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» Abstract

10 Many proteins interact with short linear regions of target proteins. For some proteins,
1 however, it is difficult to identify a well-defined sequence motif that defines its target peptides.
12 To overcome this difficulty, we used supervised machine learning to train a model that treats
13 each peptide as a collection of easily-calculated biochemical features rather than as an amino
12 acid sequence. As a test case, we dissected the peptide-recognition rules for human S100A5
15 (hAB), a low-specificity calcium binding protein. We trained a Random Forest model against
16 a recently released, high-throughput phage display dataset collected for hA5. The model
17 identifies hydrophobicity and shape complementarity, rather than polar contacts, as the
18 primary determinants of peptide binding specificity in hA5. We tested this hypothesis by
10 solving a crystal structure of hA5 and through computational docking studies of diverse
20 peptides onto hA5. These structural studies revealed that peptides exhibit multiple binding
a1 modes at the hA5 peptide interface—all of which have few polar contacts with hA5. Finally,
22 we used our trained model to predict new, plausible binding targets in the human proteome.
3 This revealed a fragment of the protein a-1-syntrophin binds to hA5. Our work helps
2o better understand the biochemistry and biology of hA5, as well as demonstrating how high-
s throughput experiments coupled with machine learning of biochemical features can reveal

26 the determinants of binding specificity in low-specificity proteins.

» Keywords

23 5100 proteins, machine learning, X-ray crystallography, binding specificity, peptides, hy-
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» Introduction

a1 Up to 40% of protein-protein interactions are mediated by globular domains that recognize
2 a short, linear fragment of their interaction partner.’? Such protein-peptide interactions
33 play key roles in processes ranging from from signaling networks to biological phase tran-
a4 sitions.?? Understanding such systems therefore requires knowing which proteins recognize
s which peptides under what conditions.?*

36 Protein-peptide interaction interfaces exhibit a wide range of specificity. For some pro-
a7 teins, one can describe specificity using a simple binding motif that encodes the amino acid(s)
;s recognized at each site in the peptide.®® One can predict protein targets by searching for
3o matching sequences within the proteome.® Some proteins deviate from this highly specific
a0 paradigm, requiring more sophisticated approaches. For example, many PDZ binding do-
a1 mains exhibit binding “multi-specificity”, in which peptide preference must be represented as
22 a handful binding motifs.”® Predicting interaction targets for such proteins is more difficult
a3 than for proteins with single binding motifs, but the same basic logic applies: search the
s proteome for sequences that match the binding motifs.

a5 Even more extreme cases exist, such as S100 proteins. Members of this family of calcium-
s activated signaling proteins play important roles in a wide range of critical cellular processes
sz such such as innate immunity, cell-cycle regulation, and inflammatory signaling.®!® S100s
s bind to short, linear peptide regions of target proteins, modulating their activity (Fig 1).%17
20 Defining the peptide recognition rules of S100 proteins has, however, proven extremely dif-
so ficult, as target peptides lack sufficient similarity to be usefully represented as a binding
s motif. 181 That said, the low-specificity of the S100 protein family does not equate to no
52 specificity. Specific targets within the highly-variable sets of S100 binding partners appear to
53 be evolutionary conserved over hundreds of millions of years, even as the interface acquired

ss  mutations.®


https://doi.org/10.1101/2020.06.02.131086
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.02.131086; this version posted June 4, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

55
s Fig 1. S100 proteins interact with peptides in a canonical peptide binding in-
s7 terface in a calcium-dependent manner. Structure shows an alignment eight different
ss 5100 structures (PDB IDs: 31QQ, 1QLS, 3RM1, 2KRF, 4ETO, 2KBM, IMWN, 3ZWH) with
so peptides bound at the canonical interface (red). Calcium ions are shown as blue spheres.

60
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61 Here we endeavor to dissect the specificity of a representative S100 protein: human
&2 S100A5 (hA5). This protein likely plays a signaling role in olfaction.?®?! Tt interacts with
s a diverse set of peptide targets with no obvious sequence motif.!" !9 Instead of representing
ea hAD’s peptide specificity with a binding motif, we represented it using readily calculated
es biochemical properties of each peptide. We used machine-learning to train a model against a
s Tecently released quantitative phage display dataset??, finding that we were able to reproduce
o7 the phage display data and several measured peptide binding interactions formed by hAS5.
es  We then used this model both to understand what biochemical features hA5 recognizes and
6o to predict new binding targets. Our results demonstrate that it is possible to gain insights
70 into the rules that define binding specificity, even for proteins with extremely low specificity.
71 The software we developed for this purpose —HOPS: Hunches from Oregon about Peptide

72 Specificity—is available for download (https://github.com/harmslab/hops).

» Results

« Peptide sequence is insufficient to describe specificity

75 Previously, we collected a high-throughput, phage-display dataset for hAb5 interacting with
76~ 40,000 random 12-mer peptides.?? We did two parallel panning experiments: one in the
77 absence of competitor (Fig 2A), the other in the presence of a competitor peptide that binds
7z at the site of interest (Fig 2B). We then used high-throughput sequencing to quantify the
7o frequencies of peptides in both the “conventional” and “competitor” samples (feonventionar and
80 feompetitor, Tespectively). Peptides that bind at the site of interest are depleted preferentially
1 in the competitor sample. This can be quantified by E = In( feompetitor/ feonventionat), meaning
s2 that F < 0 corresponds to a peptide that binds at the site of interest. We found we
g3 that peptides with £ < —1.37, corresponding to a four-fold decrease in frequency with the
s« addition of competitor, could be distinguished from zero with a false-discovery rate of 0.05.

