficient to segment tumor sections into normal and cancerous areas2. However, while such 

analysis allowed predicting the presence or absence of cell types, it lacked the resolution to quantitatively 

infer cellular compositions at each capture site. 

Here we present SPOTlight, a deconvolution algorithm that builds upon a non-negative matrix 

factorization (NMF) regression algorithm which was previously applied to ST data10. Importantly, 

SPOTlight adds prior information to the model, initializing both the basis and coefficient matrices with 

cell type marker genes, thereby greatly improving sensitivity and robustness. SPOTlight also relies on 

non-negative least squares (NNLS) to populate the coefficient matrix of capture locations as well as to 

determine a spot’s composition. The latter is carried out by defining cell type-specific topic profiles, the 

distribution of genes defining a cell type or state, and by identifying the weights needed to reconstruct a 

spot profile. A unit-variance normalization step enables both paired or unmatched ST and scRNA-seq raw 

count matrices as input. We confirmed the sensitivity and accuracy of SPOTlight predictions on synthetic 
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spots, testing scRNA-seq references of varying qualities (protocols, sequencing depth, cell numbers). 

SPOTlight showed excellent classification metrics even with low cell and molecule inputs. The 

possibility to integrate unpaired ST and scRNA-seq data enabled an automated, data-driven interpretation 

using large reference single-cell atlases, exemplified here using an adult mouse brain atlas11. The 

automated interpretation of ST from patient sections has the potential to digitize pathology and improve 

patient stratification. As a proof-of-concept, we applied SPOTlight on pancreatic adenocarcinoma 

(PDAC) data and determined the spatial organization of clinical-relevant immune cell states in the tumor 

microenvironment.  

 

 

Results and Discussion 

 

At the core of SPOTlight, we identify cell type-specific topic profiles used to deconvolute ST spots 

(Figure 1). We set out to use NMF to obtain topic profiles due to its previous success in identifying 

biologically relevant gene expression programs12, as well as its previous implementation in ST analysis10. 

Its non-negative constraint allows it to model count data, which provides more interpretable results than 

matrix factorization. We seed the model with prior information, guiding it towards biologically relevant 

results and greatly improving the consistency between runs. Gene expression counts are used as input 

after a unit variance normalization (by gene) is performed to standardize discretized gene expression 

levels10,12. Importantly, the NMF is initialized by the two main matrices: the basis matrix (W) with unique 

cell type marker genes and weights, and the coefficient matrix (H) in which each row is initialized, 

specifying the corresponding relationship of a cell to a topic (i.e. association with a cell type, Figure 1). 

Factorization is then carried out using non-smooth NMF13,14. This step returns sparser results during the 

factorization, promoting cell type-specific topic profiles, while reducing overfitting during training. After 

factorization, we obtain cell type-specific topic profiles from the coefficient matrix and generate 

consensus topic signatures across all cells. Subsequently, NNLS regression is used to map each spot’s 

transcriptome to a topic profile distribution using the unit-variance normalized ST count matrix and the 

basis matrix previously obtained. Lastly, NNLS is again applied to determine the weights for each cell 

type that best fit each spot’s topic profile by minimizing the residuals. We use a minimum weight 

contribution threshold to determine which cell types are contributing to the profile of a given spot, also 

considering the possibility of partial contributions. NNLS also returns a measure of error along with the 

predicted cell proportions, allowing the user to estimate the reliability of predicted spot compositions. 
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Benchmarking SPOTlight performance 

To evaluate the SPOTlight’s performance, we benchmarked parameters and tested different scenarios 

with synthetically generated mixtures of cells of known cell type composition. To generate synthetic 

spots, we selected cells from peripheral blood mononuclear cell (PBMC) scRNA-seq datasets and 

combined their transcriptomic profiles to different proportions (Online Methods). PBMC scRNA-seq 

data have multiple well-characterized and discrete cell populations, providing an ideal input for 

