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Lineage and Spatial Mapping of Glioblastoma-associated Immunity  2 
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Highlights: 51 

• Lineage tracking of T cells reveal IL10 driven exhaustion in glioblastoma 52 

• In-silico modeling of spatial- and scRNA-sequencing identified a subset of HMOX1+ 53 

myeloid cells releasing IL10. 54 

• T cell exhaustion is spatially enriched in mesenchymal-like tumor regions. 55 

• Human neocortical sections with autograft T cell stimulation confirmed IL10 56 

dependent T cell exhaustion in mesenchymal-like tumors. 57 
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Visual Abstract: 59 
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 61 

Abstract 62 

The diversity of molecular states and cellular plasticity of immune cells within the glioblastoma 63 

environment remain poorly investigated. Here, we performed scRNA-sequencing of the immune 64 

compartment, mapping potential cellular interactions that lead to the exhausted phenotype of T cells. 65 

We identified Interleukin 10 response during T cell activation leading to the exhausted state. By use of 66 

an in-silico model, we explored cell-cell interactions and identified a subset of myeloid cells defined by 67 

high expression of HMOX1 driving T cell exhaustion. We showed a spatial correlation between T cell 68 

exhaustion and mesenchymal-like gene expression, co-located with HMOX1 expressing myeloid cells. 69 

Using human neocortical sections with myeloid cell depletion, we confirmed the functional interaction of 70 

myeloid and lymphoid cells, leading to the exhausted state of T cells. A comprehensive understanding 71 

of cellular states and plasticity of lymphoid cells in GBM aids in providing successful immunotherapeutic 72 

approaches.  73 

  74 
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Introduction 75 

Tumor infiltrating lymphocytes along with brain resident and migrated myeloid cells on the other side, 76 

account for a meaningful part of tumor microenvironment in glioblastoma1–3. Most recently, the 77 

characterization of the myeloid cell population using scRNA-sequencing revealed a remarkable 78 

heterogeneity regarding cellular diversity and plasticity within the myeloid compartment1,4. Rather, the 79 

diversity of lymphoid cell types in malignant brain tumors has been poorly explored, although gaining 80 

insights into the heterogeneity of cell type composition and properties of gene expression will aid in 81 

providing successful approaches for immune therapy in the future. In other cancer entities such as 82 

colorectal cancer5, liver cancer6 or melanoma7, different states of T cells have been investigated. 83 

Prolonged immune activation and ambiguous stimulation, such as uncontrolled tumor growth or chronic 84 

infections, reduces the ability of CD8+ lymphocytes to secrete proinflammatory cytokines and maintain 85 

their cytotoxic activity7–9. This cellular state, named dysfunctional or "exhausted" CD8+ lymphocytes, 86 

represents a paramount barrier to successful vaccination or checkpoint therapy2,10,11. T cell exhaustion 87 

is partially orchestrated by regulation via inhibitory cell surface receptors (PD-1, CTLA-4, LAG-3, TIM-3 88 

and others) and anti-inflammatory cytokines such as IL-10 and TGF-beta. Glioblastoma, a common and 89 

very aggressive primary brain tumor in adults, is archetypical for tumors with a strong 90 

immunosuppressive microenviroment12 and current immunotherapeutic approaches such as PDL1/PD1 91 

checkpoint blockade13 or peptide vaccination14, which led to remarkable responses in several cancers, 92 

failed to demonstrate activity in patients with glioblastoma.  93 

To address the limited knowledge of lymphoid cell population in glioblastoma, we performed deep 94 

transcriptional profiling by scRNA-sequencing, mapped potential cellular interactions and cytokine 95 

responses that could lead to the dysfunctional and exhausted phenotype of T cells. Pseudotime analysis 96 

revealed increased Interleukin 10 (IL10) response during the transformation from the effector to the 97 

exhausted state in T cells. To computationally explore connected cells driving this transformation, we 98 

introduced a novel approach termed “nearest functionally connected neighbor (NFCN)”, which identified 99 

a subset of myeloid cells marked by CD163+ and HMOX1+ expression. Furthermore, we applied spatial 100 

transcriptomics, which confirmed a spatial overlap of exhausted T cells with HMOX1+ myeloid cells within 101 

mesenchymal enriched regions. Further, using a human neocortical slice model with myeloid cell 102 

depletion and T cell stimulation, we validated our findings from the computational approach, which 103 

depicts the role of myeloid cells as drivers of T cell exhaustion.   104 
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Results: 105 

scRNA-Seq Charts the Immune Cell Compartment in Glioblastoma  106 

In order to interrogate the diversity of the immune microenvironment in untreated glioblastomas, we 107 

profiled freshly obtained tumor specimens from 4 glioblastoma patients at first diagnosis using 3’-108 

scRNA-seq (droplet-based 10X Genomics). To focus on the immune environment, in particular the 109 

heterogeneity of T cells, we sorted cells for the pan T cell marker CD3+, Figure 1a and Supplementary 110 

Figure 1a. The scRNA-seq data consisted of 17,705 cells, with a median number of 2,022 unique 111 

molecular identifiers (UMIs) and approximately 897 uniquely expressed genes per cell. We corrected 112 

the data for the percentage of mitochondrial genes and removed batch effects due to technical artifacts. 113 

Next, we decomposed eigenvalue frequencies of the first 100 principal components and determined the 114 

number of non-trivial components by comparing them to randomized expression values, resulting in 35 115 

meaningful components. Shared nearest neighbor (SNN) graph clustering resulted in 17 clusters 116 

containing significantly uniquely expressed genes, Supplementary Figure 1b-c. The major observed 117 

cell type when using the semi-supervised subtyping algorithm of scRNA-seq (SCINA-Model)15 and 118 

SingleR16 are microglia cells (TMEM119, CX3CR1 and P2RY12) and macrophages (AIF1, CD68, 119 

CD163 and low expression of TMEM119, CX3CR1), followed by CD8+ T cells (CD8A, CD3D), natural 120 

killer cells (KLRD1, GZMH, GZMA, NKG7 and CD52), CD4+ T cells (BCL6, CD3D, CD4, CD84 and 121 

IL6R), T-memory cells (TRBC2, LCK, L7R and SELL), granulocytes (LYZ), a minor amount of 122 

oligodendrocytes and oligodendrocyte-progenitor cell (OPC’s) (OLIG1, MBP, PDGFA), and endothelia 123 

cells (CD34, PCAM1, VEGFA) Figure 1b and Supplementary Figure 1c-g. Furthermore, we inferred 124 

largescale copy number variations (CNVs) from scRNA-seq profiles by averaging expression over 125 

stretches of 100 genes on their respective chromosomes17. We confirm that there was only a very low 126 

level of contaminating tumor cells present (clustered as OPC cells), based on their typical chromosomal 127 

alterations (gain in chromosome 7 and loss in chromosome 10), Supplementary Figure 2. 128 

 129 

Diversity of T cells in the Glioblastoma Microenvironment 130 

To investigate the diversity of T cells in the microenvironment, we examined them by two different but 131 

complementary methods. First, in-silico the T cells were isolated by clustering (as shown above), based 132 

on their published marker gene expression profile (CD3+, CD4+/CD8+). Secondly, they were isolated 133 

using the SCINA model, which result in a total number of 2,891 cells (detailed description in the method 134 

part), Figure 1c. To focus on the different regulatory states of these cells, we identified five subgroups 135 
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using SNN-clustering as well as pseudotime trajectories (STREAM18), closely reflecting the different 136 

activation states as recently described8, Figure 1c and Supplementary Figure 3a. Pseudotime 137 

analysis is a computational approach by reconstructing lineage differentiation trajectories, which provide 138 

insights into transformation of cells over time and map fate decisions18. Cluster 1 contains cells marked 139 

by the expression of CCL5 and NKG7 and is enriched with the signature of naive T cells8 (resting T 140 

cells), Supplementary Figure 3a-b, whereas the signature genes of activated T cells was enriched in 141 

cluster 2 (GNLY, TNFAIP3, GZMB), Supplementary Figure 3 a-b. Clusters 3 and 4 contain high 142 

expression of known exhaustion markers such as HAVCR2, CYBB and VSIR, and are highly enriched 143 

for the T cell exhaustion signature, Figure 1d and Supplementary Figure 3 a-b. However, cluster 3 144 

revealed strong expression of proliferation markers such as TOP2A and MKI67, and enriched for the 145 

proliferation signature (GSEA), Figure 1e, and uniquely expressed markers of the dysfunctional 146 

activated state, suggesting that these cells represent an intermediate state between T effector cells and 147 

fully exhausted T cells. Based on our findings, we define cluster 1 as naive T cells (SELL, CCR7 and 148 

