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Abstract  

MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and 

neoplastic cells by CD8 T cells. However, accurately predicting the MAP repertoire remains 

difficult, because only a fraction of the transcriptome generates MAPs. In this study, we 

investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We 

developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), 

predicting MAP presentation solely from mRNA sequences flanking the MAP coding regions, 

while excluding the MAP-coding codons per se. CAMAP predictions were significantly more 

accurate when using codon sequences than amino acid sequences. Furthermore, predictions were 

independent of mRNA expression and MAP binding affinity to MHC-I molecules, and applied to 

several cell types and species. Combining MAP binding affinity, transcript expression level and 

CAMAP scores was particularly useful to ameliorate predictions of MAP derived from lowly 

expressed transcripts. Using an in vitro assay, we showed that varying the synonymous codons in 

the regions flanking MAP sequences (without changing the amino acid sequence) resulted in 

significant modulation of MAP presentation at the cell surface. Taken together, our results 

demonstrate the role of codon arrangement in the regulation of MAP presentation and support 

integration of both translational and post-translational events in predictive algorithms to ameliorate 

modeling of the immunopeptidome. 

 

Abbreviations: MHC-I: major histocompatibility complex class-I, MAP: MHC-I associated 

peptides, CAMAP: Codon arrangement MAP predictor, DRiP: defective ribosomal product, 

ANN: artificial neural network, MCC: MAP-coding codons, B-LCL: B-lymphoblastoid cell line, 

KL: Kullback-Leibler, BS: binding score, OVA: ovalbumin protein, WT: wildtype, EP: 

enhanced presentation, RP: reduced presentation.  
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Introduction 

In jawed vertebrates, all nucleated cells present at their surface major histocompatibility complex 

class-I (MHC-I) associated peptides (MAPs), collectively referred to as the immunopeptidome (1, 

2). MAPs play a central role in shaping the adaptive immune system, as they orchestrate the 

development, survival and activation of CD8 T cells (3). Moreover, recognition of abnormal MAPs 

is essential to the elimination of virus-infected and neoplastic cells (4). Therefore, systems-level 

understanding of MAP biogenesis and molecular composition remains a central issue in 

immunobiology (5, 6). 

The generation of the immunopeptidome can be conceptualized in two main events: (a) the 

generation of MAP candidates (i.e. peptides of appropriate length for MHC-I presentation) through 

protein degradation, and (b) a subsequent filtering step through the binding of MAP candidates to 

the available MHC-I molecules. Rules that regulate the second event have been well characterized 

using artificial neural networks (ANN) and weighted matrix approaches (7, 8). However, 

accurately predicting which peptides will ultimately reach MHC-I molecules following a multistep 

processing in the cytosol and endoplasmic reticulum remains an open question (6). Most efforts at 

modeling MAP generation have focused on post-translational events and their regulation by the 

amino acid sequence of MAPs and of directly adjacent residues (typically 10-mers at the N- and 

C-termini). While the consideration of preferential sites of proteasome cleavage has proven useful 

to enrich for MAP candidates (9), it remains insufficient for MAP prediction, due to prohibitive 

false discovery rates (10–12). A large body of evidence suggests that a substantial portion of MAPs 

are produced co-translationally (13–15), deriving from defective ribosomal products (DRiPs), that 

is, polypeptides that fail to achieve a stable conformation during translation and are consequently 

rapidly degraded. This concept was initially supported by two observations: (i) viral MAPs can be 
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detected within minutes after viral infection, much earlier than their associated proteins half-life 

(16), and (ii) MAP presentation correlates more closely with translation rate than  with overall 

protein abundance (17, 18). In addition, while all proteins contain peptides that are predicted to 

bind MHC-I molecules, mass spectrometry analyses have revealed that the immunopeptidome is 

not a random excerpt of the transcriptome or the proteome (1, 19). Indeed, proteogenomic analyses 

of 25,270 MAPs isolated from B lymphocytes of 18 individuals showed that 41% of expressed 

protein-coding genes generated no MAPs (19). These authors also provided compelling evidence 

that the presentation of MAPs cannot be explained solely by their affinity to MHC-I alleles and 

their transcript expression levels, while ruling out low mass spectrometry sensitivity as an 

explanation for the non-presentation of the strong binders. Because (i) MAPs appear to 

preferentially derive from DRiPs and (ii) codon usage influences both precision and efficiency of 

protein synthesis (20, 21), we hypothesized that codon usage in the vicinity of MAP-coding codons 

(MCCs) might significantly contribute to the regulation of MAP biogenesis. We developed an 

artificial neural network called Codon Arrangement MAP Predictor (CAMAP), trained to identify 

MCC-flanking regions. We then used CAMAP to uncover key codon features that characterize 

mRNA sequences encoding for MAPs (i.e. source) when compared to sequences that do not (i.e. 

non-source).  

 

Experimental Procedures 

Experimental design and statistical rationale 

The fact that only a specific part of the genome generates MAPs suggests that the generation of 

the immunopeptidome can be conceptualized in two main events: (a) the biogenesis (or pre-
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selection) of MIPs candidates (i.e. peptides of appropriate length for MHC-I presentation through 

protein degradation), and (b) a subsequent filtering step through the binding of MIP candidates to 

the available MHC-I molecules. Rules that regulate the second event, i.e. the binding of MIPs to 

MHC-I molecules, have been well characterized by artificial neural networks (ANN) and weighted 

matrix approach (7, 8). However, it is currently impossible to predict the first event; that is, which 

peptides will become MAP candidates and ultimately reach MHC-I molecules following a 

multistep processing in the cytosol and endoplasmic reticulum. The main objective underlying our 

study was to uncover key features that characterized transcripts encoding for MAPs (i.e. source 

transcripts) or not (i.e. non-source transcripts). Since MAPs appear to preferentially derive from 

DRiPs and codon usage influences both accuracy and efficiency of protein synthesis, we 

hypothesized that codon usage might contribute to the regulation of MAP biogenesis.  

