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ABSTRACT 
Species distribution models (SDM) have been increasingly developed in recent years but 
their validity is questioned. Their assessment can be improved by the use of independent 
data but this can be difficult to obtain and prohibitive to collect. Standardized data from 
citizen science may be used to establish external evaluation datasets and to improve SDM 
validation and applicability. We used opportunistic presence-only data along with 
presence-absence data from a standardized citizen science program to establish and 
assess habitat suitability maps for 9 species of amphibian in western France. We assessed 
Generalized Additive and Random Forest Models’ performance by (1) cross-validation 
using 30% of the opportunistic dataset used to calibrate the model or (2) external 
validation using different independent data sets derived from citizen science monitoring.  
We tested the effects of applying different combinations of filters to the citizen data and 
of complementing it with additional standardized fieldwork. Cross-validation with an 
internal evaluation dataset resulted in higher AUC (Area Under the receiver operating 
Curve) than external evaluation causing overestimation of model accuracy and did not 
select the same models; models integrating sampling effort performed better with 
external validation.  AUC, specificity and sensitivity of models calculated with different 
filtered external datasets differed for some species. However, for most species, 
complementary fieldwork was not necessary to obtain coherent results, as long as the 
citizen science data was strongly filtered. Since external validation methods using 
independent data are considered more robust, filtering data from citizen sciences may 
make a valuable contribution to the assessment of SDM. Limited complementary 
fieldwork with volunteer’s participation to complete ecological gradients may also 
possibly enhance citizen involvement and lead to better use of SDM in decision processes 
for nature conservation. 
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Introduction 

In the current context of biodiversity loss, a stronger relationship between conservation science and citizen 

participation could help to make conservation actions more effective (Ahmadi et al., 2017; Lewandowski & 

Oberhauser, 2017). Availability of data from citizen sciences has considerably increased over the past few 

decades (Dickinson, Zuckerberg & Bonter, 2010; McKinley et al., 2017). This data has great potential because 

(i) large quantities of data can be collected over large areas, which would be difficult and expensive for 

researchers to collect; (ii) data may be collected over long time periods, which is especially useful for studying 

the effects of climate and landscape changes on population dynamics at large scales; (iii) citizens are involved 

in the research process, thereby gaining knowledge, and their involvement might lead to improved 

implementation of biodiversity conservation action (Dickinson, Zuckerberg & Bonter, 2010; McKinley et al., 

2017). However, quality of data from participatory sciences is heterogeneous and different methods have been 

developed to boost data accuracy and account for bias, including interactive project development, volunteer 

training, expert data validation and statistical modelling improvement (Kosmala et al., 2016). Although 

researchers have been skeptical about the value of datasets from citizen science, recent publications show 

that some could be as valid as data collected by professional scientists (Kosmala et al., 2016). This is conditional 

on such data being judged in context (i.e. according to the sampling methods used, program objectives and 

applications) on the use of rigorous data sorting and analyses (Isaac et al., 2014; Steen, Elphick & Tingley, 2019; 

Robinson et al., 2020). 

Opportunistic presence-only data collected by citizens at large scales have contributed to the expansion of 

species distribution models (SDM) over the past twenty years, particularly for biological conservation 

applications (Guisan & Thuiller, 2005).  The validity of presence-only SDM is however increasingly questioned 

as well as their applicability (Barve et al., 2011). Presence-only data come from different source databases 

reduced to simple species presence records and mostly collected in an unstandardized way by volunteers. In 

contrast to presence-absence data, they are abundant but have poor quality, few metadata and come from 

different sources (Robinson et al., 2020). This introduces numerous sources of bias that need to be assessed 

and accounted for in modelling processes (Phillips et al., 2009, Guillera-Arroita et al., 2015). Common problems 

are heterogeneous sampling effort, conditions and methods, imprecise spatial and temporal resolutions and 

different levels of expertise among observers (Schulman, Toivonen & Ruokolainen, 2007; Phillips et al., 2009, 

Dickinson, Zuckerberg & Bonter, 2010; McKinley et al., 2017). Different methods have been developed to 

correct these biases, including sorting or weighting presence-data to reduce identification errors and pseudo-

replication linked to sampling effort (Guisan & Theurillat, 2000; Phillips et al., 2009) and/or using sampling 

effort assumptions to establish pseudo-absence sampling strategies (Barbet-Massin et al., 2012). 