Figure 1 | SPOTlight scheme. Step-by-step illustration of SPOTlight’s algorithm. At the beginning of this process we have a count matrix, V, for 
scRNAseq data and a set of marker genes for the identified cell types. First, we use prior information to initialize the basis and coefficient 
matrices, W and H respectively. We assume the number of topics, k, to be equal to the number of cell types in the dataset. Each topic is then 
associated with a cell type; columns in W are initialized with marker genes for the associated cell type with that topic, while rows in H are 
initialized with the membership of each  cell to its associated topic. Second, we proceed with the matrix factorization from which we obtain gene 
distributions for each topic in W, and topic profiles for each cell in H. Third, we use W to map the ST data, V’, by means of non-negative least 
squares (NNLS) to obtain H’. Columns in H’ represent the topic profile for each spot. Fourth, from the H matrix obtained from the scRNAseq 
data we consolidate all the cells from the same cell type to obtain cell type-specific topic profiles. Lastly, we use NNLS to find which 
combination of cell type-specific topics resembles each spot’s topic profile.
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benchmarking purposes. Synthetic spots then served as ground-truth to evaluate SPOTlight’s performance 

to predict cell types and spot composition using the following parameters: sensitivity (correctly predicted 

cell type presence); specificity (correctly predicting absence); precision (performance when calling a cell 

type present); accuracy (percentage of correctly classified cell types); and F1 score (integrating 

recall/sensitivity and precision). To assess the similarity between the real and predicted proportions, we 

used the Jensen-Shannon Divergence (JSD), a distance metric that determines the similarity between two 

probability distributions. As JSD is a distance metric, values closer to 0 signify a higher similarity 

between both distributions. 

When testing the performance on synthetic spots, we obtained a sensitivity of 0.911, an accuracy of 0.78, 

and an F1 score and specificity of 0.77 and 0.63, respectively. Median JSD values of 0.160 [CI:0.096-

0.224] indicated a high accuracy of estimated cell type proportions. The benchmarking results are in line 

with results from subsequent applications of SPOTlight in different biological scenarios, such as brain 

tissue or PDAC patient samples; SPOTlight sensitively detected cell types and subtle cell states at their 

expected locations. A major challenge of NMF is its stochastic nature, requiring repeated iterations from 

different starting points in order to obtain valid results. To overcome this inherent variability, we 

initialized the basis and coefficient matrices by seeding them with prior information. Consequently, 

multiple iterations with seeded NMF regression obtained very similar results for synthetic cell type 

mixtures (JSD scores, Figure 2-a-d). In line with these results, topic profiles from different cell types 

displayed consistent profiles in all iterations (Supplementary Fig. 1) and single cells used to train the 

model presented comparable topic profiles (Supplementary Fig. 2). 

We reason that different input qualities (transcriptome complexity), quantities (cell numbers), and 

proportion (Extended Discussion) would critically impact the performance of SPOTlight. Therefore we 

opted to test different input scenarios, including scRNA-seq protocols, sequencing depth, cell numbers, 

and other tunable parameters to simulate variable experimental designs and to identify ideal inputs and 

limitations of the tools.  

We previously benchmarked scRNA-seq protocols for their performance in producing complex 

sequencing libraries and their suitability to generate reference cell atlases15. First, we assessed if the 

scRNA-seq technologies used to generate data affected the performance of SPOTlight. Different 

protocols produced vastly variable data qualities and we expected this to impact downstream applications, 

such as deconvolution algorithms. We used downsampled scRNA-seq datasets (20,000 reads per cell) and 

trained the SPOTlight model on synthetic mixtures for each protocol (Figure 2-a). The best performance 

was achieved with Quartz-Seq2, Smart-Seq2, and Chromium protocols that also showed excellent 

benchmarking performance. It is worth highlighting the performance of single-nucleus (sn) sequencing in 

this context (Chromium sn), which resulted in deconvolution metrics that were comparable to scRNA-seq 
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despite the sampling from a reduced transcriptome pool. In general, scRNA-seq with defined clusters and 

cell type-specific markers are ideal for optimal performance of SPOTlight. However, other commonly 

used sc/snRNA-seq protocols also return accurate predictions. 

