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Abstract: 

SARS-CoV-2 spike protein (S) is associated with the entry of virus inside the host cell by 

recruiting its loop dominant receptor binding domain (RBD) and interacting with the host ACE2 

receptor. Our study deploying a two-tier approach encompassing evolutionary and structural 

analysis provides a comprehensive picture of the RBD, which could be of potential use for better 

understanding the RBD and address its druggability issues. Resorting to an ensemble of sequence 

space exploratory tools including co-evolutionary analysis and deep mutational scans we provide 

a quantitative insight into the evolutionarily constrained subspace of the RBD sequence space. 

Guided by structure network analysis and Monte Carlo simulation we highlight regions inside 

the RBD, which are critical for providing structural integrity and conformational flexibility of the 

binding cleft. We further deployed fuzzy C-means clustering by plugging the evolutionary and 

structural features of discrete structure blocks of RBD to understand which structure blocks share 

maximum overlap based on their evolutionary and structural features. Deploying this multi-tier 

interlinked approach, which essentially distilled the evolutionary and structural features of RBD, 

we highlight discrete region, which could be a potential druggable pocket thereby destabilizing 

the structure and addressing evolutionary routes. 
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Introduction 

The 2019 novel coronavirus has spread worldwide, becoming a pandemic by affecting more than 

200 countries and becoming one of the worst infections in the recent times. Efforts at multiple 

levels are currently ensuing to effectively combat the disease spread and to come up with some 

potential preventive or therapeutic solutions. Majority of the therapeutic strategies are aimed at 

blocking the virus entry into the host cells, which is primarily driven by the SARS-CoV-2 spike 

(S) protein and its interaction with the angiotensin-converting enzyme 2 (ACE2) that is located at 

the outer membranes of cells in the lungs, arteries, heart, kidney, and intestines and serves as a 

SARS-CoV-2 receptor. The coronavirus entry into the host cell is a complex, multi-step, highly 

orchestrated process, which involves multiple processing stages of the S protein. The entire spike 

protein S is cleaved into S1 and S2 subunits, with S1 further participating in receptor recognition 

by recruiting its receptor binding domain (RBD). The S protein, being a key target for vaccines, 

therapeutic antibodies, and diagnostics, has been studied by various groups using different 

techniques, and the loop dominant RBD region of the protein has been reported to be the key in 

the receptor binding (1). The residues in RBD that are not directly involved in interaction with 

receptor but impose structural constraint on the motif/region (receptor binding region) may serve 

as druggable pockets for small molecule binding, depending upon their evolutionary traits and 

impact on global structure of the protein. Hence, we truncated and removed this domain (RBD) 

from the overall protein structure (Figure 1) and critically analyzed various aspects of Spike-

RBD, which stands immensely important for comprehensive understanding of the importance of 

this protein. 

 
Figure 1: Schematic representation of the selection logistics of the protein and protein segment. 

It shows an animated figure of the 2019 novel coronavirus. Segment presented in green cartoon 

refers to the receptor binding domain (RBD) of the spike protein. 

 

We have resorted to a two-tier approach in our study encompassing evolutionary and structural 

fabric of RBD, which is a 273 amino acid segment of the whole Spike protein stretching from 
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residue 319 to 591. In our study, especially in the sequence analysis segment, we have referred 

this residue stretch from 319 to 591 as positions 1 to 273. RBD, after the initial processing, docks 

into the binding cleft of the ACE2 receptor of host cells and thereafter initializes the virus entry 

process into the host cell. Our evolutionary tier of the current study was primarily focused on the 

sequence space of the RBD. The sequence space recreation clearly portrayed the closest RBD 

relatives and helped understanding the evolutionary constraints. Understanding evolutionary 

constraints provides a glimpse into the evolvability scope of a protein and helps conceiving an 

anti-evolution therapeutic strategy, which could impact the evolutionary trajectory. We observed 

sections of RBD, which were evolutionarily conserved as quantified by Shannon‟s entropy and 

the regions of co-evolutionary importance. Unlike sequence conservation, which gives a static 

snapshot of positions, which were critical and hence not subjected to variation, co-evolutionary 

analysis provides information on the positional interdependencies and thereby helps recreating a 

dynamic picture of residue-residue dependence, which, in turn, is a key to stabilize protein 