Dataset generation 

We elected to analyze a previously published dataset consisting of MAPs presented on B 

lymphocytes by a total of 33 MHC-I alleles from 18 subjects (19, 22). Since this dataset was 

assembled using older versions of MHC-I binding prediction algorithms (i.e. using a combination 

of NetMHC3.4 for common alleles and NetMHCcons1.1 for rare alleles), we verified that the 

majority of MAPs in this dataset would also be predicted as binders using more recent algorithms 

(i.e. a rank ≤ 2.0% using NetMHC4.0 or NetMHCpan4.0). We found an overlap of >92% between 

these methods (see Supplementary Fig. 1), thereby validating this dataset for further analysis. In 

addition, we reasoned that a transcript should be considered as a genuine positive or negative 

regarding MAP biogenesis only if it was expressed in the cells. We therefore excluded from the 

dataset all transcripts with very low expression (<1st percentile in terms of FPKM). 
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To facilitate data analysis and interpretation, we only included transcripts coding for MAPs with 

a length of 9 amino acids, for a total of 19,656 9-mer MAPs (which represents 78% of MAPs 

described in Pearson et al., 2016). We then used pyGeno (23) to extract the mRNA sequences of 

transcripts coding for these 9-mer MAPs, which constituted our source-transcripts (Fig. 1A). We 

next created a negative (non-source) dataset from transcripts that generated no MAPs. Importantly, 

transcripts that encoded for MAPs of any length (i.e. 8 to 11-mer) were excluded from the negative 

dataset. We then randomly selected 98,290 non-MAP 9-mers from this negative dataset, and 

extracted their coding sequences using pyGeno. Of note, both positive and negative datasets were 

derived from the canonical reading frame of non-redundant transcripts. 

We analyzed only the MAP context only and excluded the MCCs per se from our positive (hits) 

and negative (decoys) sequences (Fig. 1A). We limited our analyses of flanking sequences to 162 

nucleotides (54 codons) on each side of MCCs, because longer lengths would entail the exclusion 

of >25% of transcripts (Supplementary Fig. 2). 

Creation of the shuffled synonymous codon dataset 

To create the shuffled synonymous codon dataset, each sequence was re-encoded by replacing 

each codon with itself or with a random synonym according to the human transcriptome usage 

frequencies extracted using pyGeno. These frequencies were calculated in silico on transcript 

coding sequences using the annotations provided by Ensembl for the human reference genome 

GRCh37.75. Thus, all codon-specific features differing between the positive and negative datasets 

was removed from the shuffled datasets. Because codons were replaced by their synonymous 

codons, the shuffled sequences directly reflected amino acid usage in the positive and negative 

datasets.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.078824doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.078824
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running title: Co-translational regulation of MHC-I peptide presentation 

7 

 

CAMAP architecture, sequence encoding and training 

The first (input) layer received either MCC-flanking regions from the positive dataset or sequences 

of the same length contained in the negative dataset (Fig. 1A). The second layer (Supplementary 

Fig. 3A) was a codon embedding layer similar to that introduced for a neural language model (24). 

Embedding is a technique used in natural language processing to encode discrete words, and has 

been shown to greatly improve performances (25). With this technique, the user defines a fixed 

number of dimensions in which words should be encoded. When the training starts, each word 

receives a random vector-valued position (its embedding coordinates) in that space. The network 

then iteratively adjusts the words’ embedding vectors during the training phase and arranges them 

in a way that optimizes the classification task. Notably, embeddings have been shown to represent 

semantic spaces in which words of similar meanings are arranged close to each other (25). In the 

present work, we treated codons as words: each codon received a set of random 2D coordinates 

that were subsequently optimized during training. The third (output) layer delivered the probability 

that the input sequence was an MCC-flanking region (rather than a sequence from the negative 

dataset).   

CAMAPs were trained on sequences resulting from the concatenation of pre- and post-MCC 

regions. Before presenting sequences to our CAMAPs, we associated each codon to a unique 

number ranging from 1 to 64 (we reserved 0 to indicate a null value) and used this encoding to 

transform every sequence into a vector of integers representing codons. Neural networks were built 

using the Python package Mariana (26) [https://www.github.com/tariqdaouda/Mariana]. The 

Embedding layer of Mariana was used to associate each label superior to 0 to a set of 2D trainable 

parameters; the 0 label represents a null (masking) embedding fixed at coordinates (0,0). As an 

output layer, we used a Softmax layer with two outputs (positive / negative). Because negative 
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sequences are more numerous than positive ones, we used an oversampling strategy during 

training. At each epoch, CAMAPs were randomly presented with the same number of positive and 

negative sequences. All CAMAPs in this work share the same architecture (Supplementary Fig. 

3A), number of parameters and hyper-parameter values: learning rate: 0.001; mini-batch size: 64; 

embedding dimensions: 2; linear output without offset on the embedding layer; Softmax non-

linearity without offset on the output layer.  

For each condition (e.g. context size), the positive and negative datasets were randomly divided 

into three non-redundant subsets: (i) the training subsets containing 60% of the positive and 

negative transcripts, (ii) the validation and (iii) the test subsets each containing 20% of the positive 

and negative transcripts. Transcripts were assigned through a sequence redundancy removal 

algorithm, thereby ensuring that no transcript was assigned to multiple subsets. We used an early 

stopping strategy on validation sets to prevent over-fitting and reported average performances 

computed on test sets. We trained 12 CAMAPs for each combination of conditions, each one using 

a different random split of train/validation/test sets. To mask sequences either before or after the 

MCC, we masked either half with null value.  

