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1Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid,
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ABSTRACT

Pyramidal neurons are the most common neurons in the cerebral cortex. Understanding how they differ between species is a
key challenge in neuroscience. We compared human temporal cortex and mouse visual cortex pyramidal neurons from the
Allen Cell Types Database in terms of their electrophysiology and basal dendrites’ morphology. We found that, among other
differences, human pyramidal neurons had a higher threshold voltage, a lower input resistance, and a larger basal dendritic
arbor. We learned Gaussian Bayesian networks from the data in order to identify correlations and conditional independencies
between the variables and compare them between the species. We found strong correlations between electrophysiological
and morphological variables in both species. One result is that, in human cells, dendritic arbor width had the strongest
effect on input resistance after accounting for the remaining variables. Electrophysiological variables were correlated, in
both species, even with morphological variables that are not directly related to dendritic arbor size or diameter, such as
mean bifurcation angle and mean branch tortuosity. Contrary to previous results, cortical depth was correlated with both
electrophysiological and morphological variables, and its effect on electrophysiological could not be explained in terms of the
morphological variables. Overall, the correlations among the variables differed strikingly between human and mouse neurons.
Besides identifying correlations and conditional independencies, the learned Bayesian networks might be useful for probabilistic
reasoning regarding the morphology and electrophysiology of pyramidal neurons.

1 Introduction

A key challenge in neuroscience is to understand how pyramidal neurons differ across species and cortical regions1–7. They are
often compared in terms of their dendritic morphology, since it directly influences neuronal computation8–10. Compared to
rodents, human pyramidal neurons’ dendrites are larger4 and have more synaptic connections per cell11, 12, while the human
cortical layer 2/3 is thicker3, 12, with easily distinguished layers 2 and 3. Dendritic morphology also varies across cortical
regions within a single species4, 7, 13–16, although more so in primates than in rodents1, 2, 17. For example, the pyramidal neurons
of the monkey visual cortex have smaller basal dendrites than those of its prefrontal cortex, while there is no significant
difference in the mouse2. In terms of electrophysiology, mouse visual cortex pyramidal neurons have a lower threshold voltage,
shorter rise time and longer fall time than than those of rhesus monkey, while there is no significant difference in subthreshold
features such as time constant and input resistance2.

There has been comparatively little analysis of how the different electrophysiological and morphological variables correlate
with each other and how do these correlations vary between species. In particular, there has been limited study of correlation
between electrophysiology and morphological variables. Exceptions are Ref.2, which found that larger neurons had a lower
input resistance, and Ref.18, which found that action potential is accelerated in neurons with larger dendritic surface area. Also
Ref.16 found that the morphology of human pyramidal neurons varied with cortical depth while the electrophysiology did
not. These analyses were limited to estimating the linear correlation between pairs of variables. This ignores the effects of
confounders as well as the conditional independencies among variables. Instead, dependencies can be quantified with partial
correlation coefficients and modelled with graphical models19. One type of graphical models that is useful for modeling
conditional independencies are Bayesian networks20, 21. These models, based on directed acyclic graphs, let us visualise the
probabilistic relationships between the variables. Their applications in neuroscience22, 23 include interneuron classification24, 25

and the generation of synthetic dendritic branches26.
In this paper, we compare layer 2/3 human temporal cortex and mouse visual cortex pyramidal neurons from the Allen

Cell Types Database in terms of their electrophysiology and basal dendrites’ morphology. The Allen Cell Type Database cells
are unique in that they have both electrophysiology and morphology data and these data were obtained with a standardized
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procedure for both species. Since some cell’s apical dendrites were incompletely reconstructed, we only study the morpho-
logical features of the basal dendrites. We learn from data Gaussian Bayesian networks in order to identify correlations and
conditional independencies between the variables. We learn Bayesian networks from three different subsets of our data set:
(a) from electrophysiological variables alone; (b) from morphological variables alone; and (c) from electrophysiological and
morphological variables combined. For each data subset we learn one Bayesian network per species, which yields a total of six
networks.

The rest of this paper is structured as follows. Section 2 describes the data set, the variables and analysis methodology.
Section 3 provides the results. We discuss our findings in Section 4.