Second, we benchmarked the impact of reduced sequencing depth to identify the performance peak for a 

cost-effective reference atlas generation. An increased sequencing depth enables the detection of more 

molecules and genes, including lowly expressed transcripts. When testing SPOTlight on step-wise 

downsampled datasets (5,000 - 50,000 reads per cell), we observed a critical drop in performance at lower 

sequencing depth (Figure 2-b). While accuracy and specificity were comparable to deeply sequenced 

datasets, the sensitivity and accuracy of estimated cell type proportions (JSD index) was reduced at lower 

depths. Nevertheless, despite the lower sensitivity, shallowly-sequenced data such as large atlas 

projects16,17 are also suitable inputs for accurate localization of cell types in space. We detected a peak in 

performance around 20,000 reads per cell; this sequencing depth was also identified to be most cost-

efficient for high-throughput scRNA-seq protocols18.  
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Third, scRNA-seq protocols scale differently with droplet-based methods processing up to millions of 

cells, while plate-based protocols (e.g. Smart-seq2) generally generate datasets for a few thousand cells. 

We assessed the impact of input cell numbers on SPOTlight’s performance, also considering 

computational time as an important factor. We found that the cell number per cell type to train the model 

was a key parameter (Figure 2-c). The optimal value to strike a balance between deconvolution 

performance and computational time was around 100 cells. Selecting fewer cells would decrease 

computational time, but the performance has not plateaued. Selecting more cells would drastically 

increase computational time with marginal  improvements on performance. As 100 cells per cell type are 

in the range of both droplet- and plate-based methods, SPOTlight is suitable for the most commonly used 

formats of scRNA-seq data.   

To train the model, different sources (gene selection) can be used as input. The selection of highly 

variable genes (HVG) has been shown to be critical for the clustering of scRNA-seq data and we reason 

that it could also be crucial for spot deconvolution. We further quantified the improvements due to the 

addition of cell type gene markers, a main difference to previous tools using NMF on ST data10. We 

found that SPOTlight’s performance was optimal when combining both HVG and specific cell types 

markers to seed the model (Figure 2-d). Marker genes critically improved all metrics compared to an 

unsupervised approach using the 3,000 HVG alone as proposed by the original NMF regression 

documentation10. The number of HVG used had a marginal impact on the performance; however, optimal 

performance was observed using gene markers combined with the 3,000 HVG. 

 

Deconvoluting ST derived mouse brain tissue 

To validate the SPOTlight performance on complex tissue architectures, we used mouse brain sections, a 

thoroughly cataloged tissue, presenting well-defined structures, and a plethora of cell types and states 

with specific molecular fingerprints. As a reference, we used scRNA-seq datasets (Smart-seq2) derived 

from multiple cortical areas as well as the hippocampus11 (~76.000 cells and 47 annotated cell 

types/states; Supplementary Table 1, Supplementary Fig. 3). To anatomically match the sampling site, 

we analyzed ST data of the adult mouse brain obtained from anterior and posterior sagittal slices19. Two 

biological replicates for each slice were analyzed to test the robustness of SPOTlight predictions. To 

validate the predicted spatial cell type distribution within brain areas, we used canonical cell type gene 

markers along with in situ hybridization (ISH) images with cell-level resolution20 (Allen Mouse Brain 

Atlas). 

SPOTlight spatial deconvolution of the mouse brain ST data accurately reconstructed the layered and 

segmented structure of brain anatomy (Figure 3-a). The predicted localization of the 47 annotated 

clusters confirmed their enrichment in distinct layers (e.g. cortical areas) or specific regions (e.g. 
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hippocampus) of the mouse brain (Supplementary Fig. 4 and Extended Discussion). The joint analysis 

of brain cell types and states resulted in a high-level segmentation, but also provided more detailed 

information about heterogeneity (composition) of specific areas. A closer inspection confirmed the 

regional enrichment of specific cell types on their known structures, confirming the high accuracy and 

sensitivity of the SPOTlight predictions. The results on independent anterior and posterior sections also 

reflected robust predictions (Supplementary Fig. 5). 

Illustrative examples include the SPOTlight deconvolution to delineate the spatial organization of 

different cortical layers, L2/3 to L6, including layer-specific neuronal subtypes (Figure 3-b). Consistent 

with the strictly layered structure of the cortex, subpopulations aligned along stretched areas descending 

towards the center (L2-L6, (Figure 3-c-j). L6 contributed multiple neuronal subtypes that were all 

accurately predicted to the respective layer substructure (Figure 3-h-j). The ability to differentiate 

between cortical neuronal subtypes underlines the tool’s sensitivity when similar cell types and states are 

present in complex tissues. 