IL7R) with enriched WNT signaling, cluster 2 represents T effector cells (CD28, ICOS and IL2RB) and 149 

showed IL2/IL12 pathway enrichment. The exhaustion clusters (cluster 3 and 4) were highlighted by a 150 

subset of exhaustion markers, Figure 1d, although classical markers such as CTLA4 or PDCD1 are 151 

lacking, Supplementary Figure 3c. 152 

 153 

Dysfunctional State of T cells Driven by IL-10 Signaling 154 

To gain insights into the regulatory mechanism involved, we reconstructed fate decisions made during 155 

T cell exhaustion using pseudotime trajectories. We identified 3 branches and 4 states in the present 156 

dataset in which T cells can exist, ranging from effector T cells to dysfunctional activation and 157 

exhaustion, Figure 1c,f. In the following section, SNN-clustering of T cells will be referred to as C1-5 158 

and pseudo-timepoints as S0-3. We noticed that  in both effector T cells (S3) as well as in dysfunctional 159 

activated and exhausted T cells, that proliferation markers remained upregulated (TOP2A, MKI67), 160 

Figure 1g. Additionally, we observed an increase in the Interleukin 10 (IL10) and INF-gamma response, 161 

Figure 1h, while IFNG expression was found exclusively in effector T cells (S3), Supplementary Figure 162 

3d. In addition, we arranged all cells along the trajectory from S3 (effector T cells) over the states: from 163 

S0 (naive), S1 (T cell activation) to S2 (exhausted T cells), and mapped signature genes from T cell 164 

activation and exhaustion, Figure 1i, as well as pathway enrichments (Figure 1i top) of the IL-10 and 165 

IFN-gamma pathway. Leaf genes of the S3 branch were more likely mapped to T cell activation, whereas 166 
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leaf genes of S2 were more likely to be classified as exhausted genes. We also showed that genes of 167 

the IL-10 signature belonged to the set of transient genes that remained increased during the activation 168 

process of T cells as well in the exhausted state, Figure 1i. In summary, our data suggested that 169 

response to IL-10 and IFN-gamma contributed to the dysfunctional state of T cells and affected fate 170 

decisions. To gain insights into accurate downstream signaling of IL-10, IFN-gamma, as well as IL2, we 171 

created a library of the 50 most highly up- and downregulated genes, Figure 2a-b. Next, we extracted 172 

signatures observed in the different T cell clusters and compared them with the stimulation T cells. As 173 

expected, IL2 upregulated genes were significantly enriched in clusters 1 and 2, while IFN gamma and 174 

IL-10 marker genes showed a significant enrichment in the dysfunctional clusters 3 and 4, Figure 2c. 175 

Furthermore, we mapped signature genes from T cell clusters 1-4 along the different stimulations, 176 

Figure 2d. In agreement with our assumed conclusions a large subset of exhausted genes was highly 177 

enriched in T cells stimulated with IL-10 alone or in combination with IFN-gamma (CYBB, HAVCR2, 178 

LAG3, VSIR, CTLA4). Stimulation with IL2 caused increased activation marked by GNLY, NKG7, IL2RB.  179 

 180 

A Subset of Microglia and Macrophages Drive IL-10 Stimulation 181 

In our recent investigation19, the crosstalk between reactive astrocytes of the tumor microenvironment 182 

and microglia cells was found to be responsible for upregulating IL10 release through 183 

microglia/macrophages caused by stimulation with IFN gamma and leading to JAK/STAT activation in 184 

tumor-associated astrocytes. In this study we introduce the “nearest functionally connected neighbor” 185 

algorithm, an in-silico model to identify the most likely related cell pairs through divergent down- and up-186 

stream signal activity, Figure 3a. In our model, we assume that cellular interaction with distinct mutual 187 

activation implies two fundamental prerequisites. On the one hand the ligand needs to be expressed 188 

and released, or otherwise exposed on the cell surface. To avoid the chances of randomly elevated 189 

expression or technical artifacts, we also looked at simultaneous occurrence of ligand induction 190 

(upstream pathway signaling). On the other hand, the receptor needs to be expressed, and the 191 

downstream signaling has to be activated as well. This allows predicting the functional status of the 192 

receiver cell (Explanation of the model can be found in the methods section, with an overview in the 193 

Figure 3a).  194 

We used our in-silico-model to screen for potential cells responsible for IL-10 activation of T cells. The 195 

algorithm identified pairs of lymphoid (T cell clusters) and myeloid cells (macrophages and microglia 196 

cluster) and estimated the likelihood of mutual activation, Figure 3b. By extraction of nearest connected 197 
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cells (top 10% ranked cells), we identified a subset of myeloid cells marked by remarkably high IL10 198 

expression, Figure 3b. Within the receiver cells most of the connected cells (top 10% ranked cells) 199 

originated from the exhausted T cell clusters 3 and 4, Figure 3c-d. The ligand cells that release IL10 200 

(ligand-cells) on the other hand were located in the myeloid clusters (clusters 4 and 5, according to the 201 

initial SNN-clustering containing the whole dataset), Supplementary Figure 1, and predominantly 202 

expressed the markers of activated myeloid cells (CD163, CD68), as well as recently described marker 203 

genes for glioma-associated microglia (GAM)4 cells (VEGFA and SPP1), Supplementary Figure 4. The 204 

highly connected ligand cells showed little to no expression of the inflammatory genes IL1B or IL6, 205 

Supplementary Figure 4. In order to explore the difference between connected and non-connected 206 

cells we examined in-silico extract connected and non-connected cells, which were defined by the 207 

highest and lowest interaction-scores (quantile 97.5%). Using differential gene expression analysis we 208 

observed multiple genes which confirmed the non-inflammatory polarization status of highly connected 209 

cells. These findings are not surprising, since one of the essential markers of non-inflammatory myeloid 210 

cells is IL10. We showed that the subset of most highly connected cells, marked by CD168+ - VEGFA+ 211 

- IL1B- - IL6- express increased levels of heme oxygenase 1 (HMOX1). HMOX1 is activated during 212 

inflammation and oxidative injuries and is regulated through the Nrf2/Bach1-axis, as well as through the 213 

IL10/HO1-axis. This gene is also well known to be upregulated in alternative activated macrophages20. 214 

Consistent with our findings, most downstream signals of the IL10/HO1-axis such as STAT3 and p38 215 

MAPK were found to be upregulated in a gene set enrichment analysis, Figure 3f and g. Another 216 

immunosuppressive signaling marker closely related to the alternative activation of 217 

macrophages/microglia is the release of TGF beta21, which was also found to be up-regulated in highly 218 

connected cells, Figure 3g.  219 

 220 

T cell Activation and Exhaustion Reveals Spatial Heterogeneity and Association with 221 

Glioblastoma Subtype 222 

For glioblastoma, a tumor with a high degree of heterogeneity due to regional metabolic differences and 223 

varying composition of the tumor microenvironment, the prediction of connected cells needs to be 224 

confirmed by looking at the spatial overlapping of interacting cells. Mapping of spatial gene expression 225 

is a novel technique used to overcome the limitation of scRNA-seq, which lacks spatial information, 226 

Figure 4a. We performed spatial transcriptomic RNA sequencing (stRNA-seq) of 3 confirmed 227 

glioblastomas of the IDH1/2 wild-type, containing a total number of 2,352 spots correctly aligned to the 228 
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H&E image, Figure 4a. We observed a median of 8 cells per spot (range: 4 to 22 cells per spot), which 229 

allows the spatial mapping of gene expression, but not at single cell resolution. However, when we 230 

compared our dataset to the recent classification of glioblastoma22, consistent results were obtained in 231 

accordance to the diversity of subtype expression, Figure 4b. We used loess-fitted surface plots to map 232 

the gene set enrichment of either T cell activation (cluster 2) or T cell exhaustion (clusters 3 and 4), 233 