ss Throughout our analysis, we therefore use a cutoff of £ = —1.37 for peptides that bind.
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86 We first sought to determine if sequence-level rules were sufficient to describe the speci-
g7 ficity of peptides enriched by hA5 in the phage display enrichment experiment. We took
ss the 3,574 unique peptide sequences with £ < —1.37 calculated a position-specific weight-
so matrix.?® This approach revealed extreme variability across positions in the peptide (Fig
o 2C).

01 We next used a clustering approach to identify a set of motifs representing a profile of
o2 “multi-specificity” for hA5. Similar approaches have worked for other multi-specific proteins,
oz identifying a small set of motifs sufficient to describe binding preferences.®?* We clustered
oa enriched peptides by Damerau-Levenstein distance using the DBSCAN algorithm.?5 27 We
os then generated position-specific-weight-matrices for each cluster. Only 0.4% of peptides
o were placed in clusters; the remainder were placed into singleton clusters. The resulting
o7 clusters were highly diverse. Fig 2D shows three of the identified clusters: there is little
os sequence commonality between the three clusters. This extreme “multi-specificity” of hA5
9 extends beyond a small set of motifs easily represented by position-weight matrices. Thus, we
wo concluded that simple sequence-based rules were insufficient to identify the key determinants
101 of specificity in hA5 or to construct a predictive model for binding partners.

102
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103
10a Fig 2. Interacting peptides can be identified using phage display. Panels A and
105 B) Rows show two different experiments, done in parallel, for each protein. Biotinylated,
s Ca’T-loaded, hA5 is added to a population of phage either alone (row A) or in the presence
w7 of saturating competitor peptide (row B). Phage that bind to the protein (blue or purple)
10s are pulled down using a streptavidin plate. Bound phage are then eluted using EDTA,
1o which disrupts the peptide binding interface. In the absence of competitor (row A), phage
1o bind adventitiously (purple) as well as at the interface of interest (blue). In the presence of
w competitor (row B), only adventitious binders are present. C) Sequence logo for all peptides
12 in the phage display dataset for which £ < —1.37. Each position is highly variable in the
us  position-weight-matrix. D) Frequency sequence logos representing three of the 28 peptide

ua clusters identified using DBSCAN.
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s Supervised machine learning can be used to train a predictive model

1z of enrichment

us  We sought an alternate approach to simple sequence-based metrics. Inspired by the literature
119 on characteristic biochemical properties of intrinsically-disordered proteins,?® we hypothe-
120 sized that the biochemical features of peptide targets could be used to construct a predictive
121 model of of peptide enrichment. For each peptide sequence identified in the phage display
122 dataset, we calculated a set of 57 features covering an array of biochemical properties. We
123 included properties such as hydrophobicity, Chou-Fasman «, accessible surface area, isoelec-
122 tric point, and net charge (a full list of all predicted features is available in Table S1). We
125 calculated each feature in sliding windows across the peptide sequence, resulting in a final
6 set of 4,446 features for each individual peptide (Fig. 2A).

127 We then trained a Random Forest model to reproduce our phage display E values using
12 these features as inputs.?’ Prior to training the model, we withheld 10% of the data to use
120 as a test set. We then optimized the nuisance parameters in our model—which features
130 to include, whether to apply a sliding window, and the number of estimators—using k-fold
131 cross-validation. The best model we identified used sliding windows, included the full set
12 of 57 base features, and used 30 estimators (Fig 2B). We then trained our model against
133 the complete training set and measured its predictive power using the previously withheld
3¢ 10% test set. This yielded a final R? . of 0.973. Overall, the model reproduced the test set
135 phage display E values well, giving RZ , of 0.867 (Fig. 2C). There was a systematic deviation
136 between the predicted and measured values of E for the highest and lowest values: the slope
137 between Epcgicted a0 Eypeqsurea Was also 1.16 rather than 1.00 (Fig 2C). This suggests that
138 there are features important for the highest and lowest E values not fully captured by our
130 model.

140
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Fig 3. Machine learning model predicts phage display enrichment. A) Diagram of
the process for training the machine-learning model. Peptides are broken into sliding win-
dows and a set of predicted biochemical features is calculated for each window. These are
the features used in the machine-learning model. B) We found best model input parameters
using cross-validation. Pairs of bars represent the average R?. .. (blue) or R%_, (orange)
for 10-fold cross-validation replicates of the data using the model parameters below. Square
indicates whether the feature was used in the model (filled) or not (empty). “Window”:
whether sliding windows were used. “HOPS” and “CIDER” features are listed in Table S1.
“Num. estimators” is number of estimators included in the Random Forest. The R? ,, and
R, are indicated for the chosen model. C) Points are individual peptides. Red line is the
a linear regression between the predicted E and measured E for each peptide in the test
set. Dashed line blue line indicates the threshold below which we can measure enrichment
(E = —1.37). D) ROC curve for classifying peptides as above or below the E cutoff. The
area under the curve is shown on the plot. E) Heat map shows the contribution of each site
(position 1-12) and aggregated chemical feature (top-to-bottom) to the final model. Color
indicates relative contribution from red (strong) to white (no contribution). The marginal
contribution of each chemical feature is shown to the right of the plot. Table S1 describes

which chemical features went into which aggregate bins.