structure and explain the functionalities of a protein. We chose to use both sequence 

conservation and co-evolution signals from the RBD sequence space to better understand the 

constraints in the RBD sequence space and the RBD evolutionary dynamics. Using mutual 

information (MI) values which correspond to the positional interdependencies we observed 

region 121 to 180 (i.e., 439 to 498 w.r.t the S-protein) of the RBD having maximal co-

evolutionary signal. We further used this sub-space (121 to 180) for deep mutational scan using 

epistasis model to generate a mutational landscape, which could potentially present a picture of 

the substitution mutation tolerance at each of the sites comprising the sub-space. We searched for 

all possible naturally occurring mutations, which were observed at the sites, which have been 

reported to interact with the host ACE2 receptor by using the sequence information derived from 

the closest relatives as obtained from the phylogenetic analysis. Further, we computed their 

impact using statistical energy computed from the deep mutational scan. Finally we correlated 

the residues which were observed to be critical in co-evolution with their mutational tolerance. 

We used the RBD structure (319 to 591 w.r.t S-protein) for structure network analysis and Monte 

Carlo simulation studies to respectively dissect the whole protein into sub-structures (referred as 

sub-blocks or SB in the article) based on their pair-wise interaction and local dynamics as 

quantified using root-mean-square fluctuations. Our analysis revealed how residues are clustered 

based on their pair-wise interactions and the region of the protein with the highest local 

fluctuation. Our docking data further provided an insight into these highly fluctuating local 

regions, which were in the close vicinity to the residues L455, F486, Q493, S494, and N501 

making up the RBD binding cleft. Unlike the previous reports which commented upon the 

importance of the loops in the RBD in general, we specifically pin-pointed this stretch and 

hypothesized that it is extremely critical in conferring local conformational flexibility leading to 

an effective interaction with ACE2 receptor. 

Finally, to have a comprehensive insight into the RBD from both evolutionary and structural 

perspective, we plugged information from both tiers of our study and applied fuzzy logic 
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principles to see, which regions of the protein have maximal overlap in terms of their 

evolutionary and structural features. For this we selected only those structure blocks (SBs), 

which had maximum quantified evolutionary (conservation and co-evolution) and structural 

(based on properties viz. hydropathy, higher order structure etc.) information. This cumulative 

approach helped holistically understand region of RBD, which if destabilized (which we believe 

to be a potential therapeutic strategy), would thoroughly impact the evolutionary routes and bio-

physical integrity (both structural and receptor-recognition centric function) of the protein. Thus 

resorting to an inter-linked multi-tier approach, we thereby project segments of RBD, which 

could be a potential therapeutic target to not only impact the structure but also disrupting the 

RBD evolutionary trajectory and hence a potential anti-evolution strategy. 

 

 
Figure 2. Phylogenetic tree of the Spike RBDs showing 15 closest relative of the RBD from 

SARS-CoV-2 as retrieved from the sequence alignment results. 

 

Results: 

Sequence space analysis 
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Our sequence space analysis revealed that Spike RBD of SARS-CoV-2 has high degrees of 

sequence identity with other members of the spike glycoprotein family of Bat coronavirus origin. 

The phylogenetic tree as constructed using the neighbor-joining method provides a glimpse of 

the 15 closest proteins retrieved from the sequence space of Spike RBD (Figure 2). This analysis 

provided an insight into the sequence divergence and closest relative of the Spike RBD, which, 

as revealed by this phylogenetic analysis, happens to be Spike protein (Fragment) n=1 Tax=Bat 

coronavirus TaxID=1508220 (UniRef90: A0A5H2WUD2).  

 

Next, we analyzed the preservation of the intrinsic disorder predisposition within the amino acid 

sequences of the 15 evolutionary closest Spike RBDs. Results of this analysis are summarized in 