Kullback-Leibler divergence 

The Kullback-Leibler (KL) divergence computes how well a given distribution is approximated 

by another distribution. Its value can be either positive or 0, a null value indicating that the two 

distributions are identical (see Experimental Procedures for more details). Accordingly, a higher 

KL divergence for codon distributions vs. amino acid distributions would indicate that codon 

variations are not entirely accounted for by amino acid variations. KL divergence is not a metric, 

as it is neither symmetric nor does it satisfy the triangle inequality. It is nevertheless an accurate 

and most common way of comparing two probability distributions. 
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We defined the probability of having codon c at position i as a function of the number of 

occurrences of c at position i, divided by the total number of occurrences of that same codon: 

𝑸(𝒄,𝒚,𝒔)(𝒊) =
𝑵𝒄,𝒚,𝒔(𝒊)

∑ 𝑵𝒄,𝒚,𝒔 (𝒋)𝒋
   

Here Q is a probability, N is a number of occurrences, c is a codon, y is a class (positive or 

negative), s indicates if codons have been randomized (true or false), i is a position in sequence. 

For the remainder of the text we will use the following abbreviations: 

𝑷𝒄(𝒊) =  𝑸𝒄,𝒚=𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆,𝒔=𝒇𝒂𝒍𝒔𝒆(𝒊) 

𝑫𝒄(𝒊) =  𝑸𝒄,𝒚=𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆,𝒔=𝒇𝒂𝒍𝒔𝒆(𝒊) 

𝑷𝑺𝒄(𝒊) =  𝑸𝒄,𝒚=𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆,𝒔=𝒕𝒓𝒖𝒆(𝒊) 

𝑫𝑺𝒄(𝒊) =  𝑸𝒄,𝒚=𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆,𝒔=𝒕𝒓𝒖𝒆(𝒊) 

We then used the KL divergence to compute how well 𝑃𝑐 distributions approximate 𝐷𝑐 

distributions and 𝑃𝑆𝑐 distributions approximate 𝐷𝑆𝑐 distributions. 

The KL divergence was defined as: 

𝑫𝑲𝑳(𝑷||𝑸) =  ∑ 𝑷(𝒊)𝐥𝐨𝐠 (
𝑷(𝒊)

𝑸(𝒊)
)

𝒊

 

We performed this calculation for both the original and the shuffled dataset, which we then 

compared together. If codons and amino acid distributions were equivalent, KL divergence 

between hits and decoys would be the same for both original and shuffled sequences, and codons 

would cluster along the diagonal.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.078824doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.078824
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running title: Co-translational regulation of MHC-I peptide presentation 

10 

 

Interrogation of CAMAP score to extract codon preferences 

Artificial neutral networks (ANNs) still carry the reputation of being undecipherable black boxes. 

It is true that the interpretation of the inner structures of deep ANNs is still in its infancy. On the 

other hand, simpler architectures, such as the one used herein, can be more easily probed to yield 

useful information about the way predictions are being made. Indeed, a trained ANN remains a 

fixed set of mathematical transformations that can be studied, analyzed and, in theory, interpreted. 

We wondered whether some regions were more influential on MAP presentation than others. To 

address this question, we retrieved the model preferences for each codon at each position, i.e. the 

prediction score of our best model (trained with original codon sequences for a context size of 162 

nucleotides) when a single codon at a single position is provided as input (all other positions being 

set at [0,0] coordinates in the embedding space). The model’s preferences are therefore a measure 

of each individual codon’s propensity to increase or decrease the model’s output probability as a 

function of its position relative to the MCCs. A value of 0.5 denotes a neutral preference, while 

negative and positive preferences correspond to values below and above 0.5, respectively. 

Preferences were obtained by feeding the ANN embedding vectors where all codons values were 

set to null (coordinates (0,0)), except for a single position that received a non-null codon label. 

In vitro assay – inducible translation reporter (iTR)-OVA construct design 

An inducible translation reporter was generated by flanking the truncated chicken ovalbumin 

(OVA) cDNA (amino acids 144-386) with EGFP-P2A (in 5’) and P2A-Ametrine (in 3’) cDNA 

sequences. MCC-flanking contexts for the EP and RP construct were synthesized as gBlocks 

(purchased from Integrated DNA Technologies). The fragments were amplified by PCR and joined 

by Gibson assembly under a doxycycline-inducible Tet-ON promoter in a pCW backbone. 

Synthetic variants of the OVA coding sequence were generated in silico by varying synonymous 
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codon usage in the MAP context regions (i.e. 162 nucleotides pre- and post-MCC). Importantly, 

the amino acid sequence was preserved between the different variants; only nucleotide sequences 

in the MAP context (162 nucleotides on either side) differed. The sequences with the highest (EP) 

and the lowest (RP) prediction scores were selected for further in vitro validation and swapped 

into the iTR-OVA plasmid by Gibson assembly (27). OVA-EP and OVA-RP sequences can be 

found in Supplementary Table 1. 