Understanding the structure and intensity of sampling effort in space is essential to determine whether an 

undetected species is truly absent. For example, it may be conditioned by site accessibility (Kadmon, Farber & 

Danin, 2004; Phillips et al., 2009), site attractiveness or observer distribution (Phillips et al., 2009; Robinson, 

Ruiz-Gutierrez & Fink, 2018). Not accounting for heterogeneous sampling effort or using erroneous 

assumptions to define it can lead to over-assessment of model accuracy and/or false interpretation (Schulman, 

Toivonen & Ruokolainen, 2007; Phillips et al., 2009; Guillera-Arroita et al., 2015).  
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SDM validation is challenging (Vaughan & Ormerod, 2005) but is a crucial step for applying results to 

conservation objectives. There is still debate about SDM validity, especially when presence-only data is used 

to calibrate models (Barve et al., 2011). Using data with the same spatial bias to calibrate and assess a model 

tends to over-estimate prediction accuracy, by modelling observation processes more than ecological 

processes therefore producing erroneous results. Currently, testing model accuracy with a fully independent 

dataset is considered the most robust method for assessing SDM (Araujo et al., 2005; Guisan, Thuiller & 

Zimmermann, 2017). However, obtaining an external data set for large-scale studies is often cost prohibitive 

and exploiting data from standardized citizen science programmes may in some cases provide the solution. 

For example, Robinson et al. 2020 have shown that using filtered large-scale citizen science data for SDM 

calibration can improve model accuracy. Alternatively, detection-nondetection data from more standardized 

citizen sciences programs which are rarer than opportunistic data but have higher quality could provide 

presence-absence sets for external validation of presence-only SDM. In addition, using presence-only and 

presence-absence data at different stages of the modelling process could be a method for combining different 

data sets with heterogeneous quality which is a current challenge to improve SDM validity (Zipkin & Saunders, 

2018; Robinson et al., 2020). 

Amphibians are among the most threatened taxa in the world with rapid and widespread population 

declines (Stuart et al., 2004). They are particularly sensitive to fragmentation and habitat loss (Cushman, 2006) 

because they need different resources during their life cycle involving movements (seasonal migration and 

dispersion) between aquatic sites (usually ponds) and terrestrial areas (Sinsch, 1990; Cushman, 2006). Many 

citizen science programmes have been initiated for monitoring amphibian species (e.g. De Solla et al., 2005; 

Schmeller et al., 2008) and data collected have been used in some conservation studies to describe population 

trends (Petrovan & Schmidt, 2016), road effects (Cosentino et al., 2014), climate change (Préau et al., 2019) 

and large-scale species distributions (Brown et al., 2016). Despite abundant literature on amphibian ecology 

and the availability of several citizen science databases, few studies have attempted predictive amphibian 

distribution models at large scales (Graham & Hijmans, 2006; Brown et al., 2016; Préau et al., 2019). Therefore, 

amphibian data could be suitable for testing the capacity of different types of citizen data (presence-absence 

or opportunist) for calibrating and assessing SDM.  

Here we compare the predictive performance of presence-only SDM for nine amphibian species using 

different types of data (internal presence-only or external presence-absence) from citizen science programs 

for their assessment. We also test the opportunity to use filtered standardized citizen science data to 

constitute the independent data set for external evaluation. We hypothesized that (1) the type of data used 

for validation (internal or external) would influence the assessment of model accuracy; (2) standardized citizen 

science datasets might be used as independent data for external evaluation of SDM using data filters and/or 

complementary fieldwork. 

Methods 

Study area 

Our study was performed in Pays de la Loire (western France), a region covering 32 082 km² with low relief 

and bordering on the Atlantic Ocean to the west. The region has an extensive hydrographic network organized 
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around the River Loire and its tributaries, influencing local climate and landscape configuration. Agricultural 

landscapes dominate the region and traditional hedgerow network landscapes associated with extensive 

livestock farming are recognized for their conservation value. Such mosaics of small pastures delimited by 

hedgerows and small woods and generally associated with dense pond systems (Baudry, Bunce & Burel, 2000) 

are suitable for many organisms including endangered species such as some amphibians species (Boissinot, 

Besnard & Lourdais, 2019). With 21 known species (for 43 species recorded in France), the region has a high 

responsibility for the preservation of amphibians and their habitats, including traditional hedgerow landscape 

and wetlands. 

 

Biological data 

We studied habitat suitability of 9 amphibian species: Bufo spinosus, Hyla arborea, Rana dalmatina, Rana 

temporaria, Triturus cristatus, Triturus marmoratus, Lissotriton helveticus, Salamandra Salamandra, and 

Pelodytes punctatus. Two types of amphibian data were used: (1) opportunistic data from a citizen database 

with presence-only records for model calibration and internal evaluation (2) standardized detection-

nondetection data from a citizen science programme and complementary field work for external evaluations. 