The hippocampus architecture was first delineated using canonical markers: Cornu Ammonis 1 stratum 

pyramidale (CA1sp), Fibcd1; Cornu Ammonis 2 stratum pyramidale (CA2sp), Ccdc3; Cornu Ammonis 3 

stratum pyramidale (CA3sp), Pvrl3; and Dentate gyrus (DG), Prox121. With SPOTlight, we could clearly 

discern between CA1sp, CA2sp, CA3sp, and the DG (Supplementary Fig. 6-a,d,g,j) which was 

subsequently confirmed by ISH images (Supplementary Fig. 6-c,f,i,l). Gene expression measurements of 

cell type markers from ST alone provided noisy signals (CA1sp, CA2sp, DG) or complete absence 

(CA3sp) (Supplementary Fig. 6-b,e,h,k) related to the sparsity of ST data; highlighting the need for 

more sophisticated spatial annotation tools.  
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Charting spatial heterogeneity in human cancer 

To further validate a broader application spectrum and to test its performance in complex human tissues, 

we applied SPOTlight on ST data from PDAC patient samples2, generated with a different ST protocol 

version than the mouse brain data9 (Extended Discussion). Sample-matched scRNA-seq data (inDrop) 

was analyzed to chart the tumor composition and subsequently used to train the SPOTlight model (Figure 

4-a). When integrating scRNA-seq and ST (PDAC-A), we observed a discrete regional enrichment of 

normal pancreatic and neoplastic cell types (Figure 4-b). In detail, normal cell types of the pancreas were 

mainly excluded from the tumor fraction and further split into acinar and ductal areas. Centroacinar ductal 

populations appeared in the duct epithelium, while terminal ductal populations were found in both duct 

epithelium as well as co-localizing in the cancerous part of the tissue (Supplementary Fig. 7). In line 

with previous results2, we detected the intermixing of two distinct tumor cell clones and the enrichment of 

a ductal population with a hypoxia gene signature in the cancerous region (Figure 4-c).  

To shed light on the distribution of immune cells in the tumor sections, we integrated, clustered, and 

annotated an external single-cell PDAC dataset with a specific focus on the tumor immune 

microenvironment22. Briefly, scRNA-seq data from 24 PDAC patients and 41,986 cells were merged to 

identify a total of 10,623 immune cells (Supplementary Table 2). Clustering and curated annotation 

resulted in 22 immune subpopulations with 12 T-cell, 3 macrophage/monocyte, 2 B-cell, 4 dendritic, and 

1 MAST cell clusters (Figure 4-d). SPOTlight trained on PDAC immune cells and applied on the PDAC-

A ST slides resulted in a remarkable local enrichment of tumor-specific cell states (Figure 4-e,f, and 

Supplementary Fig. 8). In line with the regional distribution of normal and cancer cells, we identified a 

striking segmentation of immune cell states in the PDAC section (Figure 4-g and Supplementary Fig. 

9). While naive CD4 and plasma B-cells were enriched in the normal pancreas tissue, central-memory 

CD4 T-cells as well as effector/exhausted and proliferative CD8 cells were significantly increased in the 

tumor (p < 0.01, Figure 4-h,i and Supplementary Fig. 9). In a second PDAC patient section (PDAC-B), 

central-memory CD4 and effector CD8 cells again co-localized with the tumor areas, while plasma B-

cells were depleted from that area and mainly found together with endothelial and endocrine cells 

(Supplementary Fig. 10). Most importantly, the enrichment of central-memory CD4 cells could not be 

detected through their presence alone. While the PDAC-B case showed an exclusive localization to the 

tumor area, central-memory CD4 cells were highly abundant in all areas, but to higher proportions in the 

tumor in PDAC-A. This finding strongly underlines the need to sensitively deconvolute spot composition 

to enable precise pathology assessments. The regional differences and local immune cell enrichments 

further allowed us to compute cell-cell interaction networks using the cell’s co-localization in the PDAC 

sections (Supplementary Fig. 11). Such visualization underlined the concerted interaction of tumor-
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resident immune cells and could provide further insight into the peculiarities of tumor 

microenvironments.  
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Conclusion 