Figure 4c-d, which were highly heterogeneously distributed across patients. Whereas the first patient 234 

predominantly revealed areas with T cell exhaustion, Figure 4d upper panel, the others appeared more 235 

balanced, although the percentage of exhausted spots still dominated. Further, we showed the spatial 236 

overlap of the exhaustion marker genes (cluster 3) and IL10 response, Figure 4e. The spatial 237 

distribution was found to be consistent when using a published set of genes, which characterized the 238 

exhausted state of T cells. In a next step, we validated which expression subtype was spatially correlated 239 

with T cell exhaustion according to the novel molecular classification22. By overlaying the gene set 240 

expression and GBM subtype maps, we observed that “exhausted” regions were mainly occupied by 241 

mesenchymal regions, Figure 4f. We aligned all spots (sample 1-3) along a trajectory reflecting the 242 

enrichment of T cell exhaustion (using enrichment scores, detailed description in the methods), and 243 

mapped the signature genes of each molecular subtype for the same spot, Figure 4g. Thereby, we 244 

confirmed that in highly exhausted regions, signature genes of the mesenchymal subtype are also highly 245 

expressed.  246 

 247 

Spatial Correlation of HMOX1+-Myeloid Cells and T cell Exhaustion Signatures 248 

With our NFCN-algorithm we screened for spots containing IL10 release and response and used both 249 

outputs to find overlapping regions within the spatial dataset, Figure 5a. The identified regions of high-250 

IL10 signaling overlap with signatures reflecting T cell exhaustion (marker gene cluster 3) and marker 251 

genes of the connected cells identified above (CD163, IL10, CD68, HMOX1), Figure 5b-c. Furthermore, 252 

using the non-connected signatures (IL1B, IL6, CD68), we verify distinct localizations of myeloid states, 253 

Figure 5c. We observed a strong overlap between the connected cells and the expression of exhaustion 254 

markers, suggesting that our data confirm the interaction between HMOX1+ myeloid cells and exhausted 255 

T cells.  256 

 257 

Loss of Myeloid Cells Increases Antitumor Immunity 258 
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To further provide evidence for our findings from computational approach, we made use of recently 259 

described human neocortical slice model in which the cellular architecture of the CNS is well preserved 260 

19,23. We cultured non-infiltrated cortical slices (defined in a recent report19,23) with and without myeloid 261 

cell depletion, as recently described to understand the communication between myeloid cells in the 262 

tumor microenvironment along with lymphoid cells. Three days post depletion of myeloid cells using 263 

11mM clodronate we injected a primary cell line (BTSC#233, GFP-tagged) characterized by RNA-seq 264 

profiling as mesenchymal24. Post tumor growth, we injected peripheral T cells (same donors), tagged 265 

by CellTrace™ Far Red (CTFR) and incubated the slices for another 24h, Figure 6a. By immunostaining 266 

we showed that myeloid cell depletion reduces the number of IBA1+ cells along with most of HMOX1+ 267 

cells, Figure 6b. Using enzyme-linked immunosorbent assay (ELISA) we found a significant reduction 268 

in IL10 when myeloid cells are depleted, regardless of the presence of tumor cells, Figure 6c. The 269 

strongest difference in IL10 release was observed between myeloid depleted slices in the presence of 270 

tumor cells, Figure 6c. Furthermore, we stained for Granzyme B (GZMB+) T cells and quantified IL2 271 

release to examine the amount of effector T cells in depleted or non-depleted slices. We found an 272 

increased number of GZMB+ T cells in myeloid depleted slices, Figure 6d, along with significant 273 

increase of IL2 release, Figure 6e. Differences in IFN gamma release were not observed, Figure 6f. 274 

We also stained for the exhaustion marker TIM3 (Gen: HAVCR2), which was found to be enriched in 275 

exhausted T cells, and observed a loss of expression in the myeloid depleted slices, Figure 6g, 276 

suggesting that myeloid derived IL10 release (by HMOX1+ cells) leads to T cell exhaustion, which is in 277 

line with the computational model.  278 

  279 
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Discussion: 280 

Although single-cell RNA-sequencing accurately maps the cellular architecture and reflects the diversity 281 

of cellular states17,22,25,26, spatial information is lacking. Here we combine single cell RNA sequencing of 282 

the immune compartment with spatial transcriptomic RNA-sequencing (stRNA-seq) to gain better 283 

insights into the complex crosstalk, cellular states and cellular plasticity leading to the 284 

immunosuppressive environment found in glioblastoma (GBM).  285 

Recent studies have reported different subtypes of microglia and macrophages occupying glial 286 

tumors1,4,22,25,26 although detailed information about the lymphoid infiltration cells is lacking. There is 287 

intense interest in T cells and their varied states due to their importance to the development of targeted 288 

therapies and understanding the immunosuppressive environment of glioblastoma. Currently available 289 

data characterizing T cell infiltration at the molecular level in glioblastoma (GBM) is limited. T cell states, 290 

particularly in disease, are somehow difficult to accurately classify, leading to numerous definitions and 291 

markers in recent years2,7,27–29. While some authors use the terms "dysfunctional" and "exhausted" 292 

synonymously30, others differentiate between the dysfunctional and the exhausted states of T cells27,29. 293 

In this study we use the definition of cellular states released by Singer et al., 20168. On the basis of 294 

these gene sets our data showed that only cells which remained activated along the pseudotime-295 

trajectory were able to enter the state of dysfunction, and later exhaustion. The dysfunction appears to 296 

be a transitional state, associated with increased proliferation, despite immunosuppressive stimulation 297 

from the tumor environment. This imbalance between pro- and anti-inflammatory signaling, dominated 298 

by IL10 secretion, leads to final exhaustion of the T cells, which is in agreement with the current 299 

literature2,31. In order to find a consensus with regard to marker genes we further validated our findings 300 

on a set of exhausted marker genes recently published in an overview study32. We and others have 301 

shown that the environment of GBM aid the evolution of immune suppression. In this process, astrocytes 302 

and myeloid cells, both driven by STAT-3 signaling, orchestrate the immunosuppressive 303 

environment4,19,33,34. Based on the knowledge that IL10 interaction plays a crucial role in the shift from 304 

activated to exhausted T cells, we build an in-silico model that identified potential connected cells that 305 

drive the T cell exhaustion. By use of this model, we identified a subset of myeloid cells marked by high 306 

expression of HMOX1, a gene which is induced by oxidative stress and metabolic imbalance35,36. 307 

HMOX1 is linked to the STAT-3 pathway and induces IL-10 production via MAPK activation and in 308 

agreement with the literature all of these markers were also found to be upregulated in our connected 309 

cells. Furthermore, we used the stRNA-seq to confirm the spatial overlap of cells which were identified 310 
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as highly connected. We showed that the HMOX1-myeloid cells were spatially correlated with 311 

exhaustion and the mesenchymal state of glioblastoma. These findings are accord with published 312 

reports, revealing that the mesenchymal cells are the component of GBM responsible for the immune 313 

crosstalk22. HMOX1 expression in GBM and IDH-WT astrocytoma was found to be increased in 314 

recurrent GBM and negatively associated with overall survival, Supplementary Figure 5. In addition, 315 

we made use of a human neocortical slice model with and without depletion of myeloid cells. By injecting 316 

tumor cells into the slices as well as T cells from the same donors, we simulated the function of the 317 

myeloid cells with regard to IL10 release and T cell stimulation. Fitting with our computational model, 318 

we confirmed that HMOX1+ myeloid cells cause a reduction of effector T cells with a respective reduction 319 

in IL2 release and increased expression of our identified exhaustion marker TIM3.  320 