A more detailed description of the data sets and complementation strategies is available in Appendix 1. 

Opportunistic presence data (calibration and cross-validation dataset) 

We accessed presence-only occurrences from a regional database for the period 2013-2019. 86% of the 

dataset was collected by citizens and recorded online (website or associated mobile application) and 14% by 

various professional organisations involved in nature protection. All data were compiled for the regional Atlas 

of amphibians by a French non-governmental organisation (French BirdLife partner - LPO). See Appendix 1 

Table 1 for data sources. We retained only species with enough data according to number of predictors used 

(i.e. at least 477 presence cells; see Appendix 1 Table 2). We selected only precise GPS records (precision of 

the observation under 50 meters) and we checked all data for anomalies in geographical location or species 

identification. 

For each species, we sorted data to reduce spatial autocorrelation by projecting presence data on a 500m 

resolution grid and retaining only cells containing at least one occurrence as presence cells for the analyses 

(Guisan & Theurillat, 2000). We chose a 500m resolution as it is the mean size of species’ home ranges 

(Semlitsch & Bodie, 2003).  Finally, we excluded all opportunist data intersecting cells used for external 

validation described below to increase independency between calibration and validation sets.  

Standardised detection-nondetection data (external validation datasets) 

For external validation, we firstly extracted detection-nondetection amphibian data for the period 2013-

2019 collected as part of a citizen science program called “Un Dragon dans mon Jardin” (Appendix 1 section 

1.2.). We retained 576 sites which were monitored at least 3 times between February and June during at least 

one year and following a standard method commonly used for amphibian community surveys (Boissinot, 

Besnard & Lourdais, 2019). We called this dataset CS.0 (see Figure 1). Some large areas of the region were not 

sampled due to lack of observers so that data were clustered near cities, with spatial autocorrelation. 

Therefore, with help from volunteers, we completed this dataset with some additional fieldwork and applied 

filters. 
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To complete and filter CS.0, different strategies were used. Firstly, we organised complementary fieldwork 

in 2018 and 2019 to complete two landscape gradients (woody element density and pond density) which are 

two variables known to strongly affect amphibian distribution and which are relevant in our regional context. 

All sites were selected randomly but so as to maximise and decorrelate the two landscape gradients in different 

areas (see Appendix 1 section 1.3.). In total, 263 sites were monitored: 132 sites by experts in 2018-2019 (called 

PRO, see Figure 1) and 131 by 75 volunteers in 2019 (called VOL, see Figure 1). All data (CS.0, PRO and VOL) 

were projected on the same 500m resolution grid. One further problem, common in citizen science 

programmes (Geldmann et al., 2016), is that only aquatic sites are surveyed while areas known to be very 

unsuitable for amphibians such as urban areas and intensive agriculture are generally excluded. To reduce this 

source of bias, we randomly selected 5% more 500m grid cells in totally urbanized areas without aquatic sites 

and 5% more grid cells in homogeneous croplands without trees or ponds and we attributed “absence” values 

to each after field checks (called ABS, see Figure 1). These landscapes represent 9% of the total area of the 

region. 

 

Figure 1. Description of datasets, filters and complementation used for external evaluation derived. Number of 
data (n grid cells) given for T. marmoratus, for 1 iteration only and s3. CS: data derived from the citizen science data 
set; SUP: additional data collected by volunteers (VOL) and professionals (PRO). 

 

 

Secondly, we applied different filter combinations to establish sub-sets from CS.0, PRO and VOL (Figure 1): 

(1) a minimum distance of 1km between two grids containing data;  

(2) threshold values to validate non-detection as absence data and exclude under-sampled sites, defined 

as a minimum sampling effort required to detect a species based on the species’ detectability group and 

observer level of expertise. Four species detectability groups were defined from occupancy studies in 
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France (Boissinot, 2009; Petitot et al., 2014) and the UK (Sewell, Beebee & Griffiths, 2010). Observers 

were classed as either expert, intermediate or novice using 3 criteria: number of years of participation, 

number of species observed and permit-holder for amphibian capture. A “novice” observer was 

considered more likely to miss or misidentify a species which was actually present than an “expert” 

observer for the same considered survey effort. In addition, novice observers did not use sampling nets, 

influencing detectability, in particular of Urodeles. Based on our observer classes and sampling methods 

used (e.g. acoustic, visual and/or fishing), we set threshold values for the minimal sampling effort needed 

to validate absence data, depending on species detectability (see Appendix 1 section 1.4. for details) and 

according to the results from Boissinot 2009 for minimum sampling effort needed to detect a focal species 

(with 95% probability) in a similar biological and landscape context;  

(3) target species to valid nondetection as absence, as recommended by Phillips and co-workers in 2009. 