SPOTlight proved to be a robust, accurate, and sensitive tool to determine cell-type locations and a fine-

grained composition of ST spots. We showed that scRNA-seq quality can impact its performance, 

obtaining the best results with deeply sequenced data from complex sequencing libraries. Nevertheless, 

SPOTlight also returns accurate predictions with shallowly sequenced references; an important feature 

when using large atlas projects as a reference. We further showed that as few as 100 cells per cell-type 

were sufficient to train the model without prolonged computation time. Applying SPOTlight on vastly 

different biological scenarios, different technology versions, and using matched and external references 

confirmed its broad and flexible application spectrum. This makes it a universal tool to combine both 

pillars of the single-cell genomics field23 and to deduce cellular function and organization in situ. We are 

particularly excited about the potentially transformative impact on pathological assessments. Using an 

external immune reference to delineate the localization of immune cells in tumors could be implemented 

in automated digital pathology systems, where query ST patient samples are screened for immune cell 

composition and distribution. Importantly, both features have been related to patient prognosis and 

(immuno-) therapy response. Thus, we foresee spatial deconvolution using SPOTlight or similar tools to 

have a major impact on future cancer patient management and on precision oncology.  
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Availability of data and code 

The SPOTlight code and the analysis notebooks to reproduce the aforementioned analysis are hosted at 

https://github.com/MarcElosua/SPOTlight and 

https://github.com/MarcElosua/SPOTlight_deconvolution_analysis.  

The ST and scRNA-seq data has been previously published11,15,22 and is freely available at the Gene 

Expression Omnibus (GEO) under GSE133549, and GSE71585 and GSE111672 and n the Genome 

Sequence Archive under project PRJCA001063. 

Docker environments are available for R and Rstudio at Docker Hub marcelosua/spotlight_env_r:latest 

and marcelosua/spotlight_env_rstudio:latest respectively. 
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Extended Discussion 

 

Benchmarking SPOTlight performance 

The minimum weight contribution a cell type required to be considered as present within a SPOT was 

acceptable between 0.06-0.09 and showed optimal performance at 0.07 (F1 score = 0.798; 

Supplementary Fig. 12). Higher and lower thresholds showed a clear trade-off between specificity and 

sensitivity. In practical terms, this means that cell types are included, which contribute at least 6-9% of 

the spots’ topic profiles. This seems ideal considering that widely used microarray-based ST spots contain 

around 10 cells. Thus, lowly abundant subpopulations with only single cells contributing to a spot’s 

profile can be readily identified by SPOTlight.  

 

Deconvoluting ST derived mouse brain tissue with SPOTlight 

In mouse brain tissue slices, we identified spatial locations for different cell types from which prior 

knowledge of their spatial topography is available. When focusing on the hippocampus, CA1sp, CA2sp, 

CA3sp and DG were predicted to be located on their respective structures21 (Supplementary Fig. 6). 

Being able to differentiate similar cell types showed the robustness and sensitivity of the model and 

suggests its broad utility in other complex tissues. However, the model also predicted L2/3 and CA1sp 

neurons to be spatially located in the interior part of the brain as well as in the cerebellum. Of note, the 

reference scRNA-seq data used to train the model were sampled from cortical and hippocampal regions 

only. No specific cell populations profiles from the other regions were available. Thus, neurons with 

similar transcriptomic profiles not present in the training set could explain the signal observed within 

these regions. Therefore, it is important to note that in order to accurately map the cell type composition a 

representative single-cell sample is required.  

It is of note that three of the clusters in the scRNA-seq training data were labelled as low-quality, 

unknown, and doublets (mixture of multiple transcriptomes). When predicting their spatial location, we 

observe that doublets were not predicted in the ST slides and low-quality/unassigned cells displayed only 

low, residual and scattered presence (Supplementary Fig. 4,5). These results give strength to the 

robustness and specificity of the model with technical artifacts not showing local enrichments or specific 

structures. It is of note though that the low-quality cluster had a topic profile similar to Vip cells, 

suggesting an enrichment of low-quality cells from this cell type (Supplementary Fig. 1). 