2 Methods
2.1 Data
We used adult human and adult mouse neurons from the Allen Cell Type Database (http://celltypes.brain-map.
org/). Human cells were acquired from donated ex vivo brain tissue. We used all excitatory (spiny) cells from layers 2 and 3
of the temporal (human) and visual (mouse) cortex that had a reconstructed morphology. Our sample consisted of 42 human
cells from the temporal cortex and 21 mouse cells from the visual cortex.

2.2 Electrophysiological variables
The Allen Cell Type Database provides pre-computed electrophysiological features. These features were derived from high
temporal resolution data on membrane potential measurements (in current-clamp mode) obtained with a standardized patch
clamp protocol. We used 11 electrophysiological features provided by Allen Cell Type Database, covering subthreshold and
suprathreshold features of the cells, including those relative to action potentials. Below we list these features along with brief
descriptions (see also Table 1 for their mean values) while we refer the reader to the technical white paper by the Allen Cell
Type Database for details (http://help.brain-map.org/download/attachments/8323525/CellTypes_
Ephys_Overview.pdf).

Subthreshold features were computed as follows. Resting potential (rest): Average pre-stimulus membrane potential
across all the long square responses; Input resistance (resistance): The slope of a linear fit of minimum membrane potentials
during the responses onto their respective stimulus amplitudes, for long square sweeps with negative current amplitudes that
did not exceed 100 pA; Time constant (tau): Exponential curve fit between 10% of the maximum voltage deflection (in the
hyperpolarizing direction) and the minimum membrane potential during the response, the time constants of these fits were
averaged across steps to estimate the membrane of the cell.

All action potential waveforms were evoked by a long square (one second) current step stimulus. The waveforms of the
first action potentials were collected from each cell and aligned on the time of their thresholds. Action potential features were
computed as follows. Threshold (threshold): The level of injected current at threshold; Peak (peak): Maximum value of
the membrane potential during the action potential; Amplitude (amplitude): Difference between the action potential trough
and the action potential peak, where the trough is the minimum value of the membrane potential between the peak and the
next action potential; Upstroke/downstroke ratio (up down ratio): The ratio between the absolute values of the action
potential peak upstroke and the action potential peak downstroke, where the upstroke is the maximum value of dV/dt between
the threshold and the peak, and peak downstroke is the minimum value of dV/dt between the peak and the trough; Rise time
(rise time): Time from threshold to the peak; fall time (fall time): Time from peak to the trough.

Additional suprathreshold features were computed as follows. Latency (latency): Time between the start of the stimulus
until the first spike; “f-i curve” (f-i curve): Slope of a straight line fit to the suprathreshold part of the curve of frequency
response of the cell versus stimulus intensity for long square responses.

2.3 Morphological variables
The Allen Cell Type Database provides 3D neuron morphology reconstructions. These were obtained by filling the cells with
biocytin and serially imaged to visualize their morphologies. Detailed description of the reconstruction protocol is provided in
the Allen Cell Type Database morphology overview technical whitepaper (http://help.brain-map.org/download/
attachments/8323525/CellTypes_Morph_Overview.pdf).

Because the apical trees of some neurons were incompletely reconstructed, we only computed morphological features of
the basal dendrites. We computed 8 features using the open-source NeuroSTR library
(https://computationalintelligencegroup.github.io/neurostr/). Below we list these features along
with brief descriptions (see also Table 2 for their mean values).

A number of features were averaged across all bifurcations or branches of the basal dendrites and were computed as follows.
Average path distance (distance): Sum of the lengths of all compartments’ length starting from the dendrites’ insertion
point into the soma up the bifurcation point, averaged over all bifurcation points; Average branch tortuosity (tortuosity ):
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Ratio of branch length and the length of the straight line between the beginning and the end of a branch, averaged over all
branches; Average remote bifurcation angle (angle): Shortest planar angle between the vectors from the bifurcation to the
endings of the daughter branches, averaged across all bifurcations; Average branch diameter (diameter).

Global basal dendrites features were computed as follows. Height (height): Difference between the maximum and
minimum values of Y-coordinates of the dendrites; Width (width): Difference between the maximum and minimum values of
X-coordinates of the dendrites; Depth (depth): Difference between the maximum and minimum values of Z-coordinates of
the dendrites; Total length (totallength): Sum of branch length of all the branches of the dendrites.

The Allen Cell Type Database also provided the depth of each cell’s soma (rel depth) relative to pia and white matter.