So, if species A with the same detectability as species B is detected at a site, then species B is likely to be 

truly absent (see Appendix 1 section 1.5. for target species list); 

(4) stratified sampling on final prediction maps (see STRAT_CS and STRAT_ALL in Figure 1). We established 

independent datasets, stratified by model predictions for each species (Newbold et al., 2010; Guisan, 

Thuiller & Zimmermann, 2017) with equal random sampling of validation cells with presence or absence 

data in 4 habitat suitability classes predicted (i.e. [0;0.3[, [0.3;0.5[, [0.5;0.7[ and [0.7;1]). We obtained an 

equal number of validation cells by predicted suitability class (see 1.4.3. for predictive map used). 

 

Environmental dataset and variables 

We assembled environmental data relevant to amphibian ecology and of importance in the study region 

(Guisan, Thuiller & Zimmermann, 2017). A more detailed description of variables with associate references is 

available in Appendix 2 Table 1.   

Bioclimatic variables were accessed from a compilation of climate data for the period 1950-2000 at a spatial 

resolution of 5km² (Hijmans et al., 2005). An altitude variable was derived from the U.S. Geological Survey’s 

Hydro-K data set, at the same spatial resolution. We performed a principal-components analysis (PCA) on 11 

bioclimatic variables relevant for amphibians and the altitudinal layer to produce 2 uncorrelated axes (see 

Appendix 2 Table 4 and Figure 2). Land cover data were downloaded from the highly detailed vector database 

OCS GE 1.1 (IGN 2019), the Theia OSO Land Cover Map 2017 (available at www.theia-land.fr) and from BDTopo 

(IGN 2019). This was coupled with a more detailed regional inventory of hedgerows (from 2005 to 2008) and 

ponds (2012) and a national farming database from the EU LPIS (Land Parcel Identification System 2016) used 

to classify agricultural areas (see Table 1).  

We calculated land-cover variables in windows composed of a 500m grid cell with a buffer of 300m (see 

Table 1). This took into account landscape context based on species’ dispersal capacities as well as the 

resolution of the species data set (Guisan & Thuiller, 2005). Distance and home range differ among amphibian 

species but a 1km circle may be accepted as an average maximum range (Collins & Fahrig, 2017). Collins and 

Fahrig (2017) and Boissinot et al. (2019) show that landscape variables affect Anuran occupancy and diversity 

at this scale in agriculture-dominated regions. We use the same environmental variables for all species (see 

Table 1) except B. spinosus for which “pond density” (water point <5000m²) was substituted by “water point 

density” because of this species’ ability to reproduce in larger water bodies with fish (Boissinot, Besnard & 

Lourdais, 2019). 
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All predictive variables were centred and scaled. The spatial correlation between environmental predictors 

was investigated using the variance inflation factor (VIF) as a measure of multicollinearity and Pearson 

correlation tests with VIF<6 and r<0.6 as advised by O’Brien, 2007 (see Appendix 2 Table 2 and 3). 

 

Table 1. Environmental variables used for species distribution modelling of each amphibian species in Pays de 
la Loire region. Associated references are available in the Appendix 2 Table 1. 

Variable 

category 
Code Variable description Original resolution 

Climatic CLIM_1 first axis from a PCA on 12 worldclim variables and altitude 2.5 arc-min/5km 

 CLIM_2 second axis from a PCA on 12 worldclim variables and altitude 2.5 arc-min/5km 

Land cover %WOOD_DM proportion of deciduous and mixed forest 5m 

 %WOOD_C proportion of coniferous forest 5m 

 %CROP proportion of crop 20m 

 %PASTURE proportion of permanent pasture 20m 

 NB_PONDS pond density (or water point density) 5m 

 L_HEDGE hedgerow density 5m 

 L_ROAD_1ST primary road density outside urban areas 5m 

 L_ROAD_2ND secondary road density outside urban areas 5m 

 L_RIVER canal and river density 5m 

 %URBAN proportion of urban area 20m 

 

Habitat suitability modelling 

Statistical models 

Different modelling algorithms can lead to varying results according to heterogeneous sensitivities and 

calculation processes (Thuiller et al., 2009). Therefore, consensus models based on multi-modelling 

approaches (ensemble-modelling) can improve final results by reducing ‘noise’ associated with individual 

model errors (Araujo et al., 2005; Thuiller et al., 2009; Meller et al., 2014). For each species, we used one 

regression-based approach (Generalized Additive Models, GAM) and one machine learning algorithm (Random 

Forest, RF) to predict and assess habitat suitability within the studied region with 50 bootstrap replicates. 