The approach demonstrated here to integrate scRNA-seq and stRNA-seq using a variety of 321 

computational approaches does have some major limitations. First, the spatial transcriptomic array is 322 

only about 6 × 6.5 mm2 in size; therefore, the array can only show a limited portion of the actual tumor, 323 

and not every spot achieves single cell resolution. In this study we used first-generation spatial 324 

transcriptomic technology, meaning the number of spots, barcoding sensitivity and diffusion of 325 

transcripts across the spots is not fully optimized and needs more investigation for future datasets. Brain 326 

tissue, and GBM specimens respectively, are a challenge due to varying levels of tissue quality and 327 

problems with rapid RNA degradation. Despite the fact that we initially used 5 patients on the array with 328 

numerous validation and quality control experiments, the quality of the RNA and the library did not 329 

achieve our criteria for two of the patients. To date, brain tumor tissue has remained a challenge with 330 

this technique. Although we have performed numerous tissue optimization experiments to reduce 331 

transcript diffusion, the diffusion of transcripts through the spots during sample preparation cannot be 332 

totally avoided. 333 

  334 
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Methods: 335 

Ethical Approval 336 

The local ethics committee of the University of Freiburg approved the data evaluation, imaging 337 

procedures and experimental design (protocol 100020/09 and 472/15_160880). The methods were 338 

carried out in accordance with the approved guidelines, with written informed consent obtained from all 339 

subjects. The studies were approved by an institutional review board. Further information and requests 340 

for resources, raw data and reagents should be directed and will be fulfilled by the Contact: D. H. 341 

Heiland, dieter.henrik.heiland@uniklinik-freiburg.de. A complete table of all materials used is given in 342 

the supplementary information. 343 

 344 

T cell isolation and stimulation 345 

Blood was drawn from a healthy human individual into an EDTA (ethylenediaminetetraacetic acid) 346 

cannula. T cells were extracted in a negative selection manner using a MACSxpress® Whole Blood Pan 347 

T Cell Isolation Kit (Miltenyi Biotech). T cells were then transferred in Advanced RPMI 1640 Medium 348 

(ThermoFisher Scientific, Pinneberg, Germany) and split for cytokine treatment: Three technical 349 

replicates were used for each T cell-treatment condition. Interleukin 2 (IL-2, Abcam, Cambridge, UK) 350 

was used at a final concentration of 1 ng/ml, Interleukin 10 (IL-10, Abcam) at 5 ng/ml, Interferon gamma 351 

(IFN-γ, Abcam) at 1 ng/ml and Osteopontin (SPP-1, Abcam) at 3 µg/ml. Cytokine treatment was 352 

performed in Advanced RPMI 1640 Medium and T cells were incubated at 37°C and 5% CO2 for 24h. 353 

 354 

RNA sequencing of stimulated T Cells 355 

The purification of mRNA from total RNA samples was achieved using the Dynabeads mRNA 356 

Purification Kit (Thermo Fisher Scientific, Carlsbad, USA). The subsequent reverse transcription 357 

reaction was performed using SuperScript IV reverse transcriptase (Thermo Fisher Scientific, Carlsbad, 358 

USA). For preparation of RNA sequencing, the Low Input by PCR Barcoding Kit and the cDNA-PCR 359 

Sequencing Kit (Oxford Nanopore Technologies, Oxford, United Kingdom) were used as recommended 360 

by the manufacturer. RNA sequencing was performed using the MinION Sequencing Device, the 361 

SpotON Flow Cell and MinKNOW software (Oxford Nanopore Technologies, Oxford, United Kingdom) 362 

according to the manufacturer’s instructions. Samples were sequenced for 48h on two flow-cells. 363 

Basecalling was performed by Albacore implemented in the nanopore software. Only D2-Reads with a 364 

quality Score above 8 were used for further alignment.  365 
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 366 

Sequence trimming and Alignment  367 

In the framework of this study, we developed an automated pipeline for nanopore cDNA-seq data, which 368 

is available at github (https://github.com/heilandd/NanoPoreSeq). First the pipeline set up a new class 369 

termed “Poreseq” by a distinct sample description file. The analysis starts by rearranging the reads from 370 

the fastq output from the nanopore sequencer containing all of the D2-Reads. All fastq files need to be 371 

combined into one file. Multiplexed samples were separated according to their barcode and trimmed by 372 

Porechop (https://github.com/rrwick/Porechop). Alignment was performed with minimap2 373 

(https://github.com/lh3-/minimap2) and processed with sam-tools.  374 

 375 

Posthoc Analysis of Bulk-RNA-seq 376 

A matrix of counted genes was further prepared by the RawToVis.R 377 

(github.com/heilandd/VRSD_Lab_v1.5) script containing, normalization of Mapped reads by DESeq, 378 

batch effect removal (ComBat package) and fitting for differential gene expression. Gene set enrichment 379 

analysis was performed by transformation of the log2 foldchange of DE into a ranked z-scored matrix 380 

which was used as the input. The expression matrix was analysed with AutoPipe 381 

(https://github.com/heilandd/AutoPipe) by a supervised machine-learning algorithm and visualized with 382 

a heatmap. Full analysis was visualized by the Visualization of RNA-Seq Data (VRSD_Lab software, 383 

github.com/heilandd/VRSD_Lab_v1.5) as a dashboard app based on shiny R-software. We extracted 384 

the 50 top up/down regulated genes respectively of each stimulation with respect to control condition to 385 

construct a stimulation library. 386 

 387 

Single-Cell Suspension for scRNA-sequencing 388 

Tumor tissue was obtained from glioma surgery immediately after resection and was transported in 389 

Phosphate-buffered saline (PBS) in approximately 5 minutes into our cell culture laboratory. Tumor 390 

tissue was processed under a laminar flow cabinet. Tissue was reduced to small pieces using two 391 

scalpels and the tissue was processed with the Neural Tissue Dissociation Kit (T) using C-Tubes 392 

(Miltenyi Biotech, Bergisch-Gladbach, Germany) according to the manufacturer´s instructions. The 393 

Debris Removal Kit from Miltenyi was used according to the manufacturer´s instructions to remove 394 

remaining myelin and extracellular debris. In order to remove the remaining erythrocytes, we 395 

resuspended the pellet in 3,5 ml ACK lysis buffer (ThermoFisher Scientific, Pinneberg, Germany) and 396 
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incubated the suspension for 5 minutes followed by a centrifugation step (350g, 10 min, RT). Cell 397 

quantification with a hematocytometer was performed after discarding the supernatant and 398 

resuspending the pellet in PBS. Cell suspensions were centrifuged again (350g, 10 min, RT) and 399 

resuspended in freezing medium containing 10% DMSO (Sigma-Aldrich, Schnelldorf, Germany) in FCS 400 

(PAN-Biotech, Aidenbach, Germany). Cell suspensions were immediately placed in a freezing box 401 

containing isopropanol and stored in a -80°C freezer for not more than 4 weeks. 402 

 403 

Cell sorting by Magnetic Beads 404 

Four frozen single-cell suspensions, originating from one patient with an IDH-mutated glioma and three 405 

patients with an IDH-wildtype glioblastoma (GBM), were thawed and the dead cells were magnetically 406 

labeled and eliminated using a Dead Cell Removal Kit (Miltenyi Biotech). The tumor immune 407 

environment in general and T cells in particular were positively selected by using CD3+-MACS (Miltenyi 408 

Biotech). Cells were stained with trypan blue, counted using a hematocytometer and prepared at a 409 

concentration of 700 cells/µL. 410 

 411 

Droplet scRNA-sequencing 412 

At least 16000 cells per sample were loaded on the Chromium Controller (10x Genomics, Pleasanton, 413 

CA, USA) for one reaction of the Chromium Next GEM Single Cell 3´v3.1 protocol (10x Genomics), 414 

based on a droplet scRNA-sequencing approach. Library construction and sample indexing was 415 

performed according to the manufacturer´s instructions. scRNA-libraries were sequenced on a NextSeq 416 

500/550 High Output Flow Cell v2.5 (150 Cycles) on an Illumina NextSeq 550 (Illumina, San Diego, CA, 417 

USA). The bcl2fastq function and the cell ranger (v3.0) was used for quality control.  418 

 419 

Postprocessing scRNA-sequencing 420 

We used cell ranger to detect low-quality read pairs of single-cell RNA sequencing (scRNA-seq) data. 421 

We filtered out reads which did not reach the following criteria: (1) bases with quality < 10, (2) no 422 

homopolymers (3) ‘N’ bases accounting for ≥10% of the read length. Filtered reads were mapped by 423 