 

Charting spatial heterogeneity in human cancer 

Testing SPOTlight on PDAC sections also allowed us to test the tool on a different ST technology 

version, with larger capture locations (100um vs 55um) and a wider center-to-center distance (200um vs 
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100um). Larger spots capture more cells (between 20 and 100)2, allowing to assess SPOTlight’s 

performance with different prior assumptions. To account for larger capture locations, we kept all optimal 

parameters, but adjusted the minimum contribution threshold to 0.01 so that cell types contributing >1% 

were detected.  

 

 

Online Methods 

 

Implementation 

Non-Negative Matrix Factorization Regression 

The following annotations will be used when describing the model: 

● N - Set of all cells from scRNAseq. 

● M - Set of all capture locations from spatial data. 

● G - Set of selected genes from scRNAseq, cell type marker genes + 3000 highly variable genes. 

● G’ - Set of all genes from spatial data. 

● Gi - G∩G’, intersection between G and G’. 

● C - Number of cell types in the scRNAseq dataset 

● K - Number of topics to use to reduce the dimensionalities, equal to C. 

● V - matrix of dimensions Gi x N containing data from scRNAseq 

● W - matrix of dimension Gi x K containing the gene distribution for each topic, basis between V 

and H. 

● H - matrix of dimensions K x N containing the topic distribution for each cell. 

● V’ - matrix of dimensions Gi x M containing spatial data. 

● H’ - matrix of dimensions K x M containing the topic distributions for each capture location. 

● Q - matrix of dimension K x C containing the topic distributions for each cell type. 

● P - matrix of dimension C x M containing the cell type weights for each capture location. 

 

At the core of our tool, we use Non-Negative Matrix Factorization (NMF) along with Non-Negative Least 

Squares (NNLS). NMF is used to factorize a matrix into two or more lower dimensionality matrices 

without negative elements. We first have an initial matrix V, which is factored into W and H. Unit 

variance normalization by gene is performed in V and V’ in order to standardize discretized gene 

expression levels, “counts-umi”10,12. Factorization is then carried out using the non-smooth NMF 

method13, implemented in the R package NMF14. This method is intended to return sparser results during 

the factorization in W and H, thus promoting cell-type-specific topic profile and reducing overfitting 
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during training. Before running factorization, we initialize each topic, column, of W with the unique 

marker genes for each cell type with weights 1 - P value. The marker genes are obtained from Seurat’s 

function FindAllMarkers. In turn, each topic of H is initialized with the corresponding belongance of each 

cell for each topic, 1 or 0. This way, we seed the model with prior information, thus guiding it towards a 

biologically relevant result. This initialization also aims at reducing variability between runs and 

improving the consistency between runs. 

V ~ W * H 

Second, non-negative least squares (NNLS) regression is used to map each capture location’s 

transcriptome in V’ to H’ using W as the basis. We obtain a topic profile distribution over each capture 

location which we can use to determine its composition. 

V’ ~ W * H’ 

Third, we obtain Q, cell-type specific topic profiles, from H. We select all cells from the same cell type 

and compute the median of each topic for a consensus cell-type-specific topic signature. We then use 

NNLS to find the weights of each cell type that best fit H’ minimizing the residuals. 

H’ ~ Q * P 

We use a minimum weight contribution to determine which cell types belong within a capture location. 

0.09% is set by default, related to the expected number of cells at the capture locations (1-10 cells). In a 

scenario with 10 cells, we would detect all and also account for partially contributing cells. 

 

By using NNLS, we are able to return a measure of error along with the predicted cell proportions. To do 

so, we calculate the total sum of squares (TSS) and the residual sum of squares (RSS) for each row. By 

dividing the RSS by the TSS we obtain the percentage of unexplained residuals for each spot. This 

measure can be used to assess the quality of a predicted composition. 

 

𝑇𝑆𝑆  𝑌  𝑌  

 

𝑅𝑆𝑆  𝑌  𝑌  

 

𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 % 𝑅𝑆𝑆/𝑇𝑆𝑆 
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Parameters 

Three important parameters can be adjusted and tuned in order to optimize the performance of this tool: 

1) number of cells per cell-type, 2) the supervised vs unsupervised approach along with marker gene sets, 

and 3) the minimum weight contribution threshold to include a cell as present. We benchmarked these 

parameters to assess their impact on the performance as follows: 

● The number of cells per cell-type used to train the model. We identify the optimal number of cells 

maximizing performance along with computing time. 