Presence points were randomly split 50 times into a training set (70% of the whole dataset) and the remaining 

30% were used as testing set for internal evaluation (see 1.4.). To construct these models, we used biomod2 

package (Thuiller et al., 2009) in R environment v. 3.5.3 (R Development Core Team, 2019). 

Background data and pseudo-absence selection 

Modelling habitat suitability for a species with GAM or Random Forest requires both presence and absence 

data. In order to overcome the problem of missing absence data needed for most SDM, pseudo-absence 

selection strategies have been developed to select absence data where real absence is most likely (Barbet-

Massin et al., 2012, Phillips et al., 2009). We tested three strategies for generating artificial absence points: 

(s1) simple random selection of background points within the studied region (Guisan, Thuiller & Zimmermann, 

2017); (s2) random pseudo-absence selection excluding known presence points (Engler, Guisan & Rechsteiner, 

2004); (s3) random pseudo-absence selection constrained to take sampling effort into account (see Appendix 

3 for method). The latter strategy aimed to select pseudo-absences where true absences were more likely. For 
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this strategy we  considered three main sources of bias in pseudo-absence selection: accessibility, linked to 

distance from roads or urban areas (Kadmon, Farber & Danin, 2004; Barbet-Massin et al., 2012), attractiveness, 

relating to oversampling in protected sites or tourist areas (Phillips et al., 2009; Robinson, Ruiz-Gutierrez & 

Fink, 2018) and observer effort, because certain administrative areas are covered by particularly active nature 

protection organisations (see Appendix 3). For each strategy, the number of artificial absences was fixed equal 

to the number of presence data (Barbet-Massin et al., 2012; Liu, Newell & White, 2019) and we performed 10 

replicates of the artificial absence generation processes.  

Ensemble modelling 

Finally, we conducted ensemble modelling by calculating the median value of (1) all individual maps 

generated by GAM and Random forest (i.e. 500 maps/algorithm) (Thuiller et al., 2009) to compare internal 

versus external evaluation for each species. Secondly, we also calculated median values from ensemble maps 

calibrated with 100% of presence-only data to compare different external evaluations sets (i.e. 10 

maps/algorithm). 

 

Internal and external model validation 

We firstly use a cross-validation method using a 30% random split of the whole set to asses each model (for 

pseudo-absence selection strategies s1, s2 and s3) with 50 bootstraps repeated 10 times. We calculated the 

area under the curve (AUC) of a receiver operating characteristic (ROC) plot of the predicted model habitat 

suitability scores with (1) the 30% test dataset for internal validation and (2) with the larger filtered external 

independent dataset (e.g. CS.2+ABS+SUP, see Figure 1) using Biomod2 package (Thuiller et al., 2009). AUC is 

the most common metric used in SDM studies, as it has the advantage of being threshold and prevalence 

independent and has been accepted as the standard measure for assessing SDM accuracy (Guisan, Thuiller & 

Zimmermann, 2017). AUC > 0.50 signifies that the model has better prediction than a random model. 

Secondly, we calculated AUC values, specificity (true negative rate) and sensitivity (true positive rate) of 

ensemble models calibrated with 100% of the presence-only data using different evaluation sets derived from 

the global external dataset used in the previous stage (see Figure 1). These calculations (with 100 bootstraps) 

were performed using PresenceAbsence package (Freeman 2012) with a standard threshold value for 

presence-absence discrimination fixed at 0.5.  

Results 

Model performance and selection 

For each species, the median AUC was higher with internal validation than external validation for all three 

pseudo-absence selection strategies (s1, s2 and s3), both for GAM and Random Forest (see Figure 2 and 

Appendix 4) with a delta-AUC ranging from 0.05 (T. marmoratus) to 0.21 (B. spinosus). With internal evaluation 

(cross-validation), all models had excellent (AUC>0.90) very good (0.80-0.90) or good accuracy (0.70-0.80) 

except for the model of B. spinosus and H. arborea including sampling effort parameters (s3). However, with 

external evaluation, only four species had a high level of accuracy (AUC>0.70): S. salamandra, T. marmoratus, 

P. punctatus and R. temporaria. For R. dalmatina, T. cristatus and L. helveticus, model accuracies were poor 
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(0.60<AUC<0.70) and for B. spinosus and H. arborea even poorer (AUC<0.60). The strategy s1 (background 

data) was not selected neither with internal nor external evaluation. 