STAR aligner and the resulting filtered count matrix further processed by Seurat v3.0 (R-package). We 424 

normalized gene expression values by dividing each estimated cell by the total number of transcripts 425 

and multiplied by 10,000, followed by natural-log transformation. Next, we removed batch effects and 426 

scaled data by a regression model including sample batch and percentage of ribosomal and 427 
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mitochondrial gene expression. For further analysis we used the 2000 most variable expressed genes 428 

and decomposed eigenvalue frequencies of the first 100 principal components and determined the 429 

number of non-trivial components by comparison to randomized expression values. The obtained non-430 

trivial components were used for SNN clustering followed by dimensional reduction using the UMAP 431 

algorithm. Differently expressed genes (DE) of each cluster were obtained using a hurdle model tailored 432 

to scRNA-seq data which is part of the MAST package. Cell types were identified by 3 different methods; 433 

Classical expression of signature markers of immune cells; By SingleR an automated annotation tool 434 

for single-cell RNA sequencing data obtaining signatures from the Human Primary Cell Atlas, By SCINA, 435 

a semi-supervised cell type identification tool using cell-type signatures as well as a Gene-Set Variation 436 

Analysis (GSVA). Results were combined and clusters were assigned to the cell type with the highest 437 

enrichment within all models. In order to individually analyze T cells, we used the assigned cluster and 438 

filter for the following criteria. For further analysis T cells were defined by: CD3+CD8+ / CD4+CD14-LYZ-439 

GFAP-CD163-IBA-.  440 

 441 

Spatial Transcriptomics  442 

The spatial transcriptomics experiments were done using the 10X Spatial transcriptomics kit 443 

(https://spatialtranscriptomics.com/). All the instructions for Tissue Optimization and Library preparation 444 

were followed according to manufacturer’s protocol. Here, we briefly describe the methods followed 445 

using the library preparation protocol. 446 

 447 

Tissue collection and RNA quality control: 448 

Tissue samples from three patients, diagnosed with WHO IV glioblastoma multiforme (GBM), were 449 

included in this study. Fresh tissue collected immediately post resection was quickly embedded in 450 

optimal cutting temperature compound (OCT, Sakura) and snap frozen in liquid N2. The embedded 451 

tissue was stored at -80°C until further processing. A total of 10 sections (10µm each) per sample were 452 

lysed using TriZOl (Invitrogen, 15596026) and used to determine RNA integrity. Total RNA was 453 

extracted using PicoPure RNA Isolation Kit (Thermo Fisher, KIT0204) according to the manufacturer’s 454 

protocol. RIN values were determined using a 2100 Bioanalyzer (RNA 6000 Pico Kit, Agilent) according 455 

to the manufacturer’s protocol. It is recommended to only use samples with an RNA integrity value >7.  456 

 457 

 458 
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Tissue staining and Imaging: 459 

Sections were mounted onto spatially barcoded glass slides with poly-T reverse transcription primers, 460 

with one section per array. These slides can be stored at -80°C until use. The slides were then warmed 461 

to 37°C, after which the sections were fixed for 10 minutes using 4% para-formaldehyde solution (Carl 462 

Roth, P087.1), which was then washed off using PBS. The fixed sections were covered with propan-2-463 

ol (VWR, 20842312). Following evaporation for 40 seconds, sections were incubated in Mayer’s 464 

Hematoxylin (VWR, 1092490500) for 7 min, bluing buffer (Dako, CS70230-2) for 90 seconds and finally 465 

in Eosin Y (Sigma, E4382) for 1 min. The glass slides were then washed using RNase/DNase free water 466 

and incubated at 37°C for 5 min or until dry. Before imaging, the glass slides were mounted with 87% 467 

glycerol (AppliChem, A3739) and covered with coverslips (R. Langenbrinck, 01-2450/1). Brightfield 468 

imaging was performed at 10x magnification with a Zeiss Axio Imager 2 Microscope, and post-469 

processing was performed using ImageJ software. 470 

The cover slips and glycerol were removed by washing the glass slides in RNase/DNase free water until 471 

the cover slips came off, after which the slides were washed using 80% ethanol to remove any remaining 472 

glycerol. 473 

 474 

Permeabilization, cDNA synthesis and tissue removal: 475 

For each capture array, 70µL of pre-permeabilization buffer, containing 50U/µL Collagenase along with 476 

0.1% Pepsin in HCl was added, followed by an incubation for 20 minutes at 37°C. Each array well was 477 

then carefully washed using 100µL 0.1x SSC buffer. 70µL of Pepsin was then added and incubated for 478 

11 minutes at 37°C. Each well was washed as previously described and 75µL of cDNA synthesis master 479 

mix containing: 96µL of 5X First strand buffer, 24 µL 0.1M DTT, 255.2µL of DNase/RNase free water, 480 

4.8µL Actinomycin, 4.5µL of 20mg/mL BSA, 24µL of 10mM dNTP, 48µL of SuperscriptÒ and 24µL of 481 

RNAseOUTÔ was added to each well and incubated for 20 hours at 42°C without shaking. Cyanine 3-482 

dCTP was used to aid in the determination of the footprint of the tissue section used.  483 

Since glioblastoma tissue is a fatty tissue, degradation and tissue removal was carried out using 484 

Proteinase K treatment for which 420µL Proteinase K and PKD buffer (1:7), were added to each well 485 

and then incubated at 56°C for 1hr with intermittent agitation (15 seconds / 3 minutes). After incubation, 486 

the glass slides were washed three times with 100mL of 50°C SSC/SDS buffer with agitation for 10 487 

minutes, 1 minute and finally for 1 minute at 300 rpm. The glass slides were then air-dried at room 488 
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temperature. Tissue cleavage was carried out by the addition of 70µL of cleavage buffer (320µL 489 

RNase/DNase free water, 104µL Second strand buffer, 4.2µL of 10mM dNTP , 4.8µL of 20 mg/mL BSA 490 

and 48µL of USERÔ Enzyme) to each well and incubation at 37°C  for 2 hours with intermittent agitation. 491 

 492 

Spot Hybridization: 493 

In order to determine the exact location and quality of each of the 1007 spots, fluorescent Cyanine-3 A 494 

is hybridized to the 5’ ends of the surface probes. 75µL of the hybridization solution (20µL of 10µM 495 

Cynaine-3A probe and 20µL of 10µM Cyanine-3 Frame probe in 960µL of 1X PBS) was added to each 496 

well and incubated for 10min at room temperature. The slides were then washed three times with 100ml 497 

of SSC/SDS buffer preheated to 50°C for 10min, 1min and 1min at room temperature with agitation. 498 

The slides were then air-dried and imaged after applying Slowfadeâ Gold Antifade medium and a cover 499 

slip.  500 

 501 

Library Preparation: 502 

1. Second Strand Synthesis 503 

5µL second strand synthesis mix containing 20µL of 5X First Strand Buffer, 14µL of DNA polymerase I 504 

(10U/µL) and 3.5µL Ribonuclease H (2U/µL) were added to the cleaved sample and incubated at 16°C 505 

for 2 hours. Eppendorf tubes were placed on ice and 5µL of T4 DNA polymerase (3U/µL) were added 506 

to each strand and incubated for 20 minutes at 16°C. 25µL of 80mM EDTA (mix 30µL of 500mM EDTA 507 

with 158µL DNase/RNase free water) was added to each sample and the samples were kept cool on 508 

ice. 509 

2. cDNA purification 510 

cDNA from the previous step was purified using Agencourt RNAclean XP beads and DynaMagÔ- 2 511 

magnetic rack, incubated at room temperature for 5 min. Further cleansing was performed by the 512 

addition of 80% Ethanol to the sample tubes, while the samples were still placed in the magnetic rack. 513 

Sample elution was then carried out using 13µL of NTP/water mix. 514 

3. In Vitro Transcription and Purification 515 

cDNA transcription to aRNA was carried out by adding 4µL of reaction mix containing: 10x Reaction 516 

Buffer, T7 Enzyme mix and SUPERaseInÔ RNase Inhibitor (20 U/µL) to 12µL of the eluted cDNA 517 

sample and incubated at 37°C, for 14 hours. The samples were purified using RNA clean XP beads 518 
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according to the manufacturer’s protocol and further eluted into 10µL DNase/RNase free water. The 519 

amount and average fragment length of amplified RNA was determined using the RNA 6000 Pico Kit 520 