Important features of our inducible translation reporter construct and T cell activation assay were: 

(i) No changes in amino acid sequence between the three variants: only co-translational events can 

differ between the three variants, post-translational events being equivalent for the three 

constructs; (ii) Only one start codon, at the beginning of the eGFP coding sequence: this is 

important for the translation reporter aspect of our construct (i.e. Ametrine/eGFP ratio), to ensure 

that translation can only start at the 5’-end of the whole construct, and not at the beginning of the 

OVA or Ametrine coding sequences; (iii) Separation of the three proteins using P2A peptide: 

allows the inducible synthesis of three separate proteins in a highly correlated manner; also, the 

degradation of one protein will be independent from the others. As we hypothesized that codon 

usage might lead to DRiP formation, we did not want the degradation of OVA-derived polypeptide 

to induce degradation of attached eGFP or Ametrine, which would affect our translation reporter 

assay (Ametrine/eGFP ratio); (iv) Because transcript expression level impacts MAP presentation, 

we normalized T-cell activation results by both the number of transduced cells present in the 

samples (% of eGFP+ cells) and the Ametrine mean fluorescence intensity of eGFP+ cells 

(representing whole construct expression level). Because of these four features, any difference 

between the three constructs could be ascribed solely to synonymous codon variants in the 

SIINFEKL-flanking OVA codons. 
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Stable cell line generation 

Wildtype and transduced Raw-Kb cells (28) were cultured in DMEM supplemented with 10% Fetal 

Bovine Serum (FBS), penicillin (100 units/ml), and streptomycin (100mg/ml). B3Z cells (29) were 

maintained in RPMI medium supplemented with 5% FBS, penicillin (100 units/ml), and 

streptomycin (100mg/ml). 

Lentiviral particles were produced from HEK293T cells by co-transfection of iTR-OVA WT, EP 

or RP along with pMD2-VSVG, pMDLg/pRRE and pRSV-REV plasmids. Viral supernatants 

were used for Raw-Kb transduction. Raw-Kb OVA-WT, Raw-Kb OVA-EP were sorted on 

Ametrine and GFP double positive population after 24h of doxycycline treatment (1 mg/ml). 

T-cell activation assay 

Raw-Kb OVA-EP, OVA-RP and OVA-WT cells were plated at a density of 250,000 cells/well in 

24 well-plates 24h prior to doxycycline treatment (1 mg/ml). After the corresponding treatment 

duration, cells were harvested and fixed using PFA 1% for 10 minutes at room temperature and 

washed using DMEM 10% FBS. Raw-Kb were then co-cultured (37°C, 5% CO2) in triplicates with 

the CD8 T cell hybridoma cell line B3Z cells at a 3:2 ratio for 16h (7.5 x 105 B3Z and 5 x 105 

Raw-Kb) in 96 well-plates. Cells were lysed for 20 minutes at room temperature using 50 µl/well 

of lysis solution (25mM Tris-Base, 0.2 mM CDTA, 10% glycerol, 0.5% Triton X-100, 0.3mM 

DTT; pH 7.8). 170 µl/well CPRG buffer was added (0.15mM chlorophenol red-β-d-

galactopyranoside (Roche), 50mM Na2HPO4•7H20, 35mM NaH2PO4•H20, 9mM KCl, 0.9mM 

MgSO4•7H2O). β-galactosidase activity was measured at 575 nm using SpectraMax® 190 

Microplate Reader (Molecular Devices). In parallel, cells were analyzed by flow cytometry using 

a BD FACS CantoII for eGFP and Ametrine fluorescence.  
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Results 

Dataset description 

We analyzed a previously published dataset consisting of MAPs presented on B lymphoblastoid 

cell line (B-LCL) by a total of 33 MHC-I alleles from 18 subjects (19, 22). Because we were 

searching for features that influence MAP generation and not the binding of MAP to MHC, we 

elected to analyze the MAP context only and excluded the MCCs per se from our positive (hits) 

and negative (decoys) sequences (Fig. 1A). To facilitate data analysis and interpretation, we 

restricted our hit dataset to MAPs with a length of 9 amino acids, for a total of 19,656 9-mer MAPs 

(which represents 78% of MAPs described in Pearson et al., 2016). We next created a decoy dataset 

from transcripts that generated no MAPs, by randomly selecting 98,290 9-mers from these 

transcripts. Finally, we used pyGeno (23) to extract MCC-flanking regions corresponding to both 

hit and decoy MAPs, which constituted our final dataset for CAMAP. Of note, each sequence in 

the final dataset is unique and derives from the canonical reading frame. In addition, in order to 

investigate the relative importance of codon vs. amino acid usage in MAP biogenesis, we 

generated a dataset of shuffled sequences in which original codon sequences were randomly 

replaced by synonymous codons according to their usage frequency in the dataset (Fig. 1B). The 

random shuffling causes any codon-specific feature to be shared among synonyms, thereby 

causing the shuffled codon distribution to reflect the amino acid usage (see Experimental 

Procedures for more details). 
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Figure 1. Construction of the dataset. (a) Transcripts expressed in B cells from 18 subjects were 

considered as source or non-source transcripts depending on their match with at least one MAP. 

Because we were searching for features that might influence MAP generation and not the binding 

of MAP to MHC, we focused our attention on mRNA sequences more closely adjacent to the nine 

MAP-coding codons (MCCs), i.e. up to 162 nucleotides on each side of MCCs. (b) Creation of the 

shuffled dataset. Codons were randomly replaced by a synonymous codon according to their 

respective frequencies (i.e. codon usage) in the dataset. The random shuffling causes any codon-

specific feature to be shared among synonyms, thereby causing the shuffled codon distribution to 

reflect the amino acid usage. Importantly, both the original sequence and its shuffled version 

translates into the same amino acids. 

 

CAMAP links codon usage to MAP presentation 

To assess the importance of codon usage in MAP biogenesis, we reasoned that if codons bear 

important information that is operative at the translational rather than the post-translational level, 

then: (i) CAMAP trained to identify MCC-flanking regions should consistently perform better 

when trained on mRNA sequences than on amino acid sequences, and (ii) synonymous codons 

should have different effects on the prediction. To test these hypotheses, CAMAP received as 

inputs MCC-flanking regions from hit and decoy sequences from either the original or shuffled 

datasets. It was then trained to predict the probability that individual input sequences were MCC-
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flanking regions (i.e. hit) rather than sequences from the negative dataset (Supplementary Figure 

S3A).  

We compared CAMAP performance when predicting MAP presentation from original sequences, 

representing codon arrangement, versus shuffled sequences representing amino acid arrangement. 