The method used for pseudo-absence selection influenced the predictive performance of models but 

differences between AUC values were minimal (Figure 2). However, s2 (uncorrected sampling bias) was the 

best strategy for six species when internal validation was used, while s3 was best for seven species when 

external validation was used. Results for RF can be found in the supplementary material but do not differ 

greatly (Appendix 4 Figure 1). 

 

Figure 2. Model performance for the 9 studied species assessed by external or internal data using different 
pseudo-absence selection strategies. Assessment by AUC under the ROC for GAM only are shown (see 
supplementary material). Artificial absence sampling strategies shown are s2 (random pseudo-absence selection 
excluding known presence points) and s3 (random pseudo-absence selection excluding known presence points 
and adjusted to consider site accessibility and sampling effort). Per strategy, 10 replicates of the artificial absence 
points generation processes with 50 bootstraps for the random selection of the straining set (70%) and the internal 
testing set (30%). Black dotted line indicates the 0.70 threshold above which models have an acceptable level of 
accuracy (Swets 1988). 

 

Impact of model selection on final habitat suitability map 

Internal or external validation resulted in different models being selected, based on AUC comparison. 

Therefore, the final habitat suitability maps selected by each of these two assessment methods would lead to 

different interpretation and conservation decisions. Maps for H. arborea and B. spinosus are not shown 

because of poor accuracy (see supplementary results Appendix 4). All response curves and associated variable 

contributions can be found in the supplementary material (Appendix 4 Figures 2 and 3). 
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Figure 3. Habitat suitability maps for six studied species produced using two form of pseudo-absence selection. 
s2 (random pseudo-absence selection excluding known presence points) and s3 (random pseudo-absence 
selection excluding known presence points and constrained to account sampling effort). The black and white map 
under each pair shows net difference between s2 and s3. Map resolution is 500m. 
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Comparison of external evaluation sets 

Values of AUC, sensitivity and specificity to four species are shown in Table 2 (two Anurans and two Urodeles; 

one forest species and one generalist specie each). Results for other species and CS.1 (similar to CS.2) are 

presented in Appendix 4 Table 3.  Considering AUC values, evaluation with the external dataset from 

participative science without filter data (CS.0) show more similar model selection results than internal cross-

validation except for R. temporaria. Sorting presence data led to decreased sensitivity and increased specificity 

for all species except for S. Salamandra. The models selected (s2 or s3) were similar for most species whether 

using stratified data from volunteers’ only (STRAT_CS) or stratified data with added professional observations 

(STRAT_ALL), or professional data only (PRO). See Table 2 and Appendix 4. We excluded the s1 model from the 

comparison because this model is never selected, either with internal or external evaluation. 

 

Table 2. Model performance according to different filters and complementary fieldwork applied to the external 
evaluation dataset. External datasets used were (see Figure 1): CS.0 (all data from the standardized citizen science 
dataset); CS.2 + ABS (CS.2 with 10% supplementary absence cells in very unsuitable habitats); PRO (data collected 
by professionals only in 2018-2019); CS.2 + ABS + SUP (citizen science data cited before adding all complementary 
fieldwork by professionals and volunteers); STRAT_CS (stratified data selection from CS.2+ABS with 
complementary fieldwork by volunteers); STRAT_ALL (stratified data selection from CS.2+ABS+SUP). Models 
assessed: s2 (random pseudo-absence selection excluding known presence points) and s3 (random pseudo-
absence selection constrained to account sampling effort and correct sampling bias). SEN: sensitivity, SPE: 
specificity. Bold values show best values between s2 et s3 with delta > 0.02 and grey cells show species with less 
than 2 presence data. All analyses with a random sampling in presence selection with a distance condition or a 
stratified random selection were performed using 100 bootstraps (mean calculation). 

 

 

Discussion 

External evaluation with independent data generated lower AUC values than cross-validation, which calls 

into question the validity of models validated by commonly used selection threshold values such as AUC> 0.70. 