● The supervised vs unsupervised approach. For the former, we also tested marker genes together 

with different numbers of HVG. For the unsupervised approach, we used the 3,000 HVG as in the 

original NMFreg10. 

● The minimum weight contribution. This refers to the NNLS weights from C that best fit H’. This 

weight contribution must be set. Due to the nature of NNLS, there may be cell types contributing 

a low amount just to residually minimize the squares, and therefore, adding noise to the 

prediction. 

 

Synthetic spots 

To be able to test the tool’s performance, to benchmark parameters and to apply it on different data types, 

we generated synthetic mixtures of cells with defined composition. To generate these synthetic test 

mixtures, we selected between 2 and 8 cells from the scRNA-seq datasets and combined their 

transcriptomic profiles. If the resulting mixture had >25,000 UMI counts we randomly downsampled it to 

20,000 UMI counts in order to better simulate biological capture locations. Test mixtures can be 

generated using the SPOTlight function test_spot_fun. 

 

Performance evaluation 

To address how well the model performed, we assessed several parameters using synthetic and real 

datasets. From the predicted composition, we first evaluated if we were able to accurately predict when a 

cell type was correctly predicted within the mixture. Moreover, we also assessed if the predicted 

proportions were an accurate representation of the true composition. The former is a classification 

problem for which we used the following parameters; sensitivity, if a cell type correctly predicted to be 

present within the capture location; specificity, predicting its absence when its not present; precision, how 

good we are at identifying cell-types present; accuracy, percentage of correctly classified cell types; and 

F1 score, integrating sensitivity and precision. For the latter we used the Jensen-Shannon Divergence 

(JSD) distance metric used to measure the similarity between two probability distributions, P and Q. 
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Benchmarking  

For technology benchmarking, we assessed if the technology used to obtain scRNAseq data affected the 

performance of the model. We used data from peripheral blood mononuclear cells (PBMC) downsampled 

to the same sequencing depth (20,000 reads/cell). Specifications on how the data was generated and 

processed can be found elsewhere15. For each technology, we trained the model and tested synthetic 

mixtures of 2-8 cells. We assessed: Cel-Seq2, ChromiumV2, Chromium V2 single-nucleus, C1HT-

medium, C1HT-Small, ddSeq, Drop-Seq, gmcSCRB-Seq, ICELL8, inDrop, MARS-Seq, QUARTZ-Seq2, 

and SMART-Seq2. Data is publicly available through the Gene Expression Omnibus (GSE133549). To 

benchmark the effect of sequencing depth, we analyzed a Chromium V3 PBMC dataset15 (GSE133549) 

downsampled to different depths using zUMI24 (5,000, 10,000, 15,000, 20,000, 50,000 reads/cell). Shared 

cell types between the different datasets were used excluding biases introduced by varying cell type 

numbers.  

 

Mouse brain deconvolution 

To assess the tool’s performance on a biological dataset, we used mouse brain as model tissue. Despite its 

complexity with multiple cell types and states, it presents well-defined structures with location-specific 

types. We used a mouse brain reference scRNA-seq dataset comprised of cells sampled from multiple 

cortical areas and the hippocampus, provided by the Allen Institute, with ~76.000 cells and 47 annotated 

clusters sequenced using SMART-Seq211,25 (GSE71585). The spatial transcriptomics data of an adult 

mouse brain (anterior and posterior sagittal slices) was obtained from 10X Genomics19. Two replicates for 

each slice were available and used to confirm the predictions. To validate the predicted cell type spatial 

distribution within the brain structure, we used known cell-type gene markers along with reference in situ 

hybridization (ISH) images data at cellular-level resolution from the Allen Mouse Brain Atlas20. The 

marker genes used for the hippocampal cell types represented in this study were: Cornu Ammonis 1 

stratum pyramidale (CA1sp), Fibcd1; Cornu Ammonis 2 stratum pyramidale (CA2sp), Ccdc3; Cornu 

Ammonis 3 stratum pyramidale (CA3sp), Pvrl3; and Dentate gyrus (DG), Prox1, as reported in 

Cembrowski M, et al 2016. 