2.4 Bayesian networks
A Bayesian network (BN)21 B allows us to compactly encode a joint probability distribution over a vector of n random
variables X by exploiting conditional independencies among triplets of sets of variables in X (e.g., X is independent of Y given
Z). A BN consists of a directed acyclic graph (DAG) G and a set of parameters θθθ (B = (G ,θθθ)). The vertices (i.e., nodes) of G
correspond to the variables in X while its directed edges (i.e., arcs) encode the conditional independencies among X. A joint
probability density fG (x) encoded by B, where x is an assignment to X, factorizes as a product of local conditional densities,

fG (x) =
n

∏
i=1

fG (xi | paG (xi)),

where paG (xi) is an assignment to variables PaG (Xi), the set of parents of Xi in X according to G . G induces conditional
independence constraints for fG (·), derivable from the basic constraints that each Xi is independent of its non-descendents
in G given PaG (Xi). For example, for any pair of variables X ,Y in X that are not connected by an arc in G there exists a set
of variables Z in X (disjoint from {X} and {Y}) such that X and Y are independent conditionally on Z (i.e., fG (X ,Y | Z) =
fG (X | Z) fG (Y | Z)). Similarly, for any pair of variables X ,Y in X that are connected by an arc in G there is no set Z such
that X and Y are independent conditionally on Z. These constraints extend to nodes not connected by an arc in G and the
structure G thus lets us identify conditional independence relationships among any triplet of sets of variables X , Y , and Z in X.
For example, in the DAG X → Y → Z we only have one independence: X is independent of Z conditional on Y ; X and Y , X
and Z, and Y and Z are not marginally independent. The Markov blanket of Xi is the set of variables MB(Xi) such that Xi is
independent of X \MB(Xi) conditional on MB(Xi). The Markov blanket of Xi is easily determined from G as it corresponds to
the parents, the children and the spouses (other parents of the children of Xi) of Xi in G .

The parameters θθθ specify the local conditional densities fG (xi | paG (xi)) for each variable Xi. When X contains only
continuous variables, as in our case, a common approach is to let fG (x) be a multivariate normal density. The local conditional
density for Xi is fG (xi | paG (xi)) = N (xi;βi0 +βββ

T
i paG (xi),σ

2
i ). There is thus a different vector of coefficients

(
βi0,βββ

T
i ,σ

2
i

)
for each Xi.

2.5 Learning Bayesian networks from data
Learning a Bayesian network B from a data set D = {x1, . . . ,xN} of N observations of X involves two steps: (a) learning the
DAG G ; and (b) learning θθθ , the parameters of the local conditional distributions. There are two main approaches to learning G
from D21: (a) by testing for conditional independence among triplets of sets of variables (the constraint-based approach); and
(b) by searching the space of DAGs in order to optimize a score such as penalized likelihood (the score-based approach). While
seemingly very different, conditional independence tests and network scores are related statistical criteria27. For example, when
considering whether to include the arc Y → X into a graph G , the likelihood-ratio test of conditional independence of X and
Y given PaG (X) and the Bayesian information criterion28 (BIC) score are both functions of log P(X |PaG (X),Y )

P(X |PaG (X)) . They differ in
computing the threshold for determining independence: the former relies on the distribution of the statistic under the null
model (i.e., conditional independence) whereas the latter is based on an approximation to the Bayes factor between the null and
alternative models. Besides using different criteria, the constraint-based and score-based approaches also differ in model search,
that is, in terms of the sets X , Y , and Z that they choose to test conditional independence for. The score-based approaches tend
to be more robust21, as they may reconsider previous steps in the search by removing or reversing previously added arcs. We
thus followed a score-based approach in this paper.

2.6 Settings
We learned network structures by using the tabu algorithm29, implemented in the bnlearn30 R31 package, to optimize the BIC
score. The tabu algorithm is a local search that efficiently allows for score-degrading operators by avoiding those that undo
the effect of recently applied operators; we used a tabu list of size 30 and allowed for up to 30 iterations without improving
network score.
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3 Results
We first look at electrophysiological (Section 3.1) and morphological features (Section 3.2) separately, and then learn joint
Bayesian networks for both electrophysiological and morphological features (Section 3.3).

3.1 Electrophysiology
All variables except for threshold, up down ratio, and fall time differed significantly between the species
(Table 1). Human neurons had lower a resistance, higher time constant (tau), rest, peak voltage, amplitude and
latency, a longer action potential rise time and a shorter fall time.