To evaluate the robustness of our approach, 12 different CAMAPs were trained in parallel, with 

different train-validation-test splits of the dataset. Our results show that predictions were 

consistently better when CAMAP received the original codons rather than the shuffled 

synonymous codons sequences (Fig. 2A and Supplementary Figure S3B). CAMAPs receiving 

information from both pre-MCC and post-MCC sequences (i.e. whole MCC context) also 

performed better than when receiving only pre- or post-MCC context (Fig. 2A and Supplementary 

Figure S3C-D), suggesting that pre- and post-MCC context were not redundant. Indeed, we found 

a weak correlation between the prediction scores of CAMAPs trained only with pre-MCC or post-

MCC sequences (Supplementary Fig. S4). In addition, CAMAPs receiving longer sequences 

performed better than those receiving shorter sequences (Fig. 2B). Because sequences located far 

upstream and downstream of the MCC (i.e. in ranges exceeding the direct influence of proteases) 

are informative regarding MAP presentation, it suggests the existence of factors unrelated to 

protein degradation modulating MAP presentation.  

We next tested our CAMAP trained on 9-mer MAPs derived from B-LCL on 5 datasets containing 

MAPs identified by proteogenomic analyses of different human and mouse cell types. These 

included 2 human datasets derived from primary cells (our B-LCL dataset, this time including all 

peptide lengths (19, 22), and a dataset of peripheral blood mononucleated cells or PBMCs (30)), 

one human (B721.221 (11)) and 2 murine cell lines (colon carcinoma CT26 and lymphoma EL4 

(30, 31)). For all datasets, we created hit and decoy datasets of original and shuffled sequences 
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Figure 2. CAMAP predictions on MAP-flanking sequences. (A) Area under the curve (AUC) 

score for CAMAPs trained with whole MCC-context, versus CAMAPs trained with only pre- or 

post-MCC context. All CAMAPs presented here were trained with a context size of 162 

nucleotides. (B) AUC for CAMAPs trained with context sizes of 9, 27, 81 and 162 nucleotides. 

(C) CAMAP prediction score for different datasets derived from humans (i.e. B-LCL, PBMCs and 

B721.221) or mouse (i.e. CT26 and EL4 cell lines). Of note, all CAMAPs were trained on B-LCL-

derived sequences encoding for 9-mer MAPs only with a context size of 162 nucleotides. Results 

are reported for 8 to 11-mer MAPs derived from the 5 datasets. In all panels, 12 CAMAPs trained 

with original or shuffled synonymous sequences were compared (significance assessed using 

Student T test).  

 

using the same approach described above, but included MAPs of 8-11 amino acids. Notably, 

CAMAPs trained on human sequences encoding 9-mers MAPs from one human cell type (i.e. B-

LCL) could also predict presentation of 8-11 mers MAPs in other human cell types (Fig. 2C), as 
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well as from mouse cell lines, albeit with lower performances (Fig. 2C). Here again, CAMAPs 

trained on original sequences consistently outperformed CAMAPs trained on shuffled sequences 

(Fig. 2C). These results show that the rules derived by CAMAPs to predict MAP presentation are 

valid across different cell types, and can be applied to different species. These results also support 

a role for codons in the modulation of MAP presentation, possibly through modulation of the 

probability of DRiP generation. Of note, CAMAP prediction scores did not correlate with 

MAP/MHC-binding affinity or transcript expression levels, suggesting that the rules derived by 

CAMAP are independent of these other known factors regulating MAP presentation (Fig. 3). 

 

Figure 3. Correlation between CAMAP prediction score and (A) transcript expression levels 

and (B) MAP binding affinity. CAMAP used here was trained on original codon sequences using 

a context size of 162 nucleotides (both pre- and post-MCC context). Densities were calculated on 

all points and drawn using ggplot2. Only a random subset of the points is represented in the figures 

to limit their size.   

 

The lower performances of CAMAP trained with shuffled sequences (representing amino acid 

distribution) suggests that amino acids in MAP-flanking sequences are less informative than 
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codons regarding MAP presentation. We formally quantified this difference in information using 

the Kullback-Leibler (KL) divergence (see Experimental Procedures for more details). Most 

codons (47/61, 77%) showed greater KL divergence in the original dataset than the shuffled 

dataset, indicating that codon distributions contained more information with regards to MAP 

presentation than amino acid distributions (Supplementary Figure S5). These results suggest that 

codons in MAP-flanking regions play a role that is non-redundant with amino acids in MAP 

biogenesis.  

Interestingly, while codons closest to the MCC were the most influential on CAMAP scores, some 

synonymous codons showed opposite effects, demonstrating that codon usage does not 

recapitulate amino acid usage (Fig. 4A-B and Supplementary Figures S6). The use of embeddings 

to encode codons has the advantage of arranging them into a semantic space, wherein codons with 

similar influences are positioned close to each other. We calculated the resulting semantic space 

as well as the preferences for every codon for the position directly preceding the MCCs (Fig. 4C). 

Most synonymous codons did not form clusters, with a notable exception being proline codons. 

This finding indicated that the effect of a given codon on the prediction may be closer to that of a 

non-synonymous codon than to that of a synonym.  

 

CAMAP increases MAP prediction accuracy 

We next compared MAP prediction capacities of CAMAPs scores to that of MAP binding score 

(BS) and mRNA transcript expression levels. Because MAP binding to the MHC molecule is 

essential for its presentation at the cell surface, we elected to only compare hits and decoys 

encoding potential binders, i.e. with a minimal BS <1,250 nM (approximately corresponding to 

<2% rank) for ≥1 allele in the B-LCL dataset. Using a linear regression model, we compared the  
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Figure 4. CAMAP interpretation of codon impact on MAP biogenesis. Preferences for a 

network trained on a context of 162 nucleotides (54 codons) for (A) serine, proline and tyrosine 

codons, and (B) leucine codons. (C) Learned codon embeddings and preferences at the position 

directly preceding the MCCs. Proline codons were the only synonyms that formed a conspicuous 

cluster. As indicated by the size of the dots, codons on the right-hand side increased the probability 

of the sequence being classified as source, whereas codons on the left-hand side of the graph had 

the opposite effect. See Experimental Procedures for more details. 