szi 0.04
Rt 0.83120.63
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162 We also tested the utility of using the model to predict whether E for a peptide was
163 expected to be above or below the E cutoff of —1.37. We calculated a Receiver Operator
16a  Characteristic (ROC) curve for the classifier, plotting the true positive rate against the false
165 positive rate. This yielded a highly predictive model, with an area under the curve of 98.9.
166 This give us high confidence in using this model to classify enriching peptides.

167 We validated our model by reproducing the known binding of four S100 peptide targets
s that we had previously studied using isothermal titration calorimetry (ITC).'® Of these,
160 three bind to hA5 and one does not. We used the model to predict whether the known
170 peptides would bind to hA5. For peptides longer than 12 amino acids, we calculated the
i1 score for all possible contiguous 12-mers and took the best score as our predicted F value.
172 The model predicted binding of the peptides NCX1, Abcons, and A6cons, while predicting
173 that the SIP peptide would not bind (Table 1). These predictions accurately recapitulate

174 the known pattern of binding for all four peptides.

s Model classifies peptides based on hydrophobicity and shape com-

e plementarity

177 We next asked what aspects of the peptides were recognized by the trained model. We
178 quantified the contribution of each feature and peptide position to the predicted E as mea-
e sured by node impurity (see methods). We found that no one feature or peptide position
180 dominated the prediction (Fig 3E). To summarize the data, we pooled features based on
181 their chemical similarity. For example, we pooled side chain volume and beta-chain knob

3031 along with a variety of other terms, into “geometry”. We pooled predicted

182 propensity,
183 charge and number of hydrogen bonds, on the other hand, into “polar” interactions. A full
18« list of the individual features and their bins is given in Table S1.

185 We plotted the relative contribution of each property as a function of peptide position

s (Fig. 3E). Each site contributed almost equally to the predicted enrichment (Fig. 3E).

1s7 Meanwhile, different molecular properties had radically different contribution levels. Geom-

10
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188 etry, hydropathy, and secondary structure propensity dominated the predictive power of the
180 model. In contrast, polar contacts—often a strong determinant of specificity—had almost
100 10 predictive power (Fig. 3E). These results are consistent with binding being determined

101 by shape complementarity and hydrophobic interactions at the interface.

2 A high resolution crystal structure reveals binding site interaction

s variability in hAb5

10 To test the hypothesis that peptide binding was determined by shape complementarity and
105 hydrophobicity, we sought to co-crystallize hA5 with a bound peptide. Despite multiple
106 attempts, however, we were unable to grow hAb crystals in the presence of peptides, nor to
107 soak peptide targets into crystals grown in the absence of peptide. We did, however, discover
108 a new crystal form of calcium-bound hA5 in the absence of peptide. This crystal diffracted
wo to 1.25 A—the highest resolution crystal structure so far determined for hA5 (PDB: 6WN7,
200 Fig. 4A,B Table 2). The structure contains three homodimers (chains AB, CD, and EF)
200 with similar global structure (0.98-1.78 A RMSD across all Ca), but that form different
202 interactions with one another (Fig. 4A yellow ovals). An overlay shows good agreement for
203 individual chains from a previously-solved 2.6 A crystal structure and an NMR structure.
20¢ The RMSD was 2.0 A over all C\, with the regions of highest variation being Ser43-Glu49
205 and the C-terminal helix (Fig. 4B). The position of the homodimer partner chains also show
26 variability, with shifts of 1-3 A between structures (Fig. 4C).

207 Fortuitously, this new structure provides a high-precision view of the peptide binding
208 site participating in three distinct interactions with crystal symmetry mates, thus provid-
200 ing insight into protein-peptide interactions (Fig. 4C). Two largely hydrophobic regions of
210 the binding site coordinate non-specific binding of bulky hydrophobic side chains, with one
a1 pocket occupied by either a Met or Leu and the other by Leu or Phe (Fig. 4C). These inter-
212 actions with crystal symmetry mates likely explain why our attempts at diffusing peptides

213 into the crystal were unsuccessful, as the intra hA5 contacts occlude the canonical peptide

11
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214 binding surface.

215 The ability of the binding site to accommodate a variety of peptide ligands is demon-
216 strated in that binding is facilitated by occupying either one or both hydrophobic pockets,
217 with few other interactions stabilizing this association. In fact, no intermolecular hydrogen
218 bonds were formed at these interfaces. Across these three binding modes, we also observed
210 the binding site itself changed little (as evidenced by similarity between different chains
220 within the asymmetric unit; Fig. 4B). This perhaps explains the importance of shape com-
2z plementarity for our binding prediction model.