The human and mouse BNs uncovered relevant correlations and independencies among the variables. In the human
BN (Figure 1a), rel depth was correlated with rest, threshold, up down ratio, latency, f-i curve and
rel depth while its Markov blanket consisted of tau, threshold, peak, up down ratio and f-i curve. This is
contrary to Ref.16 which found that human electrophysiological features such as input resistance and membrane time constant
were independent of depth in the human L2/3 pyramidal neurons of the temporal cortex. In particular, rel depth had a
strong positive partial correlation with up down ratio and a strong negative one with threshold. The fall time
was uncorrelated with other variables, rise time was independent of other variables given amplitude, while rest was
independent of other variables given up down ratio and threshold. All other variables had Markov blankets of size
three or larger, with the largest being that of up down ratio, with seven variables. The strongest partial correlation was
that between peak and amplitude. See Figure 1a for all partial correlation coefficients.

In the mouse BN (Figure 1b), rel depth was only correlated with up down ratio and f-i curve, the two
variables which formed its Markov blanket while, contrary to the human BN, its partial correlation with up down ratio
was negative. rise time was uncorrelated with other variables, fall time was independent of other variables given
f-i curve, while rest was independent of other variables given latency and tau. The remaining variables had Markov
blankets of size three or larger, with the largest being those of up down ratio and f-i curve, with seven variables. The
strongest partial correlations were those between peak and amplitude, and tau and rest. See Figure 1b for all partial
correlation coefficients.

Overall, the human and mouse BNs were strikingly different, with only two common arcs (peak→ amplitude and
f-i curve→ threshold). No variable had an identical Markov blanket in the two graphs. While the magnitudes of
threshold, fall time and up down ratio did not differ significantly between the species (Table 1), the BNs show
that their correlation with other variables did. A rare common feature of the two BNs was the strong positive partial correlation
between amplitude and peak.

Variable Human Mouse p-value
rest (mV) -71.77±3.75 -77.69±4.06 0.00
resistance (M Ω) 83.96±54.31 151.61±68.86 0.00
tau (ms) 27.43±9.01 20.02±9.87 0.01
threshold (pA) 203.33±100.21 186.67±115.94 0.58
peak (mV) 46.31±4.77 37.30±8.68 0.00
amplitude (mV) 99.36±7.35 91.07±9.07 0.00
up down ratio 3.65±0.81 3.70±0.83 0.82
rise time (ms) 0.00±0.00 0.00±0.00 0.00
fall time (ms) 0.08±0.17 0.14±0.28 0.35
latency (ms) 0.08±0.03 0.06±0.02 0.00
f-i curve () 0.08±0.05 0.14±0.08 0.00

Table 1. Per-species mean ± standard deviation for each electrophysiological variable, along with the p-value of the t-test.

3.2 Morphology
All variables except for tortuosity differed significantly between the species (Table 2). Human basal neurons were larger,
had thicker branches and sharper bifurcation angles. The 2.7-fold difference in total length was more pronounced than the
2.1-fold difference that Ref.4 observed for basal dendrites of human and mouse temporal cortex pyramidal neurons.

In the human BN (Figure 2a), rel depth was marginally correlated with all variables except for angle and depth.
However, it was independent of all other variables given tortuosity , with deeper neurons being more straight (i.e., having
lower tortuosity values), yet with virtually no effect on overall dendritic size (correlation coefficient, ρ = 0.03). This is
also contrary to the results of Ref.16, which found a correlation coefficient ρ = 0.50 between basal dendrites total length and
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Figure 1. Bayesian networks for electrophysiological features. Arc width is proportional to the absolute value of the partial
correlation (shown above the arc) between the nodes. Arcs corresponding to negative partial correlations plotted with dashed
lines. Proximity between two nodes is unrelated to the magnitude of partial correlation.
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depth from the pia. An interesting partial correlation was that between diameter and tortuosity , indicating that cells
with thicker branches tended to have more tortuous branches; this is surprising because thicker branches tend to be shorter and
one might expect shorter branches to be less tortuous.

In the mouse BN (Figure 2b), rel depth had a strong negative partial correlation with totallength. Their marginal
(not partial) correlation was also negative (-0.73), meaning that deeper cells had smaller basal dendrites. This is the opposite
of the effect that Ref.16 observed for human neurons and contrary to what observed on temporal cortex mouse cells, where
they found no significant change in morphological features with increasing depth. Unlike in the human, cells with larger basal
dendrites tended to have thicker dendrites (ρ = 0.43) while tortuosity was independent of all other variables.