According to Araujo et al. 2005, internal evaluation with non-independent data always leads to over-optimistic 

assessment of model performance. Even if cross-validation is better than substitution procedures (Araujo et 

SEN SPE AUC SEN SPE AUC SEN SPE AUC SEN SPE AUC

CS.0 s2 0,63 0,41 0,58 0,69 0,29 0,53 0,82 0,43 0,68 0,71 0,87 0,87

s3 0,65 0,45 0,61 0,64 0,34 0,54 0,78 0,49 0,68 0,86 0,84 0,88

CS.2 + ABS s2 0,59 0,78 0,81 0,67 0,76 0,80 0,71 0,61 0,73 0,64 0,88 0,86

s3 0,58 0,87 0,81 0,62 0,88 0,86 0,68 0,64 0,74 0,82 0,84 0,86

CS.2 + ABS + SUP s2 0,58 0,82 0,82 0,51 0,77 0,68 0,63 0,56 0,63 0,59 0,91 0,85

s3 0,62 0,78 0,81 0,49 0,78 0,74 0,57 0,54 0,63 0,76 0,86 0,85

PRO s2 0,58 0,83 0,85 0,41 0,76 0,61 0,59 0,39 0,51 0,50 0,95 0,71

s3 0,79 0,77 0,83 0,37 0,79 0,64 0,51 0,33 0,54 0,50 0,92 0,71

STRAT_CS s2 0,71 0,72 0,81 0,67 0,81 0,82 0,72 0,64 0,73 0,79 0,57 0,69

s3 0,70 0,69 0,78 0,68 0,82 0,88 0,71 0,63 0,75 0,95 0,60 0,79

STRAT_ALL s2 0,80 0,74 0,87 0,66 0,76 0,78 0,68 0,62 0,70 0,84 0,57 0,73

s3 0,78 0,70 0,83 0,71 0,83 0,89 0,66 0,60 0,72 0,96 0,58 0,81

Hyla

arborea

Rana

temporaria

Triturus

marmoratus

Lissotriton

helveticus
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al., 2005; Vaughan & Ormerod, 2005; Edwards et al., 2006), split data for internal validation are non-

independent and do not avoid the main limits of correlative models in SDMs because of spatial or temporal 

autocorrelation, especially when sampling effort is highly heterogeneous (Edwards et al., 2006, Roberts et al. 

2017). Our result supports criticisms of certain types of SDM and further highlights the need to be careful in 

their general interpretation and assessment (Lobo, Jiménez-valverde & Real, 2008).  

The difference between internal-AUC and external-AUC is particularly pronounced for the most common 

and generalist species in spite of the large number of available data, especially for B. spinosus and H. arborea 

whose models failed to attain an acceptable level of accuracy with external evaluation. Brotons et al. 2004 

highlighted the difficulty of predicting distributions of the most generalist species. However, for such species, 

the use of filters increases specificity values considerably and the results are coherent with these species’ wide 

ranging and ubiquitous distributions. Using external presence-absence data also makes it possible to exploit 

the whole presence-only data set for calibration and to use stricter filters to reduce sampling bias or data 

culling to retain higher quality data (Steen et al. 2019, Isaak et al. 2014). Our study shows that it is possible to 

apply strong filters (e.g. STRAT_CS) but finally retain reasonable sample sizes for most species. 

It should be noted that, for four species, R. temporaria, T. marmoratus, S. salamandra and P. punctatus, 

our results were ambiguous. For the first three, all forest-dwelling species or very closely related to woodlands 

(Boissinot, Besnard & Lourdais, 2019), both internal and external validation methods selected models with 

sampling effort integrated (s3). Two main reasons could explain these results: firstly, presence data may have 

been insufficient for R. temporaria, and secondly these species’ affinity for forest habitats. R. temporaria is a 

rare species and is more dependent on wet forest, flood meadows and small streams as breeding sites than 

other species (Boissinot et al., 2015). This species has a patchy distribution (i.e. locally abundant but regionally 

rare) and is difficult to detect. Hence, presence data are few in the studied area both in the opportunist dataset 

(N=477 presence-cells) and in the independent dataset (N=13 presence-cells). As highlighted by Vaughan & 

Ormerod (2005) such factors can lead to model over fit, even with a relatively small number of variables, 

resulting in high AUC values. In addition, according to Brotons et al. (2004), low-density habitat (i.e. forest 

habitat in our region) may be over-weighted and it can be difficult to assess between good or bad suitability 

without adapted presence-absence data. Monitored forest sites are rare in our validation dataset and the 

assumptions we used to define sampling effort may not be well adapted for forest specialists. Finally, P. 

punctatus is a rare species but abundant on the Atlantic coast. Unlike the other species, it is a pioneer, adapted 

to open areas, especially primary unvegetated habitats such as sand dunes and mudflats with frequent physical 

disturbance (Joly et al., 2005). These habitats are mainly located near the coast and along the main regional 

floodplains (Loire Valley), with a high local density of presence data. So this species is also patchily distributed 

and models may be affected by the same bias as R. temporaria. Alternatively, the similarity between AUC 

values may also relate to sampling effort bias along the Atlantic coast (e.g. Fithian et al., 2015). There results 

highlight the need to adapt methods and filters used for each species. 