(Agilent, 5067-1513) with a 2100 Bioanalyzer according to the manufacturer’s protocol. 521 

4. Adapter Ligation 522 

Next, 2.5µL Ligation adapter (IDT) was added to the sample and was heated for 2 min at 70°C and then 523 

placed on ice. A total of 4.5µL ligation mix containing 11.3µL of 10X T4 RNA Ligase, T4 RNA truncated 524 

Ligase 2 and 11.3µL of murine RNase inhibitor was then added to the sample. Samples were then 525 

incubated at 25°C for 1 hour. The samples were then purified using RNAClean XP beads according to 526 

the manufacturer’s protocol.  527 

5. Second cDNA synthesis 528 

Purified samples were mixed with 1µL cDNA primer (IDT), 1µL dNTP mix up to a total volume of 12µL 529 

and incubated at 65°C for 5 min and then directly placed on ice. A 1.5ml Eppendorf tube 8µL of the 530 

sample was mixed with 30µL of First Strand Buffer(5X), ), 7.5µL of DTT(0.1M), 7.5µL of DNase/RNase 531 

free water, 7.5µL of SuperScriptÒ III Reverse transcriptase and 7.5µL of RNaseOUTÔ Recombinant 532 

ribonuclease Inhibitor and incubated at 50°C for 1 hour followed by cDNA purification using Agencourt 533 

RNAClean XP beads according to the manufacturer’s protocol. Samples were then stored at -20°C. 534 

6. PCR amplification 535 

Prior to PCR amplification, we determined that 20 cycles were required for appropriate amplification. A 536 

total reaction volume of 25µL containing 2x KAPA mix, 0.04µM PCRInPE2 (IDT), 0.4µM PCR InPE1.0 537 

(IDT), 0.5µM PCR Index (IDT) and 5µL of purified cDNA were amplified using the following protocol: 538 

98°C for 3 min followed by 20 cycles at 98°C for 20 seconds, 60°C for 30 seconds , 72°C for 30 seconds 539 

followed by 72°C for 5 minutes. The libraries were purified according to the manufacturer’s protocol and 540 

eluted in 20µL EB (elution buffer). The samples were then stored at -20°C until used. 541 

7. Quality control of Libraries 542 

The average length of the prepared libraries was quantified using a Agilent DNA 1000 high sensitivity 543 

kit with a 2100 Bioanalyzer. The concentration of the libraries was determined using a Qubit dsDNA HS 544 

kit. The libraries were diluted to 4nM, pooled and denatured before sequencing on the Illumina NextSeq 545 

platform using paired end sequencing. We used 30 cycles for read 1 and 270 cycles for read 2 during 546 

sequencing. 547 
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 Sequence 

Ligation Adapter /5rApp/AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC/3d- dC/  

cDNA primer GTGACTGGAGTTCAGACGTGTGCTCTTCCGA  

PCR primer INPE1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT-CCGATCT  

PCR primer INPE2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT  

PCR index primer CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTC  

 548 

Postprocessing Spatial Transcriptomics  549 

First, we aligned the H&E staining by the use of the st-pipeline (github.com/SpatialTranscriptomics-550 

Research/st_pipeline). The pipeline contains the following steps: Quality trimming and removing of low 551 

quality bases (bases with quality < 10), sanity check (reads same length, reads order, etc..), remove 552 

homopolymers, normalize for AT and GC content, mapping the read2 with STAR, demultiplexing based 553 

on read1, sort for reads (read1) with valid barcodes, annotate the reads with htseq-count, group 554 

annotated reads by barcode (spot position), gene and genomic location (with an offset) to get a read 555 

count (github.com/SpatialTranscriptomics-Research/st_pipeline). The pipeline resulted in a gene count 556 

matrix and a spatial information file containing the x and y position and the H&E image. We used the 557 

Seurat v3.0 package to normalize gene expression values by dividing each estimated cell by the total 558 

number of transcripts and multiplied by 10,000, followed by natural-log transformation. As described for 559 

sc-RNA sequencing, we removed batch effects and scaled data by a regression model including sample 560 

batch and percentage of ribosomal and mitochondrial gene expression. For further analysis we used 561 

the 2000 most variable expressed genes and decomposed eigenvalue frequencies of the first 100 562 

principal components and determined the number of non-trivial components by comparison to 563 

randomized expression values. The obtained non-trivial components were used for SNN clustering 564 

followed by dimensional reduction using the UMAP algorithm. Differently expressed genes (DE) of each 565 

cluster were obtained using a hurdle model tailored to scRNA-seq data which is part of the MAST 566 

package. We further build a user-friendly viewer for spatial transcriptomic data (ST__Lab_v1.4), 567 

available at github (github.cm/heilandd/ST_Lab). The software tool contains various visualization 568 

options: Dimensional reduction given by the UMAP, spatial plots (spatial gene expression), state plots 569 

(scatter plots representative for subgroups reactive states of cells) and spatial correlation (further details 570 

given in the separate sections) 571 

 572 
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 573 

 574 

Spatial gene expression 575 

For spatial expression plots, we used either normalized and scaled gene expression values (to plot 576 

single genes) or scores of a set of genes, using the 0.5 quantile of a probability distribution fitting. The 577 

x-axis and y-axis coordinates are given by the input file based on the localization at the H&E staining. 578 

We computed a matrix based on the maximum and minimum extension of the spots used (32x33) 579 

containing the gene expression or computed scores. Spots without tissue covering were set to zero. 580 

Next, we transformed the matrix, using the squared distance between two points divided by a given 581 

threshold, implemented in the fields package (R-software) and adapted the input values by increasing 582 

the contrast between uncovered spots. The data are illustrated as surface plots (plotly package R-583 

software) or as images (graphics package R-software). 584 

 585 

Representation of Cellular States 586 

We aligned cells/spots to variable states regarding to gene sets (GS) that were selected GS(1,2,..n). First, 587 

we separated cells into GS(1+2) versus GS(2+4), using the following equation: 588 

!" =∥ %&("), %&(*) ∥+−∥ %&(-), %&(.) ∥+ 589 

A1 defines the y-axis of the two-dimensional representation. In a nest step, we calculated the x-axis 590 

separately for spots A1<0 and A1>0: 591 

A1 > 0:	!* = log 2 (%&(")::::::: − ;	%&(*)::::::: + 1	=) 592 

A1 < 0:	!* = log 2 (%&(-)::::::: − ;	%&(.):::::::	=) 593 

For further visualization of the enrichment of subsets of cells according to gene set enrichment across 594 

the two-dimensional representation, using a probability distribution fitting we transformed the distribution 595 

to representative colors. This representation is an adapted method published by Neftel and colleges 596 

recently22,26. 597 

 598 

Spatial correlation analysis 599 

In order to map spatial correlated gene expression or gene set enrichments we used z-scored ranked 600 

normalized expression values. One gene expression vector or enrichment vector of a gene set is used 601 

to order the spots along a spatial trajectory. We construct the trajectory of spots from lowest ranked to 602 

highest ranked spot (based on z-scored input vectors). The genes of interest (which were correlated 603 
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with the spatial trajectory) are fitted by loess-fit from the stats-package (R-software) and aligned to the 604 

ranked spots and scaled. Correlation analysis was performed by Pearson's product moment correlation 605 

coefficient. For heatmap illustration the gene order was computed by ordering the maximal peak of the 606 

loess fitted expression along the predefined spatial trajectory.  607 

 608 

Pseudotime trajectory analysis 609 

We down-scaled all 5 clusters of T cells to a total number of 1,500 cells as input for Single-cell 610 

Trajectories Reconstruction, Exploration And Mapping (STREAM). Normalized counts were used as 611 

input. We performed 10 replications of randomized down-scaling and STREAM trajectory 612 

reconstruction. We used STREAM mapping to identify transition genes (genes with reasonable dynamic 613 

along the inferred pseudotime) as well as leaf genes (genes with significant enrichment in a single leaf), 614 

this is further used to reconstruct cell fate decisions along the inferred pseudotime. Pseudotime analysis 615 

were illustrated as stream plots or subway plots (from the STREAM pipeline) or as heatmaps. To build 616 

the heatmap, we aligned each cell along their inferred pseudotime position and fitted the normalized 617 

gene expression. Then we created z-scores for each gene and plot genes by pheatmap function 618 