Overall, the human and mouse BNs were strikingly different, with only two common arcs (totallength→ width and
height→ width). No variable had an identical Markov blanket in the two graphs.

Variable Human Mouse p-value
distance (µm) 133.00±63.00 63.00±5.00 0.00
tortuosity 1.15±0.05 1.14±0.05 0.52
angle (rad) 1.01±0.14 1.13±0.18 0.01
diameter (µm) 0.33±0.12 0.27±0.06 0.01
height (µm) 403.00±262.00 192.00±22.00 0.00
width (µm) 423.00±147.00 227.00±48.00 0.00
depth (µm) 114.00±26.00 62.00±17.00 0.00
total_length (µm) 5008.00±3108.00 1867.00±540.00 0.00

Table 2. Per-species mean ± standard deviation for each morphological variable, along with the p-value of the t-test.

3.3 Electrophysiology and morphology
The human BN (Figure 3a) shows that electrophysiological and morphological variables were highly correlated. The BN had
10 arcs between electrophysiological and morphological features and, except for latency and fall time, all electrophysi-
ological features had at least one morphological variable in their Markov blankets, with depth being the only morphological
variable not present in these Markov blankets. In particular, resistance had arcs to four morphological features and seven
morphological variables in its Markov blanket. While it was already known that resistance decreases with dendritic size2,
we found that, after accounting for totallength and the remaining variables, the strongest effect was that of dendritic arbor
width. We also found that peak increased with totallength and decreased with tortuosity , both after accounting
for totallength and marginally (ρ =−0.37), while angle had positive partial correlations with resistance and rise
time. Conversely to the above-stated, depth was the only morphological variable without electrophysiological features in its
Markov blanket while fall time and latency were absent from the Markov blankets of morphological features. The
Markov blanket of height included eight electrophysiological features. As in Figure 1a and Figure 2a, rel depth was
directly correlated with up down ratio, threshold and tortuosity . Figure 3a also shows that the correlation of
rel depth with the electrophysiological variables cannot be explained as an indirect effect via differences in morphology
with respect to cortical depth, as rel depth is not independent of electrophysiological variables given the morphological
ones. Instead, it corresponds to intrinsic differences in electrophysiology with regards to cortical depth that are unexplained
with the used morphological variables. This was already suggested by Figure 1a and Figure 2a, which showed a stronger
correlation of rel depth with electrophysiological than with morphological variables.

The mouse BN (Figure 3b) also showed strong correlation between electrophysiological and morphological variables. The
BN had 14 arcs between electrophysiological and morphological features and all electrophysiological variables had at least
two morphological variables in their Markov blanket. The strongest partial correlations were those between diameter and
f-i curve, diameter and up down ratio, and tortuosity and f-i curve, angle and amplitude, and
distance and threshold. While the Markov blanket of resistance included four morphological variables (width,
distance, tortuosity and diameter), it only had strong or moderate marginal (that is, not partial) correlation
with diameter and distance (ρ =−0.45, and ρ = 0.26, respectively), with the negatively correlation with distance
indicating that it decreases with increasing dendritic size. As in the human BN, the Markov blanket of rel depth included
both electrophysiological and morphological variables.

Overall, the two BNs were different, with only 2 common arcs: resistance→ f-i curve and tau→ threshold.
No variable had an identical Markov blanket in the two graphs.
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Figure 2. Bayesian networks for morphological features. Arc width is proportional to the absolute value of the partial
correlation (shown above the arc) between the nodes. Arcs corresponding to negative partial correlations plotted with dashed
lines. Proximity between two nodes is unrelated to the magnitude of partial correlation.
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Figure 3. Bayesian networks for electrophysiological and morphological features. Electrophysiological nodes and the arcs
between them shown in green; morphological nodes and the arcs between them in orange. Arc width is proportional to the
absolute value of the partial correlation (shown above the arc) between the nodes. Arcs corresponding to negative partial
correlations plotted with dashed lines. Proximity between two nodes is unrelated to the magnitude of partial correlation.
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4 Discussion
We found strong differences between the electrophysiology and morphology of human and mouse pyramidal neurons, both in
terms of the variables’ magnitudes and in terms of correlations between the variables, as evidenced by the differences in their
Bayesian networks.