 

Using heterogeneous data from citizen science in SDM 

Our results show that it is possible to obtain useful external and independent datasets for model validation 

from filtered standardized citizen science data. Indeed, the use of filters have successfully reduce bias and 

noise in citizen science data sets for SDM in others studies (Robinson, Ruiz-Gutierrez & Fink, 2018; Isaac et al., 

2019; Steen, Elphick & Tingley, 2019). In addition, filtered evaluation dataset showed coherent results 
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according to Phillips et al. 2009. Indeed, choosing pseudo-absence data with the same bias as occurrence data 

improved model performance. 

Since external independent data is necessary for more robust assessment of SDM (Araujo et al., 2005), but 

prohibitive to collect, filtering low quality but large datasets from monitoring to obtain more standard and 

independent data may be worthwhile. In addition, AUC appears to be more informative when presence-

absence data is used to assess and compare models than when presence-background data alone is used 

(Jiménez-Valverde, 2012). However, using detection-nondetection citizen data without filters may also lead to 

erroneous results because of overlapping sources of bias in both datasets (e.g. CS.0 selects the same model as 

cross-validation). The large amount of available data allows us to strongly select data according to our research 

objective. Our results using PRO datasets are inconclusive for rare species perhaps because their detection was 

insufficiently frequent (e.g. only two observations of R. temporaria for 132 sampled sites). Finally, we found 

that general rules to guide data sorting were difficult to define. Our results were sensitive to the type of data 

used, and the species studied, reinforcing the need to define filters according to available data and species’ 

ecology (Steen, Elphick & Tingley, 2019). 

Independence between training and testing sets is an essential criterion, but data should also be unbiased 

or corrected. Selection methods have been developed to try to divide the opportunistic dataset strategically 

to increase the independence of the testing set for cross-validation (see Block-cross-validation in Robert et al. 

2017). However, this method does not make it possible to escape from the general biases linked to sampling 

effort and/or can create extrapolation problems (see Robert et al. 2017). Using a more standardized dataset 

from a participatory science program (e.g. CS0) for the evaluation makes it easier to understand the sources 

of bias (presence of metadata and non-detection data), to better control them and to obtain more robust 

information on the absence data. However, these data may also share biases with the opportunistic dataset 

used for calibration. In our case, the sampling of the monitored sites (CS0) was partly biased towards 

volunteers’ place of residence and areas with a higher density of observers. These biases were reduced through 

additional sampling involving volunteers. Our results show that certain filters, as well as targeted 

complementary fieldwork, make it possible to reduce the biases identified and produce conclusive results. In 

addition, the use of a stratified sampling of the testing set along the suitability gradient from the SDM results 

(e.g. our STRAT_CS and STRAT_ALL datasets) appears to be a particularly interesting method showing stable 

and consistent results according to Phillips et al 2009. 

However, our method may be not applicable in all cases. In our study, external data came from a program 

with general population monitoring objectives, using standard methods designed to be accessible to a wide 

audience (eg. novice and professionals). This program concerns all amphibians and their habitats, whereas 

many citizen science programs are limited to a particular taxonomic group or habitat type (cities, gardens or 

farms…) and would therefore be difficult to extrapolate to wider contexts.  

 

Involved stakeholders and citizens in conservation research 

Our study was part of a wider project for amphibian conservation in the Pays-de-la-Loire region of western 

France. Involving citizens in the SDM evaluation process may make conservation action easier to implement, 

through both better shared knowledge and stronger personal involvement. Forrester et al. (2017) and 

Lewandowski and Oberhauser (2017) highlighted an increase in conservation advocacy among participants of 

citizen science projects that might improve access to evidence for conservationists and decision makers 
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(Sutherland & Wordley, 2017). Maps are a specially a good tool for improving communication between 

researchers and volunteers in the context of citizen science (Zapponi et al., 2017). Indeed, many nature 

protection organisations are already involved in distribution atlas projects and naturalists are aware of data 

collection methods and local species distributions. They seek out ways to prioritise field observations; making 

a useful contribution to developing SDMs to guide conservation action can be a source of motivation, making 

scientist-volunteer interactions easier. 
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