In situ hybridization images were obtained from the Allen Brain Atlas. Links to the images are the 

following:  
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● Fibcd1:mouse.brain-

map.org/experiment/siv?id=69672462&imageId=69647545&initImage=ish&coordSystem=pixel

&x=4464.5&y=3184.5&z=1 

● Ccdc3:mouse.brain-

map.org/experiment/siv?id=68844056&imageId=68705406&initImage=ish&coordSystem=pixel

&x=4352.5&y=2880.5&z=1 

● Pvrl3:mouse.brain-

map.org/experiment/siv?id=69816733&imageId=69747543&initImage=ish&coordSystem=pixel

&x=5744.5&y=3576.5&z=1 

● Prox1:mouse.brain-

map.org/experiment/siv?id=69289763&imageId=69177644&initImage=ish&coordSystem=pixel

&x=5416.5&y=3720.5&z=1 

 

Pancreatic ductal adenocarcinoma 

We used pancreatic ductal adenocarcinoma (PDAC) ST data publicly available through the Gene 

Expression Omnibus (GSE111672)2. Spatial data for this study was generated with the original spatial 

transcriptomics technology9, while scRNAseq data was generated using inDrops. Further specifications 

on how the data was generated and processed can be found elsewhere2. In total, 10 spatial slides from 6 

tumor samples are available, 2 of which (PDAC-A and PDAC-B) have 3 biological replicates and paired 

scRNAseq data. For the purpose of this study we used samples PDAC-A and PDAC-B and selected 

sections that harbored both normal and tumor areas (identified through the mapping of normal cell types 

and tumor clones). The ST data is accessible through GSM3036911 for PDAC-A and, GSM4100723 for 

PDAC-B, scRNAseq for PDAC-A data through GSM3036909, GSM3036910, GSM3405527, 

GSM3405528, and PDAC-B data through GSM3405531, GSM3405532, GSM3405533. Filtering and 

data processing was carried out as specified in the original publication, keeping cells with ≥1000 UMIs, 

≤20% mitochondrial transcripts, and ≤30% ribosomal transcripts2. In PDAC-B, one cluster of ductal cells 

with low UMIs and high mitochondrial content was removed. 

To generate a comprehensive immune cell type reference atlas for PDAC, we re-analyzed scRNA-seq 

data from Peng J et al 2019; Genome Sequence Archive: ID PRJCA001063). From this dataset only the 

tumoral pancreas samples were included. Cells with >20% of mitochondrial content and <100 UMIs were 

removed. We normalized, scaled, extracted the highly variable genes and performed PCA analysis on the 

remaining cells prior to clustering. Resulting clusters were annotated according to gene markers provided 

in the original manuscript. All the tumor and non-immune cells were identified and removed by marker 

gene analysis. For the detailed annotation of the immune cells, we first used canonical markers to group 
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them into the major cell types (i.e. CD79A, CD68 and CD3E for B-cells, myeloid cells, and T-cells, 

respectively). To further stratify the cells into cell states, we reclustered and annotated each of them 

comparing the cluster markers to well-characterized single-cell gene sets of the tumor 

microenvironment26–28 by computing the Jaccard similarity index using matchSCore215. We were able to 

identify all of the expected cell populations, including rare immune cell states. 

When stratifying the tissue into tumoral and non-tumoral sections, tumoral spots contained >40% cancer-

cell proportion. Cell type proportions within the spots were compared between regions and significance 

assessed using a non-parametric test (Mann-Whitney). To assess cell type enrichment between regions, 

we computed the proportion of spots containing each cell type. The significance between the proportions 

was assessed with a permutations test where the cell type specific statistic distribution was created 

randomly 10,000 times for each cell type. Moreover, we also assessed a third region, intermediate, 

between the tumoral and non-tumoral regions. Here, regions were defined as follows: tumoral, >40% 

cancer-cell proportion; intermediate, <40% cancer-cell and ductal-cell proportion; and non-tumoral, 

>40% ductal-cell type proportion. Again, cell type proportions within the spots were compared between 

regions and significance assessed with a Mann-Whitney test. Bonferroni adjusted p-values are reported 

for multiple comparisons. 

 

Code versions and availability 

This tool is developed to run with R versions ≥3.5; docker images with the appropriate environment are 

available at Docker hub: marcelosua/spotlight_env_rstudio and marcelosua/spotlight_env_r.  
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