For both species, we identified the conditional independencies among electrophysiological, morphological, as well as
between electrophysiological and morphological variables. In particular, we found strong correlations between electrophysio-
logical and morphological variables in both species. We confirmed the previous finding that input resistance decreases with
dendritic size. We also found that, in human cells, after accounting for dendritic arbor length and the remaining variables,
dendritic arbor width had the strongest effect on the value of input resistance. We also found novel correlations between
electrophysiological and morphological in both species. In human cells, peak voltage increased with dendritic arbor length
and decreased with tortuosity, while input resistance and rise time were possitively correlated with the bifurcation angle after
accounting for the remaining variables. In mouse cells, strong partial correlations included those between tortuosity and
f-i curve, and angle and amplitude. Thus, electrophysiological variables were also correlated with morphological
variables not directly related to dendritic arbor size or diameter, such as mean bifurcation angle and mean tortuosity.

Our results regarding the effect of cortical depth on the electrophysiology and the morphology of pyramidal neurons are
contrary to those from Ref.16. They found that, in human pyramidal neurons, the size of the dendritic basal arbor increased
with cortical depth while electrophysiological features were unaffected; in mouse pyramidal neurons they found no effect in
morphological features while they did not assess the effect on electrophysiological ones. We, however, found that cortical depth
was correlated with electrophysiological variables in both species and with morphological ones in human cells. Interestingly,
we found that dendritic basal arbor size in fact decreased in mouse cells. The effect of cortical depth differed between two
species, perhaps reflecting differences in laminar organization of L2 and L3 between the two species. We also showed that the
correlation with electrophysiological features could not be explained in terms of the morphological variables alone. A possible
explanation for the differences in the mouse cells is that we studied visual cortex cells, while Ref.16 studied temporal cortex
cells.

Provided that our assumption of a multivariate Gaussian distribution of the variables holds, the learned Bayesian networks
can be useful beyond identifying the independencies and correlations between variables. For example, they would allow for
probabilistic reasoning regarding the morphology and electrophysiology of pyramidal neurons. For example, we could set the
morphological variables to particular values and study the conditional distribution of electrophysiological variables. One might
also use them for multi-output regression32, for example to predict the values of electrophysiological variables from those of
the morphological ones.

5 Data availability
All data are available from the Allen Cell Type Database. Analysis code is available at
https://github.com/ComputationalIntelligenceGroup/species-compare-electro-morpho.

References
1. Luebke, J. I. Pyramidal neurons are not generalizable building blocks of cortical networks. Front. Neuroanat. 11, 11

(2017).

2. Gilman, J. P., Medalla, M. & Luebke, J. I. Area-specific features of pyramidal neurons – a comparative study in mouse and
rhesus monkey. Cereb. Cortex 27, 2078–2094 (2017).

3. Elston, G. N., Benavides-Piccione, R. & DeFelipe, J. The pyramidal cell in cognition: A comparative study in human and
monkey. J. Neurosci. 21, RC163–RC163 (2001).

4. Mohan, H. et al. Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human neocortex.
Cereb. Cortex 25, 4839–4853 (2015).

5. Bianchi, S. et al. Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: Regional specializations and
comparison to humans. Cereb. Cortex 23, 2429–2436 (2013).

6. Jacobs, B. & Scheibel, A. B. Regional dendritic variation in primate cortical pyramidal cells. In AM, S. & R, M. (eds.)
Cortical Areas: Unity and Diversity (Taylor and Francis, 2002).

7. Benavides-Piccione, R., Hamzei-Sichani, F., Ballesteros-Yáñez, I., DeFelipe, J. & Yuste, R. Dendritic size of pyramidal
neurons differs among mouse cortical regions. Cereb. Cortex 16, 990–1001 (2006).

8. Segev, I. & London, M. Untangling dendrites with quantitative models. Science 290, 744–750 (2000).

9/11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.130252doi: bioRxiv preprint 

https://github.com/ComputationalIntelligenceGroup/species-compare-electro-morpho
https://doi.org/10.1101/2020.06.02.130252


9. Häusser, M., Spruston, N. & Stuart, G. J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

10. Spruston, N. Pyramidal neurons: Dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008).

11. DeFelipe, J. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front. Neuroanat.
5, 29 (2011).

12. DeFelipe, J., Alonso-Nanclares, L. & Arellano, J. I. Microstructure of the neocortex: Comparative aspects. J. Neurocytol.
31, 299–316 (2002).