 

predictive capacity of each parameter using Matthews correlation coefficient, which measures the 

quality of binary classifications. In line with previous studies (11, 19), the mRNA expression level 

had the highest predictive capacity, followed by BS and CAMAP score (Fig. 5A). Combining 

CAMAP score with either BS alone, or expression level alone, or both resulted in significant 

increases in predictive performances (Fig. 5B). Interestingly, CAMAP score was most helpful to 

predict MAP presentation for transcripts with low expression levels (Fig. 5B), contributing almost 
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as much as the BS to the prediction (Fig. 5C). These results show that combining the CAMAP 

score with the MAP’s BS and corresponding transcript expression level improves prediction of 

MAP, especially for transcripts with low expression.  

 

Figure 5. ANN prediction score contributes to the prediction of MIPs especially in transcripts 

with low expression. (A) Matthews correlation coefficient for MAP prediction using a single 

variable. (B) Matthews correlation coefficient for MAP prediction using multivariable regression 

models. The B-LCL dataset (all MAP lengths) was filtered for MAP with a minimal binding 

affinity ≤1,250 nM and further separated into tiers based on transcripts expression level (low, 

intermediate and high expression). (C) Contribution of each variable to MAP prediction in a three-

variable model for each tier.  

 

Codon usage modulates MAP presentation 

To formally demonstrate the influence of codon arrangement on MAP presentation, we generated 

three variants of the chicken ovalbumin (OVA) protein, containing the model MAP SIINFEKL 

(32). All variants encoded the same amino acid sequence but used different synonymous codons. 

Notably, the sole difference between the three constructs were the 162 nucleotides flanking each 

side of the SIINFEKL-coding codons (i.e. the RNA sequences coding for OVA202-256 and OVA265-

319, Supplementary Table S1). One construct encoded the wild type OVA (OVA-WT). For the 

other two constructs, we used CAMAP (trained on original human B-LCL sequences; Fig. 2) to 

generate two OVA variants in silico, both encoding for the same OVA protein but using different 
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synonymous codons: one predicted to enhance SIINFEKL presentation (OVA-EP), the other 

predicted to reduce it (OVA-RP). Accordingly, the respective CAMAP scores for OVA-RP, OVA-

WT and OVA-EP were: 0.03, 0.65, and 0.96 (Fig. 6A). 

Because codon usage affects translation efficiency, theoretically leading to DRiP formation 

through premature translation arrest (20, 21), we expected the variable regions of our construct to 

affect both translation rates and SIINFEKL presentation in our variants. Therefore, each construct 

also coded for two other proteins, eGFP and Ametrine, placed upstream and downstream of the 

OVA coding sequence, respectively (Fig. 6A). While the Ametrine fluorescence intensity reflected 

the translation rate of the whole construct, the ratio of Ametrine/eGFP fluorescence intensity was 

informative regarding the translation efficiency of the whole construct. Indeed, efficient translation 

of the full-length construct should produce equivalent quantities of Ametrine and eGFP proteins, 

while inefficient/interrupted translation of the construct (i.e. leading to DRiP formation) should 

decrease the Ametrine/eGFP ratio (Fig. 6B). The three protein coding sequences were separated 

with P2A self-cleaving peptides (33), therefore allowing the synthesis of three separate proteins, 

controlled by the doxycycline-inducible Tet-On promoter. Importantly, the three proteins were 

tightly co-expressed because of the presence of only one start codon at the 5’ end of the GFP 

protein, as illustrated by the high correlation between eGFP and Ametrine fluorescence (R>0.9). 

As we assumed that CAMAP scores reflected the probability of DRiP generation leading to 

increased MAP presentation, we expected the OVA-RP construct to show both reduced SIINFEKL 

presentation and enhanced translation efficiency compared to the OVA-EP and OVA-WT 

constructs. However, as both the OVA-EP and OVA-WT have CAMAP scores above the neutral 

threshold of 0.5, we expected these constructs to behave more similarly.  
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Figure 6. Codon usage influences 

antigen presentation and translation 

efficiency. (A) Design of the inducible 

Translation Reporter (iTR-OVA) 

constructs and prediction scores for 

OVA-WT, OVA-EP and OVA-RP 

sequences. (B) Schematic representation 

of possible translation events. When 

mRNA codon usage leads to efficient 

(uninterrupted) translation, similar 

amounts of eGFP and Ametrine proteins 

would be synthesized. When codon 

usage in the MCC-flanking regions 

enhances the frequency of translation 

interruption, a lower Ametrine/eGFP 

ratio would be observed. (C) Kinetics of 

SIINFEKL MAP presentation following 

induction of iTR-OVA constructs 

expression by doxycycline, measured in 

a T-cell activation assay. To remove the 

influence of differential expression 

levels on antigenic presentation and of 

varying proportion of transduced cells 

between samples, T-cell activation 

levels were normalized to both mean 

Ametrine fluorescence intensity and 

proportion of eGFP+ cells (i.e. cells 

expressing the construct). (D) 

Translation efficiency as measured by 

Ametrine/eGFP ratio following iTR-

OVA construct induction. For C and D, 

results are normalized over the WT 

sample from the same experiment (n=4). 