(pheatmap package, R-software). Genes were ordered by a correlation trajectory of the maximum peak 619 

of the fitted expression and the inferred pseudotime.  620 

 621 

Gene set enrichment analysis 622 

Gene sets were obtained from the database MSigDB v7 and internally created gene sets are available 623 

at githunb.com/heilandd. For enrichment analysis of single clusters, the normalized and centered 624 

expression data were used and further transformed to z-scores ranging from 1 to 0. Genes were ranked 625 

in accordance to the obtained differential expression values and used as the input for GSEA. 626 

 627 

Identification of cycling cells  628 

We used the set of genes published by Neftel and colleagues to calculate proliferation scores based on 629 

the GSVA package implemented in R-software. The analysis based on a non-parametric unsupervised 630 

approach, which transformed a classic gene matrix (gene-by-sample) into a gene set by sample matrix 631 

resulted in an enrichment score for each sample and pathway. From the output enrichment scores we 632 

set a threshold based on distribution fitting to define cycling cells.  633 

 634 
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 635 

 636 

Nearest Functionally Connected Neighbor (NFCN) 637 

To identify connected cells that interact by defined activation or inhibition of down-stream signals in the 638 

responder cell, we created a novel model. Therefore, we assumed that a cell-cell interaction is given 639 

only if a receptor/ligand pair induce correspondent down-stream signaling within the responder cell (cell 640 

with expressed receptor). Furthermore, we take into account that the importance of an activator cell (cell 641 

with expressed ligand) can be ranked according to their enriched signaling, which is responsible for 642 

inducing ligand expression. Based on these assumptions we defined an algorithm to map cells along an 643 

interaction-trajectory. The algorithm was designed to identify potential activators from a defined subset 644 

of cells. 645 

As input for the analysis we used a normalized and scaled gene expression matrix, a string containing 646 

the subset of target cells, a list of genes defining ligand induction on the one side and receptor signaling 647 

on the other side. These genes were chosen either by the MSigDB v7 database or our stimulation library 648 

explained above. Then, we down-scaled the data to 3000 representative cells including all myeloid cell 649 

types and calculate the enrichment of induction and activation of the receptor/ligand pair. Enrichment 650 

scores were calculated by singular value decomposition (SVD) over the genes in the gene set and the 651 

coefficients of the first right-singular vector defined the enrichment of induction/activation profile. Both 652 

expression values and enrichment scores were fitted by a probability distribution model and cells outside 653 

the 95% quantile were removed. Next, we fitted a model using a non-parametric kernel estimation 654 

(Gaussian or Cauchy-Kernel), on the basis of receptor/ligand expression (Aexp) and up/downstream 655 

signaling (Aeff) of each cell (i={1,..n}). Both input vectors were normalized and z-scored: 656 

 657 

(1)	CDEF G =
HIJK LMNGO(HPQR)

NST(HPQR)MNGO(HPQR)
	   (2)		UVW XCDEF GY =

"

O
∑ [V(C\T] − CDEF G)
O
G^"  658 

 659 

K is the kernel and 0.7 > h > 0.3 is used to adjust the estimator. The model result in a trajectory which 660 

were defined as Ligand(-)-Induction(-) to cells of the target subset with Receptor(-)-Activation(-).Further 661 

cells were aligned along the “interaction-trajectory”. We defined connected cells by reaching the upper 662 

70% CI in receptor/ligand expression as well as sores of induction/activation. The way of representation 663 

is illustrated schematically in Figure 3a. 664 

 665 
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 666 

 667 

CNV estimation: 668 

Copy-number Variations (CNVs) were estimated by aligning genes to their chromosomal location and 669 

applying a moving average to the relative expression values, with a sliding window of 100 genes within 670 

each chromosome, as described recently17. First, we arranged genes in accordance to their respective 671 

genomic localization using the CONICSmat package (R-software). As a reference set of non-malignant 672 

cells, we in-silico extracted 400 CD8 positive cells (unlikely to be expressed on tumor cells). To avoid 673 

the considerable impact of any particular gene on the moving average we limited the relative expression 674 

values [-2.6,2.6] by replacing all values above/below exp(i)=|2.6|, by using the infercnv package (R-675 

software).	This was performed only in the context of CNV estimation as previous reported11.  676 

 677 

Flow cytometry: 678 

Single-Cell suspensions were obtained after Dead-Cell Removal and CD3 MACS-enrichment. Cells 679 

were incubated with VivaFixÔ 398/550 (BioRad Laboratories, CA, USA) according to the 680 

manufacturer´s instructions. Cells were fixed in 4% paraformaldehyde (PFA) for 10 minutes. After 681 

centrifugation (350 g; 4°C; 5 min) and removal of the supernatant, the cell pellet was suspended in 0.5 682 

ml 4°C cold FACS buffer. Cell suspension were washed and centrifuged at 350xg for 5 mins, followed 683 

by resuspension in FACS buffer. The washing step was repeated twice. Finally, cells were resuspended 684 

in at least 0.5 to 1 mL of FACS buffer depending on the number of cells.  We used a Sony SP6800 685 

spectral analyzer in standardization mode with PMT voltage set to maximum to reach a saturation rate 686 

below 0.1 %. Gating was performed by FCS Express 7 plus at the core facility, University of Freiburg. 687 

 688 

Immunofluorescence 689 

The same protocol was followed for human neocortical slices with or without microglia and tumor cell 690 

injection. The media was removed and exchanged for 1 mL of 4% paraformaldehyde (PFA) for 1 h and 691 

further incubated in 20% methanol in PBS for 5 minutes. Slices were then permeabilized by incubating 692 

in PBS supplemented with 1 % Triton (TX-100) overnight at 4°C and further blocked using 20% BSA for 693 

4 hours. The permeabilized and blocked slices were then incubated by primary antibodies in 5% BSA-694 

PBS incubated overnight at 4°C. After washing in PBS, slices were labelled with secondary antibodies 695 

conjugated with Alexa 405, 488, 555, or 568 for 3 hours at room temperature. Finally, slices were 696 
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mounted on glass slides using DAPI fluoromount (Southern Biotech, Cat. No. 0100-20), as recently 697 

described19. 698 

 699 

Human Organotypic Slice Culture 700 

Human neocortical slices were prepared as recently described19,23. Capillaries and damaged tissue were 701 

dissected away from the tissue block in the preparation medium containing: Hibernate medium 702 

supplemented with 13 mM D+ Glucose, 30 mM NMDG and 1 mM Glutamax. Coronal slices of 300 µm 703 

thickness were sectioned using a vibratome (VT1200, Leica Germany) and incubated in preparation 704 

medium for 10 minutes before plating to avoid any variability due to tissue trauma. Three to four slices 705 

were gathered per insert. The transfer of the slices was facilitated by a polished wide mouth glass 706 

pipette. Slice were maintained in growth medium containing Neurobasal (L- Glutamine) supplemented 707 

with 2% serum free B-27, 2% Anti- Anti, 13 mM D+ Glucose, 1 mM MgSO4, 15 mM HEPES (Sigma, 708 

H0887) and 2 mM Glutamax at 5% CO2 and 37 °C. The entire medium was replaced with fresh culture 709 

medium 24 hours post plating and every 48 hours thereafter.  710 

 711 

Chemical depletion of Microglia from slice cultures 712 

Selective depletion of myeloid cell compartment in human neocortical slices was performed by 713 

supplementing the growth medium with 11 µmol of Clodronate (Sigma, D4434) for 72h at 37ºC. 714 

Subsequently, the slices were carefully rinsed with growth medium to wash away any debris.  715 

 716 

Tumor/T cell injection onto tissue cultures 717 

ZsGreen tagged BTSC#233 cell lines cultured and prepared as described in the cell culture section. 718 

Post trypsinization, a centrifugation step was performed, following which the cells were harvested and 719 

suspended in MEM media at 20,000 cells/µl. Cells were used immediately for injection onto tissue slices. 720 