13. Benavides-Piccione, R., Ballesteros-Yáñez, I., DeFelipe, J. & Yuste, R. Cortical area and species differences in dendritic
spine morphology. J. Neurocytol. 31, 337–346 (2002).

14. Ballesteros-Yáñez, I., Benavides-Piccione, R., Bourgeois, J., Changeux, J. & DeFelipe, J. Alterations of cortical pyramidal
neurons in mice lacking high-affinity nicotinic receptors. Proc. Natl. Acad. Sci. 107, 11567–11572 (2010).

15. Rojo, C. et al. Laminar differences in dendritic structure of pyramidal neurons in the juvenile rat somatosensory cortex.
Cereb. Cortex 26, 2811–2822 (2016).

16. Deitcher, Y. et al. Comprehensive morpho-electrotonic analysis shows 2 distinct classes of l2 and l3 pyramidal neurons in
human temporal cortex. Cereb. Cortex 27, 5398–5414 (2017).

17. Elston, G. N. Cortex, cognition and the cell: New insights into the pyramidal neuron and prefrontal function. Cereb. Cortex
13, 1124–1138 (2003).

18. Eyal, G. et al. Unique membrane properties and enhanced signal processing in human neocortical neurons. eLife 5, e16553
(2016).

19. Whittaker, J. Graphical Models in Applied Multivariate Statistics (Wiley Publishing, 2009).

20. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann Publishers,
1988).

21. Koller, D. & Friedman, N. Probabilistic Graphical Models: Principles and Techniques (MIT Press, 2009).

22. Bielza, C. & Larrañaga, P. Data-Driven Computational Neuroscience: Machine Learning and Statistical Models
(Cambridge University Press, 2020).

23. Bielza, C. & Larrañaga, P. Bayesian networks in neuroscience: A survey. Front. Comput. Neurosci. 8, 131 (2014).
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25. Mihaljević, B., Bielza, C., Benavides-Piccione, R., DeFelipe, J. & Larrañaga, P. Multi-dimensional classification of
GABAergic interneurons with Bayesian network-modeled label uncertainty. Front. Comput. Neurosci. 8, 150 (2014).

26. López-Cruz, P. L., Bielza, C., Larrañaga, P., Benavides-Piccione, R. & DeFelipe, J. Models and simulation of 3D neuronal
dendritic trees using Bayesian networks. Neuroinformatics 9, 347–369 (2011).

27. Scutari, M., Graafland, C. E. & Gutiérrez, J. M. Who learns better Bayesian network structures: Accuracy and speed of
structure learning algorithms. Int. J. Approx. Reason. 115, 235–253 (2019).

28. Schwarz, G. Estimating the dimension of a model. The Annals Stat. 6, 461–464 (1978).

29. Glover, F. & Laguna, M. Tabu Search. In Pardalos, P. M., Du, D.-Z. & Graham, R. L. (eds.) Handbook of Combinatorial
Optimization, 3261–3362 (Springer, 2013).

30. Scutari, M. Learning Bayesian networks with the bnlearn R package. J. Stat. Softw. 35, 1–22 (2010).

31. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2015).

32. Borchani, H., Varando, G., Bielza, C. & Larrañaga, P. A survey on multi-output regression. Wiley Interdiscip. Rev. Data
Min. Knowl. Discov. 5, 216–233 (2015).

6 Acknowledgements
This work has been partially supported by the Spanish Ministry of Economy and Competitiveness through the TIN2016-79684-P
project. This project has received funding from the European Union’s Horizon 2020 Framework Programme for Research and
Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

10/11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.130252doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.130252


7 Author contributions statement
B.M. designed and conducted the analysis and wrote the manuscript. All authors substantially reviewed the manuscript.

8 Additional information
The authors declare no competing interests.

11/11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.130252doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.130252

	Introduction
	Methods
	Data
	Electrophysiological variables
	Morphological variables
	Bayesian networks
	Learning Bayesian networks from data
	Settings

	Results
	Electrophysiology
	Morphology
	Electrophysiology and morphology

	Discussion
	Data availability
	References
	Acknowledgements
	Author contributions statement
	Additional information