Statistical differences at each time point 

were determined using bilateral paired 

Student T tests. Comparison against WT 

are indicated with *, while comparison 

of EP vs RP is indicated with †. 
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We then used a SIINFEKL-H2-Kb specific T-cell activation assay (34) to measure SIINFEKL 

presentation at the cell surface following doxycycline induction. Results for the T-cell activation 

assay were normalized by both the Ametrine mean fluorescence intensity and the percentage of 

transduced (eGFP+) cells in each specific sample, so that any difference in T-cell activation 

observed between our constructs could only be ascribed to synonymous codon variants in the 

SIINFEKL-flanking OVA codons. Two main findings emerged from our analyses. First, in 

accordance with CAMAP predictions, variation in codon usage led to a 2.3-fold difference in 

SIINFEKL presentation between the OVA-EP and OVA-RP variants, with OVA-WT in between 

(Fig. 6C). Second, translation efficiency (Ametrine/eGFP ratio) was higher with OVA-RP than 

with OVA-EP or OVA-WT (Fig. 6D). Hence, synonymous codon variations led to slightly 

divergent outcomes in OVA-EP and OVA-RP: they modulated the levels of SIINFEKL 

presentation in both OVA-EP and OVA-RP, but enhanced translation efficiency only in OVA-RP. 

These data show that codon arrangement modulates MAP presentation strength, and strongly 

support a role for translation efficiency and DRiP formation in the modulation of MAP 

presentation. 

 

Discussion 

Our analyses of large datasets using diverse bioinformatics approaches provides compelling 

evidence that codon arrangement in mRNA sequences regulates MAP biogenesis. The functional 

link between codon arrangement and MAP biogenesis was further strengthened by our in vitro 

analyses of SIINFEKL biogenesis. Indeed, we were able to modulate SIINFEKL presentation 

solely by substituting synonymous codons in mRNA regions flanking SIINFEKL codons, without 

changing the protein sequence This experiment also highlighted co-translational degradation 
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modulated by codon arrangement as a mechanism regulating differential MAP presentation. 

Interestingly, rules derived by CAMAP also applied to various human and mouse cell types, 

suggesting that codon usage is instrumental in MAP biogenesis across different species and cell 

types.  

Further analyses of large datasets will be needed to assess the full extent of codon arrangement’s 

impact on both classic MAPs (i.e. derived from canonical reading frames of coding sequences) 

and cryptic MAPs (i.e. derived from non-canonical reading frames and non-coding sequences) (35, 

36). A more practical implication of our work is the integration of both translational (codon 

arrangements) and post-translational events (e.g., MHC-binding affinity) in predictive algorithms 

to enhance the predictive modeling of the immunopeptidome for cancer immunotherapy and 

peptide-based vaccines, where discovery of suitable target antigens remains a formidable 

challenge (37, 38). 
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Data Availability 

The datasets analyzed for this study can be found: 

• Human B-LCL: RNA-Seq data can be accessed on the NCBI Bioproject database 

(http://www.ncbi.nlm.nih.gov/bioproject/; accession PRJNA286122).  

• Human PBMC: RNA-sequencing data for human PBMC were extracted from healthy 

donors in Zucca et al (2019) (39) and can be accessed under the GEO accession number 

GSE106443 and GSE115259, while MAPs were extracted from Murphy et al (2017) (30).  

• Human B721.221: The B721.221 dataset was retrieved from Abelin et al (2017) (11); RNA 

sequencing data can be accessed under the GEO accession number GSE93315.  

• Murine CT26: RNA-Seq data can be accessed under the GEO accession number 

GSE111092. Mass spectrometry data can be found on the ProteomeXchange Consortium 

via the PRIDE partner repository (human B-LCL: PXD004023 and murine CT26: 

PXD009065 and 10.6019/PXD009065).  

• Murine EL4: MAP dataset was extracted from Murphy et al (2017) (30) and EL4 RNA 

sequencing dataset was extracted from Sidoli et al (2019) (40) and can be accessed under 

the GEO accession number GSE125384. 

All figures were generated using R’s package “ggplot2”. Source code for pyGeno 

(https://github.com/tariqdaouda/pyGeno, doi: 10.12688/f1000research.8251.2) and Mariana 

(https://github.com/tariqdaouda/Mariana, doi: [to be provided after acceptance]) are freely 

available online. 
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Supplementary Figures  

 

Supplementary Figure S1. Validation of MHC-I associated peptides (MAP) dataset from Pearson 

H. et al. (2016) using the new versions of MAP binding affinity prediction algorithm NetMHC4.0 

(A) and NetMHCpan4.0 (B).  

 

 

Supplementary Figure S2. Percentage of transcript ineligibility as a function of context size. 

Transcript length corresponds to C x 2 + 27, where C is the context size in nucleotides and 27 the 

length of the MCCs. Related to Figure 1A. 
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Supplementary Figure S3. CAMAP architecture and detailed predictions. (A) Architecture of the 

ANN used in this work. (B) ROC curves for a CAMAP trained on a context size of 162 nucleotides 

on original sequences or sequences with shuffled synonyms. (C) Results for the AUC on all train, 

validation and test subsets. Grey areas represent the 95% confidence intervals. (D) Distributions 

of output probabilities of CAMAPs used to calculate correlations in Supplementary Figure S4.  
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Supplementary Figure S4. Correlation between CAMAP prediction score trained only with pre-

MCC or post-MCC sequences. For each sequence in the test set we calculated the average 

prediction score given by CAMAPs in each condition, and calculated the Pearson correlation using 

the R software. Densities were calculated on all points and drawn using ggplot2. Only a random 

subset of the points is represented in the figures to limit their size. 
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Supplementary Figure S5. Kullback-Leibler divergence between hit and decoy dataset in original 

codon (y-axis) or shuffled synonymous codon sequences (x-axis). Shuffled sequences represent 

amino acid usage, as codon-specific information are removed with synonymous codon shuffling. 
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Supplementary Figure S6. CAMAP preferences per position for all codons. See Experimental 

Procedures for more details. 
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Supplementary Tables 

Supplementary Table S1. Nucleotide sequences of the EP and RP constructs. SIINFEKL MCC 

is shown in bold, while the variant regions (pre- and post-MCC contexts of 162-nucleotides) are 

in blue and italics. Related to Fig. 6. 