222

223

224
25 Fig 4. Crystal structure of hA5 reveals variability of peptide interaction surface.
226 A) Unit cell of the hA5 crystal structure showing all symmetry mates. The asymmetric
227 unit consists of 8 homodimers packed together. Peptide binding surface interactions are
22 highlighted with yellow ovals. B) Overlay of all calcium-bound structures of hA5: 1.25
20 A crystal structure from this study (white/dark gray, 6 chains), a 2.60 A crystal structure
230 (PDB: 4dir, cyan/navy, 2 chains), and an NMR solution structure (PDB: 2kay, yellow /brown,
211 2 chains). Binding site shown in panel C is highlighted in gold. C) The binding site is
232 occupied by crystal symmetry mates in three different configurations (orange, purple, and
233 teal).

12
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» Docking models reveal hydrophobic nature of the interaction

235 Our machine learning model and crystal structure both indicate that binding recognition
236 is mediated by hydrophobic contacts and shape complementarity (Fig 3, Fig 4). To gain
237 structural insight into how this works for individual peptides with radically different se-
233 quences, we used ROSETTA to dock peptides to an hA5 dimer extracted from our crystal
230 structure. We docked four peptides known to bind: A5cons (SSFQDWLLSRLP), A6cons
20 (GFDWRWGMEALT), NCX1 (RRLLFYKYVYKR), and a-1-syn (GERWQRVLLSLA, see
a1 mext section). For each peptide, we generated 80,000 docked models by FlexPepDocking,3?
202 starting the peptide in several different orientations relative to the protein. We took the
2a3 top 4,000 models for each peptide and used them for further analyses. To determine the
244 similarity between the resulting models for a given peptide, we clustered them based on
25 their C, RMSD. Although we allowed up to 50 clusters, 95% of models for each peptide
226 were partitioned into only 5 to 12 clusters.

247 To summarize the results, we calculated the C, RMSD between each model and the
2e8 best-scoring model for that peptide, and then plotted this RSMD against the score for each
220 model (Fig 5A-D). In such plots, the best model appears on the bottom left: the model with
250 the lowest overall score has an RMSD of 0 against itself. We then colored each model on the

251 plot by the cluster it was within.

13
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252

3 Fig 5. Docked peptides show multiple binding modes. A-D) Docking results for
s peptides indicated above each graph. Each point is a single model. The color of each point
255 indicates its cluster membership, ranked from the cluster with the best to the worst score:
256 black, blue, green, brown, and purple. Open circles represent peptides taken from clusters
57 besides the top five. The x-axis is the ROSETTA score for the model; the y-axis is the C,
25 RMSD for each model against the best model for that peptide. E-H) Plausible models for
250 the peptide indicated on the structure. The hA5 input structure is shown as a surface, with
260 chain A and B shown in gray and white. The peptide is shown as a tube, colored from
261 blue (N-terminus) to red (C-terminus). Only the top model is shown for A6cons; the top
262 three models are shown for the remaining peptides. I) Molecular detail of the highest scoring
263 overall peptide model (A5cons). C, atoms are highlighted with colors matching panel F.
264 The three hydrogen bonds formed between the peptide and hAb are indicated with arrows;
26s  hydrophobic interactions are indicated with “*”. Sidechains that do not interact with S100
266 have been removed for clarity.J) Overlay of all 10 peptide docks shown in panels E-H.
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267 The A6cons peptide yielded a single, unique, binding solution. Of the top 4,000 models,
268 70.8% of fell within a single cluster, including the 12 best-scoring models (black points, Fig
260 HA). For this model, the peptide takes on a largely extended conformation that drapes across
270 the hydrophobic binding surface in a belt-like fashion (Fig 5E). In contrast, the remaining
on three peptides did not yield unique docking solutions. Take NCX1, for example. The top
272 three models all came from different clusters (the left-most black, blue, and green points in
213 Fig 5B). The peptide in the three models occupies the same basic binding pocket, but it
27 traces through the pocket in three different ways (Fig 5F). The A5cons peptide (Fig 5C, 5QG)
215 and a-1-syn peptide (Fig 5D, 5H) gave very similar results.

276 These interactions are almost entirely hydrophobic in nature. As an example, we can look
277 in detail at one of the Abcons models (Fig 5I). This model had the best overall score for any
2rs - peptide docked to hA5 (red circle, Fig 5C). In this model, the peptide forms five, well-packed
279 hydrophobic interactions (indicated with asterisks), but only three hydrogen bonds to hA5
20 (indicated with arrows). This dearth of hydrogen bonds is common for all of the peptides.
21 If we average over the cluster containing the best-scoring model for each peptide, A6cons
22 forms the most hydrogen bonds to hA5 (3.2 £ 2), while NCX1 forms the fewest (1.3 £ 1).
283 Thus, as predicted by the machine learning model, polar interactions do not seem to play a
2ga  key role in defining peptide binding.

285 We can also use these models to rationalize the finding that many diverse peptides bind.
236 1f we overlay the solutions shown in Fig 5E-H onto a single structure, we can see the sheer
257 breadth of structures that are compatible with this binding site (Fig 5J): the interface can
288 accommodate a wide variety of peptide configurations, as long as they can have hydrophobic

230 amino acids and enough flexibility to pack into position.