A 10 µL Hamilton syringe was used to manually inject 1 µL into the white matter portion of the slice 721 

culture. Slices with injected cells were incubated at 37°C, 5% CO2 for 7 days and fresh culture medium 722 

was added every 2 days. Blood samples from the same donors from whom we obtained the healthy 723 

cortex for our organotypic slice cultures was drawn into an EDTA-cannula. Peripheral T cells were 724 

isolated using the same MACSxpress® Whole Blood Pan T Cell Isolation Kit (Miltenyi Biotech). T cells 725 

were tagged using the Cell Trace Far Red dye (ThermoFisher Scientific) prior to injection into the slices. 726 

Erythrocytes were eliminated from the suspension using ACK-lysis buffer (Thermo Fisher Scientific).  727 
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 728 

Enzyme linked Immunosorbent Assay  729 

An enzyme linked immunosorbent assay (ELISA) was performed in order to measure cytokine 730 

concentrations of IL-2, IL-10, IL-13 and IFN-gamma in the cell culture medium 24h after T cell injection. 731 

The Multi-Analyte ELISArray Kit (Qiagen, Venlo, Netherlands; MEH-003A) was used according to the 732 

manufacturer´s instructions. Absorbances were measured using the Tecan Infinite® 200 (Tecan, 733 

Männedorf, Switzerland). 734 
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Figure Description: 827 

 828 

Figure 1: a) Illustration of the workflow, tissue specimens are obtained from 7 glioblastoma patients 829 

while 4 patients were used for scRNA-seq and 3 patients for spatial transcriptomics. b) Dimensional 830 

reduction using UMAP, cell type was determined by SingleR (github.com/dviraran/SingleR) and 831 

SCINA15. c) Dimensional reduction (UMAP) of CD3+/CD8+ cells. SNN-clustering reveal 5 different 832 

cluster (upper panel). Pseudotime analysis by single-cell trajectory reconstruction exploration and 833 

mapping (STREAM) revealed 3 branches (bottom panel). d) Heatmap of mean single sample GSEA 834 

computed by gene set variation analysis using the C2/C5 /hallmark and C7 gene sets from the MSigDB 835 

and ImmuneSigDB. Differential activation was illustrated by common markers of naive, effector or 836 

exhausted T cells (Dimensional reduction (UMAP) of gene expression, right side). e) Dimensional 837 

reduction (UMAP) of gene expression of proliferation marker MKI67 and TOP2A and GSEA plots 838 

illustrate the proliferative capacity of different clusters. f) Arrangement of clusters along the pseudotime 839 

illustrated in a subway-plot (STREAM). g) Subway plot from the STREAM analysis illustrate the 840 

expression of TOP2A as marker for proliferation h) GSEA plots indicating IL10 and IFNG response in 841 

C1-4. i) Pseudotime enrichment of signature genes of exhaustion or T cell activation8, in the upper 842 

panel, scGSEA of the IFNG and IL10 response is shown. At bottom, an illustration of the pseudotime 843 

arrangement indicates the organization of cells in the heatmap.  844 

 845 

Figure 2: a) Workflow to build a library of stimulated T-cells b) T cell stimulation in order to build a library 846 

for cytokine effects, illustrated is a heatmap of the 10 most significant marker genes of each stimulation 847 

state, based on PAMR algorithm implemented in the AutoPipe. c) Gene Set Enrichment curves of top 848 

50 up-regulated genes of the IL-10 and IL-2 stimulation. Enrichment was validated in the different cluster 849 

from our scRNA-seq. d) Heatmap of different stimulation states, mapped are genes of the four clusters.  850 

 851 

Figure 3: a) Workflow to explore cell-cell interactions b) Cell-cell interaction plot as explained in a). Cells 852 

with an interaction-score above 0.8 are mapped to the UMAP. c) A UMAP illustration with representative 853 

connected cells, in the upper panels only the strongest connected cells (quantile over 90%) at the bottom 854 

panels, the UMAP presentation with connection above the 80% and 70% quantile. d) Circular plot 855 

indicates the different T cell cluster (right side) and myeloid cluster (left side). Bar charts indicate the 856 

percentage of cells in their respective clusters, for IL10-Receptor cells (right) and IL-10 Ligand cells 857 
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(left), Fisher's exact test was used for statistical testing. e) Volcano plot of differential gene expression 858 

between highly connected cells (CI>97.5%, left side) vs non-connected cells (CI<2.5%, right side), 859 

adjusted -log(p-vale) (FDR) was used at the y-axis. Red cells are defined by fold-change above 2 and 860 

FDR < 0.05. f) Violin plots of gene expression between connected cells (CI>97.5%, left side) vs non-861 

connected cells (CI<2.5%, right side). Wilcoxon Rank Sum test and FDR adjustment was used for 862 

statistical testing. g) Gene Set enrichment analysis of four different gene sets.  863 

 864 

Figure 4: a) Workflow of spatial transcriptomics b) 2D representation of heterogeneity states of 865 

glioblastoma by Neftel, colors indicate the expression of cycling cells (quantile). c) H&E stainings and 866 

correspondent gene expression profiles (d) with spatial distribution of T cell exhaustion (signature 867 

cluster 3-4, in red) and T cell activation (cluster 2, green). e-f) Spatial gene expression map of signature 868 

genes of cluster 3 (left top) or IL-10 stimulation (right top), map of tumor heterogeneity in accordance to 869 

the signature of Neftel et al., 2019. g) Heatmap of spots mapped along a trajectory that represents T 870 

cell exhaustion, the heatmap shows the gene expression of subtype signature genes (indicated at the 871 

left side).  872 

 873 

Figure 5: a-b) Cell-cell interaction plot as explained in Figure 4a). Cells with an interaction-score above 874 

0.8 are mapped to the spatial position and the density of connectivity is given in b) as a heatmap. 875 

c)Spatial gene expression maps of all patients with enrichment of exhaustion (Cluster3) in the upper 876 

panel and inflammatory-alternative activated phenotype of myeloid cells in the bottom part.  877 

 878 

Figure 6: a) Experimental workflow of the neocortical slice model with and without myeloid cell depletion. 879 

b) Immunostainings of IBA1 (Macrophages and Microglia) in magenta and HMOX1 in cyan, tumor cells 880 

are illustrated by grey. In the upper panel, the control set with maintained myeloid cells (M+) is shown, 881 

the bottom panel contains the myeloid cell depleted slices. c) Cytokine level of IL10 measured by ELISA 882 

from the medium. d) Immunostainings of T cells (CSFE-Tagged, in red) and GZMB a marker of T cell 883 

activation (green). e-f) ELISA measurements of IL2 and IFNg. g) Immunostainings of TIM3 (gene: 884 

HAVCR2) in yellow, which was identified in the scRNA-seq, and T cell in red. P-values are determined 885 

by one-way ANOVA (c,e,f) adjusted by Benjamini-Hochberger (c,e,f) for multiple testing. Data is given 886 

as mean ± standard deviation. 887 

 888 
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Supplementary Figures: 889 
 890 
Supplementary Figure1: a) UMAP representation of all cluster. b)  Correlation matrix of all clusters c-891 
d) Distribution of cell types and patients across all clusters. e) Signature genes of each cluster f) UMAP 892 
representation of signature cell type markers.  893 
 894 
Supplementary Figure2: a) Copy-number alterations based on single cell data. Only a small subset of 895 
tumor cells was found in the OPC cluster. 896 
 897 
Supplementary Figure3: a) Heatmap indicates marker genes of different T cell states. b) UMAP 898 
presentation of T cell clusters with color-coded expression of the Singer signatures of T cell states. c) 899 
Dimensional reduction (UMAP) of gene expression of CTLA4 and PDCD1 as well IFNG and GZMB (d). 900 
 901 
Supplementary Figure4: a) Dimensional reduction (UMAP) of gene expression in the full sc-dataset. 902 
Colors indicate gene expression across all clusters.  903 
 904 
Supplementary Figure5: a) Kaplan-Meier survival estimation of HMOX1 high/low expression GBM. b-905 
c) Expression of HMOX1 in different regions of the tumor (b) and in de-novo and recurrent stage (c). 906 
 907 
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