OVA-EP 

ATGGGCTCCATCGGTGCAGCAAGCATGGAATTTTGTTTTGATGTATTCAAGGAGCTCAAAGTCCACCATGCCAA
TGAGAACATCTTCTACTGCCCCATTGCCATCATGTCAGCTCTAGCCATGGTATACCTGGGTGCAAAAGACAGCA
CCAGGACACAAATAAATAAGGTTGTTCGCTTTGATAAACTTCCAGGATTCGGAGACAGTATTGAAGCTCAGTGT
GGCACATCTGTAAACGTTCACTCTTCACTTAGAGACATCCTCAACCAAATCACCAAACCAAATGATGTTTATTCG
TTCAGCCTTGCCAGTAGACTTTATGCTGAAGAGAGATACCCAATCCTGCCAGAATACTTGCAGTGTGTGAAGGA
ACTGTATAGAGGAGGCTTGGAACCTATCAACTTTCAAACAGCTGCAGATCAAGCCAGAGAGCTCATCAATTCCT
GGGTAGAAAGTCAGACAAATGGAATTATCAGAAATGTCCTTCAGCCAAGCTCCGTGGATTCTCAAACTGCAATG
GTTCTGGTTAATGCCATTGTCTTCAAAGGACTGTGGGAGAAAGCATTTAAGGATGAAGACACACAAGCAATGC
CTTTCAGAGTGACTGAGCAGGAGTCTAAGCCTGTTCAGATGATGTATCAGATTGGTCTTTTTCGTGTTGCTTCTA
TGGCTTCTGAGAAGATGAAGATTCTTGAGCTTCCTTTTGCTAGTGGTACTATGTCTATGCTTGTTCTTCTTCCTGA
TGAGGTTTCTGGTCTTGAGCAGCTTGAAAGTATAATCAACTTTGAAAAACTGACTGAGTGGACTTCTTCTAACG
TTATGGAGGAGCGTAAGATTAAGGTTTATCTTCCTCGTATGAAGATGGAGGAGAAGTATAACCTTACTTCTGTT
CTTATGGCTATGGGAATTACTGATGTTTTTTCTAGTTCTGCTAACCTTAGTGGTATTTCTTCGGCTGAGAGCCTGA
AGATATCTCAAGCTGTCCATGCAGCACATGCAGAAATCAATGAAGCAGGCAGAGAGGTGGTAGGGTCAGCAG
AGGCTGGAGTGGATGCTGCAAGCGTCTCTGAAGAATTTAGGGCTGACCATCCATTCCTCTTCTGTATCAAGCAC
ATCGCAACCAACGCCGTTCTCTTCTTTGGCAGATGTGTTTCCCCTTAA 
OVA-RP 

ATGGGCTCCATCGGTGCAGCAAGCATGGAATTTTGTTTTGATGTATTCAAGGAGCTCAAAGTCCACCATGCCAA
TGAGAACATCTTCTACTGCCCCATTGCCATCATGTCAGCTCTAGCCATGGTATACCTGGGTGCAAAAGACAGCA
CCAGGACACAAATAAATAAGGTTGTTCGCTTTGATAAACTTCCAGGATTCGGAGACAGTATTGAAGCTCAGTGT
GGCACATCTGTAAACGTTCACTCTTCACTTAGAGACATCCTCAACCAAATCACCAAACCAAATGATGTTTATTCG
TTCAGCCTTGCCAGTAGACTTTATGCTGAAGAGAGATACCCAATCCTGCCAGAATACTTGCAGTGTGTGAAGGA
ACTGTATAGAGGAGGCTTGGAACCTATCAACTTTCAAACAGCTGCAGATCAAGCCAGAGAGCTCATCAATTCCT
GGGTAGAAAGTCAGACAAATGGAATTATCAGAAATGTCCTTCAGCCAAGCTCCGTGGATTCTCAAACTGCAATG
GTTCTGGTTAATGCCATTGTCTTCAAAGGACTGTGGGAGAAAGCATTTAAGGATGAAGACACACAAGCAATGC
CTTTCAGAGTGACTGAGCAAGAATCCAAACCGGTCCAAATGATGTACCAAATAGGGCTATTCAGGGTCGCGTCC
ATGGCGTCCGAAAAAATGAAAATACTAGAACTACCGTTCGCGTCAGGGACGATGTCCATGCTCGTCCTACTACC
GGACGAAGTCTCCGGACTCGAACAACTCGAGAGTATAATCAACTTTGAAAAACTGACAGAATGGACATCCTCC
AATGTCATGGAAGAAAGGAAAATAAAAGTCTACCTCCCGAGGATGAAAATGGAAGAAAAATACAATCTAACAT
CCGTCCTAATGGCGATGGGTATAACAGACGTCTTCTCCTCATCCGCGAATCTATCAGGGATATCCAGCGCGGAG
AGCCTGAAGATATCTCAAGCTGTCCATGCAGCACATGCAGAAATCAATGAAGCAGGCAGAGAGGTGGTAGGG
TCAGCAGAGGCTGGAGTGGATGCTGCAAGCGTCTCTGAAGAATTTAGGGCTGACCATCCATTCCTCTTCTGTAT
CAAGCACATCGCAACCAACGCCGTTCTCTTCTTTGGCAGATGTGTTTCCCCTTAA 
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