20 The trained model identified a possible new hA5 target peptide

201 Finally, we attempted to use our trained model to predict new, biologically-plausible targets,

202 for hA5. We used a 12 amino acid sliding window to find 10,477,400 unique 12-mers in 20,206
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203 human proteins extracted from uniprot. Applying our trained model to this k-merized human
204 proteome resulted in a set of predicted interacting peptides (Fig. 6A,B). The resulting
205 distribution of predicted E scores is shown in Fig. 6A. The distribution is centered at zero,
206 with a tail extending along the negative (higher enrichment) axis. An estimated 3.9% of
207 proteomic 12-mers had an E value below our apparent detection threshold of —1.37.

208 We next sought to predict specific sequences that would bind. We selected five peptides
200 from the top 0.05% of the E score distribution and purchased synthetic versions of these
300 peptides. For experimental tractability, we selected peptides that were predicted to be
s soluble using the pepcalc.com server. To avoid effects from the peptide termini, we ordered
32 the predicted 12-mer peptides plus 3 additional amino acids taken from the full protein
33 sequence at both the N- and C-terminal ends (Fig. 6A and B). The full peptide sequences
s« and the proteins from which they were taken are shown in Table 3. We measured binding of
305 these peptides to hA5 using ITC. We first conducted all the measurements at 25 °C. If we
36 were unable to detect a heat of binding at 25 °C we also attempted to measure the interaction
sz at 10 °C. Because these protein-peptide interactions are expected to be hydrophobic, we
sos - would expect to see non-zero AC, of binding, and thus heats of binding at one or both
s00 temperatures. 418

310 The peptide extracted from a-1-syntrophin protein (referred to hereafter as “a-1-syn”)
su bound to hA5 at 25 °C with Kp = 4.8 uM (95% confidence, 1.4 to 23 uM) and AH =
sz —4.5 keal - mol™" (95% confidence, —11 to —1.5 kcal - mol™') (Fig. 6C). The peptide has
s13 little sequence similarity to other previously-identified targets; however, it does possess five
s14 hydrophobic residues, including one tryptophan. It also has multiple charged and polar
s1is residues that, together, make it readily soluble in water.

316
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sis Fig 6. hA5 binds tightly to one of the predicted peptide targets. A) Histogram
a0 showing the distribution of E scores for proteomic 12-mers predicted to bind to hA5. Red
220 dashed line indicates the cutoff of £ = —1.37. B) Sequences of the five proteomic peptides
s21 predicted to bind to hA5. Newly discovered target, a-1-syn, is highlighted in red. C)
322 Isothermal Titration Calorimetry (ITC) trace showing binding of peptide a-1-syn to hA5.
323 We estimated parameters for a single-site binding model to the data using the Bayesian
s2a - MCMC sampler in pyte.3? Lines show 100 individual fits sampled from the Bayesian posterior
225 probability distribution. Inset shows structure of human a-1-syntrophin (PDB entry 1Z87)
226 with the Q13424 peptide fragment (GERWQRVLLSLA) labeled in red. Detailed data on
327 predicted peptides can be found in Table 3.

328

17


https://doi.org/10.1101/2020.06.02.131086
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.02.131086; this version posted June 4, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

320 The remaining four peptides gave no evidence of binding at either temperature (Table 3).
;0 These peptides are quite variable in sequence; however, three of the four (Q86UW7, O75170,
s Q14147) are rich in proline and alanine and are studded with charged residues. They also
;2 notably lack the large bulky tryptophan possessed by the a-1-syn peptide (Table 3). Thus,
333 1t is possible that these proline rich peptides clash with the binding site despite favorable
;3¢ overall properties. It is less clear what may determine the lack of B2RNZ0 peptide binding
335 to hAD.

= 1J1scussion

337 We applied a supervised machine learning approach to a previously-measured high-throughput
1s phage display dataset to predict the binding of peptide targets for human S100A5 (hA5).
330 Using this model we were able to: 1) recapitulate the established pattern of specificity for
;a0 a set of known targets, 2) determine that the major biochemical drivers of peptide binding
;a1 were hydrophobicity and shape complementarity, and 3) identify a previously unknown tar-
32 get peptide from human a-1-syntrophin. By solving a crystal structure of the calcium-bound
sz form of hAb, we were able to propose a biophysical rationale for the low specificity of the
sas  protein: there are several different binding modes at the canonical peptide interface. This
a5 was confirmed by peptide docking studies, which found that peptides could dock in multiple
a6 orientations, while exhibiting a paucity of hydrogen bonds to the hA5 surface. Our results
sz lay the groundwork for a more thorough understanding of the biochemistry and biology of
s hA5H. We also provide evidence that high-throughput binding experiments coupled with deep
;0 sequencing and machine learning constitute a potential way forward in understanding the

150 determinants of binding specificity in very low-specificity proteins.
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1 A step forward in understanding the biochemistry of hAb5 specificity

352 We find that the peptide specificity of hA5 is determined largely by shape complementary
353 and hydrophobic surface area—not polar contacts. These are the most predictive features in
s« our trained model (Fig 3E). This result is further supported by the crystal structure, which
355 shows that interactions between subunits at the peptide-binding surface are mediated by
36 several different hydrophobic contacts (Fig 4C). For example, in one symmetry mate pair,
357 a bulky hydrophobic side chain extends from one symmetry mate into the peptide binding
s pocket of another. Finally, our docking results show that peptides can be accommodated in
350 multiple orientations in the binding pocket (Fig 5J)—forming many hydrophobic contacts,
30 but few hydrogen bonds (Fig 51).

361 As a result, the features that contribute to binding are distributed across the target
32 peptides, rather than being concentrated onto one or two key sites. This observation is
363 a notable deviation from the traditional way of thinking about protein-protein interaction
se4  specificity, which is often centered around the idea of binding “hot spots”.?* This helps to
365 explain why a straightforward representation of binding preferences as a motif or position-
36 weight-matrix has not been possible for S100 proteins. We suspect that similar patterns
37 may be identified in other low-specificity proteins and that similar approaches to ours may
s be required to understand the determinants of binding specificity.

360 While hydrophobicity and shape complementarity are clearly important, our model likely
sro underestimates the contribution of polar contacts. It systematically underestimates the mag-
sn nitude E of both the highest and lowest E peptides (Fig 3C). We suspect this is because
sz these values of E depend most strongly on specific structural details, rather than the aggre-
a3 gate biochemical features considered by our model. Such contacts may be “smeared out” by
sza the model, and thus make a smaller contribution to the model than they do in the actual
s7s. molecular interface. This effect must be relatively small, however, as the model performs
are  quite well overall and our structural analyses support a small role for polar contacts at this

a7z interface.
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ss Implications for the biological roles of hA5

sro The large predicted interaction set for hA5 (Fig 6A) likely reflects the hydrophobic nature
30 of the peptide binding surface. Any peptide that presents a compatible hydrophobic surface
s is expected to bind, possibly in multiple conformations. Crucially, however, this does not
;2 mean that any peptide will bind. We found four new peptides that did not interact with hA5
3 (Fig 6B), in addition to the previously known “SIP” peptide.!'® Further, we found previously
ssa  that this specificity has been conserved for hundreds of millions of years in SI00A5 par-
ses  alogs,'® suggesting that the low specificity does not represent a total lack of peptide binding
g6 preference.

387 Our results suggest a plausible, but previously unknown target for hA5 (Fig 6C). The
;s peptide we identified is a fragment of human a-1-syntrophin, a largely disordered PDZ-
30 domain-containing protein that is expressed in a variety of human tissues and serves as a
s00 scaffold for various signaling molecules.** 37 The peptide fragment is part of a relatively
31 exposed region of the a-1-syntrophin PDZ domain, and should be accessible to hAb5 in
32 the cell. There are several tissues where both proteins are expressed including kidney and
ses brain.3% ! Future biological experiments such as pull-down assays should be used to test
s0a  whether a-1-syntrophin is truly a biological interaction partner of hA5.

395 Aside from identifying a specific target, our results also allow us to create a rough es-
306 timate of the number of putative hA5 peptides that may exist in the proteome. Based on
307 the predictions of our machine-learning model, we estimate that the protein can bind to
s0s roughly 4% of the 10,477,400 unique 12-mers in the human proteome. When we sampled
300 five predicted binders, we found that only one bound. If we assume the model yields ~ 80%
a0 false positives when applied to the proteome, there are ~ 420,000 potential hA5 targets.
an If only 10% of these partners are physically accessible—with the rest occluded the interior
a2 of proteins or cell membranes—we are still left with 42,000 peptide fragments that may be
a3 expected to bind to hA5.

404 This suggests that other mechanisms are required to offset the low biochemical specificity
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a5 of hA5. One possibility is hA5’s precise cellular expression and localization. The protein has
ws a very tight expression pattern and appears to be localized near specific bilayers,* ™3 thus
a7 limiting its available binding targets. hA5 also has relatively low affinities for peptides (=~
ws  pM),1®1 meaning that both it and/or its partners must be at relatively high concentration
a0 for an interaction to form. Finally, it is also possible that there are additional higher-ordered
a0 properties of proteins that restrict the true set of possible hAb target peptides. For example,
s in addition to the peptide region itself, the nearby regions may need to possess flexibility to

a2 accommodate peptide binding—something our peptide model does not take into account.

«as Implications for predicting proteomic targets of low-specificity pro-

a4 teins

as  Finally, our work suggests that even relatively sophisticated machine-learning approaches
a6 may not be sufficient to build models that reliably predict new binding targets for low
a7 specificity proteins. In our case, only one of the five peptides we sampled from the human
as  proteome interacted with hA5. This low success rate likely arises from a few sources. First,
a0 there are errors in the model itself—it does not perfectly reproduce the phage display data.
a0 Second, phage-display does not perfectly map to binding of isolated peptides in wvitro. The
a2 third, and likely most important issue, however, is statistical. The total number of non-
a2 binding peptides in the proteome is almost certainly very large compared to the number
423 of true targets; therefore, even a small false positive rate in our predictions would cause a
s huge number of false positives that can swamp out our true predictions.** This means that
a2s predicting specific new targets from the proteome, even with an exceedingly accurate model,
26 will be quite challenging. Predictions will thus always require experimental follow up to

427 validate their binding.
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»s Future directions

420 Unlike purely sequenced-based methods, our approach provides insight into what biochemical
w30 features are recognized by the protein. By recoding the amino acid sequence as a vector
a1 of biochemical properties, one gains insight into what features of the amino acids—and
a2 the peptide as a whole—are being recognized by the protein, rather than what letters are
a3 preferred. This is particularly powerful for a case like hA5, where the amino acid preferences
a3a are not obvious, but it will likely be useful for more specific proteins as well. For example, if a
a5 motif contains a tryptophan and a tyrosine at a given site, what are the relative contributions
436 of hydrophobicity and hydrogen bonding to binding?

437 All that is required as input for these calculations is a large collection of peptide sequences
a3s with some measured property such as enrichment, binding, or activity. Our software auto-
430 matically calculates the chemical features and then writes them out in a format that can
a0 be fed into any machine learning platform. The approaches we implement here should thus

124 providing a

s be broadly applicable to other proteins that recognize short linear motifs,
a2 framework for future studies to decipher the biochemical determinants of binding preferences

a3 in these systems.

« Materials and Methods

«s Machine Learning Analysis

as  We implemented our machine learning model in Python 3 extended with numpy,?’ scipy, 46
a7 and matplotlib.4” We used sklearn 0.21.3 for our random forest regression. 224849 A full list
as of the calculated features is shown in Table S1. As noted, some features were calculated
wo using CIDER (using local CIDER 1.7);%® we calculated the remaining features using our own
a0 software. We standardized all input features prior to training the model by subtracting

a1 the standard deviation and dividing by the mean of that feature as calculated across all
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s> observations. We trained the model using the default objective function in sklearn (least-
a3 squares). Prior to doing any model fitting, we withheld 10% of the data as a test set. We did
asa k-fold cross-validation on the training data to determine which parameters to include in the
ass  fit, using £ = 10. We determined the relative contribution of each feature to our final trained
a6 model using the “feature importance” method of sklearn, which analyzes node impurity as
a7 measured by mean squared error. Our full implementation, including all data files and an

sss  example script, is available at https://github.com/harmslab/hops.

w0 X-ray crystallography

w0 hA5 C43S/C79S was expressed and purified from BL21(DE3) cells as described previously. '8
a1 To generate crystals, we dialyzed 4 mM protein into 1 mM HEPES, 8 mM CaC'l,, 0.25 mM
w2 DTT at pH 7.5. We then mixed this solution 1:1 with 0.2 M (N Hy4)2S0,, 20% PEG 8000
w3 (w/v). We grew crystals by hanging-drop at 4 °C. We harvested crystals, submerged them
ss in a cryoprotectant solution of 25% PEG 1500, and then flash froze them by plunging into
a5 liquid nitrogen.

466 X-ray diffraction data were collected at the Berkeley Advanced Light Source (ALS) beam-
w7 line 5.0.3 at cryogenic temperatures on a single high-diffracting human hA5 crystal. Data
s were processed with iMosflm v. 7.2.1% and scaled with SCALA®'. Data were cut to 1.25 A
a0 resolution based on the method of Karplus & Diederichs? with CC1/2 > 0.3 and complete-
a0 mess > 50 in the highest resolution bin. Analysis with POINTLESS®! indicated space group
ann P3112 as a candidate solution, but molecular replacement trials using PDB structure 4dir
sz and Phaser® failed to correctly solve the structure. Data processing also suggested the data
a3 may be twinned, as an L test for twinning gave a score of 0.375%. Subsequent molecular
ara replacement trials found a solution in space group P32 with three homodimers (6 chains)
s in the asymmetric unit. Manual model building was performed with Coot v. 0.8.3%° and
s refinement with Phenix 1.10.1.°% In late stages of refinement riding hydrogens were added

a7 and TLS was applied with one group per protein chain. The protein chains contain two Ca?*
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a7zs  atoms each that are well-defined and similar in coordination to previous S100 structures. A
ao few solvent sites showed close approaches and may also be fully or partially occupied metal
a0 sites, but in the absence of further evidence these were modeled as waters. Despite the high
a1 resolution, the final Rwork/Rfree of the structure was 26.2/29.4 % and the model was unable
s> to be further improved, potentially owing to crystal twinning (Table 2). Nevertheless the
a3 binding site interactions are clearly observed in the electron density. The final structure was

asa  submitted to the protein data bank as code: 6WNT7.

s Docking Studies

s Docking analyses were performed using ROSETTAS3.1 (build 2018.09.60072),°7 using the
w7 FlexPepDocking binary.?? We generated 3-, 5-, and 9-mer fragment libraries using the in-
ass  cluded 'make fragments.pl’ script, with the UNIREF90 database as input. For each peptide,
a0 we generated used two starting models, both of which had the peptide in the extended con-
a0 formation. The models differed in the direction of the chain relative to the binding pocket:
w1 N — C going “up” or “down” the pocket (according to the orientation shown in Fig 5E).
a2 When clustered, models came equally from each of the initial docking models, suggesting
203 the results did not depend on the choice of starting model. We executed FlexPepDocking
s0s  with the flags “-lowres abinitio -pep refine -ex1 -ex2aro”. We generated ~~ 80,000 docked
205 models for each peptide.

496 After docking, we extracted the top 5% of models (4, 000) for each peptide for downstream
a7 analysis. We clustered the models based on peptide C, RMSD, using hierarchical clustering
a8 by unweighted pair group method with arithmetic mean (UPGMA). The cophetic correlation
a0 coefficient ranged from 0.7-0.9 for all four peptides. We specified that the software identify
soo b0 clusters; however, we found that 95% of the models ended up in the top 5 to 12 clusters
son for each peptide. Clustering and data analysis were done Python 3.7 extended by numpy,%°
sz scipy,?® and matplotlib.4” Hydrogen bonds were counted in output structures using VMD

sos 1.9.3,%8 with the criterion of < 3.5 A, < 40°.
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s« Isothermal Titration Calorimetry

sos Synthetic peptides were purchased from GenScript, Inc. For all peptides, we attempted to
sos measure binding at 25 °C. If binding could not be detected at 25 °C' we also attempted
sor  the experiment at 10 °C. ITC experiments were performed in 25 mM TES, 100mM NaCl, 2
ss. mM CaCly, ImM TCEP, pH 7.4. Samples were equilibrated and degassed by centrifugation
soo at 18,000 x g at the experimental temperature for 35 minutes. Synthetic peptides were
510 dissolved directly into the experimental buffer prior to each experiment. All experiments
su were performed on a MicroCal ITC-200. Gain settings were determined on a case-by-case
512 basis to ensure quality data. A 750 rpm syringe stir speed was used for all experiments.
513 Spacing between injections ranged from 300s-900s depending on gain settings and relaxation
s+ time of the binding process. A single-site binding model was fit to the titration data using
sis the Bayesian MCMC fitter in pytc.®® Uniform priors were used for all parameters. The ML
si6  estimate was used as a starting guess and the likelihood surface was then explored with 100
si7 - walkers, each taking 5,000 steps. The first 10% of steps were discarded as burn in. One
sis. clean I'TC trace was used to fit the binding model. Negative results were double-checked to

519 €ensure accuracy.
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677 Table 1: Dissociation constants and model predictions for known peptide tar-
es gets. Data for the known target peptides used in our previous study.'® NCX1 and SIP are
o790 fragments of human proteins. Abcons and A6Gcons were identified as consensus sequences
es0 from an earlier phage display experiment. The lowercase flanking sequences “rshs” and
e1 ‘“gggsae” come from the M13 phage coat protein. Kp and predicted E value (E,..q) are
es2 shown. The statistically significant E cutoff for hA5 is —1.37.

683

peptide Sequence Kp (uM) Ep.eq predicted to bind (E < —1.37)7?
NCX1 RRLLFYKYVYKR 18 -1.68 yes

e84 SIP SEGLMNVLKKIYEDG >100 -0.43 no
Abcons | rshsSSFQDWLLSRLPgggsae 3 -2.43 yes

. A6cons | rshsGFDWRWGMEALTgggsae 3 -1.39 yes
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Table 2: Crystallography data collection and refinement statistics. “Resolution

cutoff was applied using C'C, /o > 0.3. ’Resolution at which < I /o > falls to 2.0. ‘Data may

be twinned, inhibiting further model improvement.

Data collection
Structure
Space group
Unit cell a, b, c (A), a,B, v(°)
Resolution (A)
Completeness (%)
Unique reflections
Multiplicity
Rmeas <%>
CCo
<Ijo>
< 1o >~ 2.0(A)
Refinement
Resolution range (A)
R-factor (%)
R-free (%)
Protein residues
Ca*t
Water molecules
RMSD lengths (A)
RMSD angles (°)
Ramachandran plot®
0,9 — Preferred (%)
o, — Allowed (%)
o, — Outliers (%)
B-factors
(Protein atoms) (A2)

(Waters) (A?)

34

PDB code: 6WN7
Human S100A5 C43S, C79S
P3,

76.3, 76.3, 84.2, 90.0, 90.0, 120.0
51.98 — 1.25(1.32—)°
99.8 (99.8)

151437 (4561)

10.6 (6.48.4)

8.1 (115.8)

1.0 (0.48)

16.2 (2.1)

1.24

26.0-1.25
26.2¢
29.4¢
159
12
498
0.009
1.1

98.66
1.34
0.0

24
33


https://doi.org/10.1101/2020.06.02.131086
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.02.131086; this version posted June 4, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

691 Table 3: Model predictions for potential new peptide targets. Model E scores
s02 and measured binding affinities for peptides predicted by our model to bind to hA5. Flank-
603 ing amino acids outside the predicted 12-mer are shown in lowercase.

694

695

uniprot accession Sequence Protein of origin E  Kp(uM)
Q86UWT agsSQRAPPAPTREGrrd  Calcium-dependent secretion activator 2 -4.03 >100
075170 dapGAGAPPAPGKKEapp  Serine/threonine-protein phosphatase 6 -3.94 >100
313424 gagGERWQRVLLSLAedt a-1-syntrophin 4.45 5
B2RNZ0 keiKTAMWRLFVKIYFIqk Human olfactory receptor 14|1 -3.53 >100
Q14147 sedDRAGPAPPGASDgvd TP-dependent RNA helicase DHX34 ~ -3.88 >100
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