Figure 3 showing rather close similarity of the overall shapes of the disorder profiles of these 

domains. One can clear observe comparable patterns, where more flexible or even intrinsically 

disordered regions (i.e., regions with the disorder scores between 0.2 and 0.5 and above 0.5, 

respectively) are interspersed among more ordered segments. Many of these flexible/disordered 

regions correspond to the RBD loops. Figure 3 also demonstrated that the largest variability in 

the per-residue disorder predisposition is observed for the C-tail of RBDs and their centrally 

located, 60-residue-long region (residues 121-180).    
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Figure 3. Per-residue intrinsic disorder predisposition of the 15 most evolutionary similar Spike RBDs 

evaluated by PONDR
®

 VSL2(2). Breaks in the disorder profiles correspond to the breaks in 

sequence alignments. In this analysis, disorder scores between 0.2 and 0.5 indicate flexible 

regions, whereas regions with the disorder scores ≥0.5 are expected to be intrinsically 

disordered. Position of the 121-180 region corresponding to the area with the highest co-

evolutionary signal and thus with the maximal positionally interdependent residues is shown by 

light gray shading. Dark red bars shows position of residues which are most positionally 

interdependent (123, 125, 126, 127, 137, 148, and 165). 
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Figure 4. Sequence space exploration of the spike RBD reveals critical areas, which are under 

the evolutionary constraints. (A) Shannon Entropy profile of the RBD sequence space. (B) Heat-

map showing co-evolution as quantified using mutual information values, in the RBD sequence 

space. Colour bar in the left shows the gradient of MI values in the co-evolving sites. Bracketed 

(black) segment shows the patch with highest co-evolution. (C) Mutational landscape as 
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generated from the deep mutation scan is shown as a heat-map with color bar in the left showing 

the gradient of statistical energy. The bottom bars below each of the sub maps depict the 

sequence information for the spike RBD. (D) Conservation profile of the spike RDB as 

calculated by Bayesian method. (E) Sequence logo depicting the RBD sequence space as 

calculated using Kullback-Leibler method. (F) Bar plots depicting differences in statistical 

energy (dE) profiles upon substitution mutations with residues derived from variations observed 

among the closest relatives at positions known to be critical in RBD-ACE2 interaction. (G) 

Fruchterman-Reingold graph generated using MI values showing the network of co-evolving 

sites in the RBD sequence space. 

 

Figure 4A provides a sequence conservation profile of Spike RBD. The conservation score at a 

site corresponds to the site's evolutionary rate. The rate of evolution is not constant among amino 

the sites. Some positions evolve slowly and are commonly referred to as "conserved", while 

others evolve rapidly and are referred to as "variable". The rate variations correspond to different 

levels of selection acting on these sites. For example, in proteins, the purifying selection can be 

the result of geometrical constraints on the folding of the protein into its 3D structure, constraints 

at amino acid sites involved in enzymatic activity or in ligand binding or, alternatively, at amino 

acid sites that take part in protein-protein interactions. From the Shannon‟s entropy contour as a 

function of residue index (Figure 4A), it could clearly be suggested that the evolutionarily 

conserved residues having zero shannon entropy measurement were scattered throughout the 

RBD sequence space. With increase in the Shannon‟s entropy values, extent of conservation 

decreased with the increment in propensity to be more interdependent. In a broad patch of region 

from around 122 to 232 (i.e., residues 440 to 550 with respect to the S-protein) entropy profile 

showed some spike (high values) indicating the lesser extent of conservation (Figure 4A).  

 

It is to be noted that sequence space constraints are primarily dictated by positional conservation 

and positional inter-dependencies; i.e., co-evolution. Sequence conservation provides a static 

snapshot capturing position-conservation and vastly under-represents the evolutionary dynamics 

as position-position interdependencies, which in turn regulate inter-residue interactions in the 3-

D space of a protein structure, remain completely uncharted. After gaining an insight into the 

sequence conservation profile, we went ahead to understand the sequence co-evolution profile 

resorting to mutual information (MI) calculations on the aligned sequences. A high MI value 

corresponds to the higher positional inter-dependency and hence higher co-evolutionary signal 

from the sequence space. To capture highest co-evolution signals, which in turn could reliably 

dictate the sequence space constraint, we used a threshold of MI values > 0.7 and filtered those 

signals to generate the co-evolutionary matrix (Figure 4B). The dotted area in the residue-

residue co-evolutionary matrix (also bracketed in the heat-map) reflects the sub-space in the 

sequence space of spike-RBD which has the highest co-evolutionary signal and hence maximal 

positionally inter-dependent residues. This region, which spans from position 121 to 180 (439 to 

498 w.r.t. to whole protein) was further subjected to deep-mutation scans using Epistasis model 
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to predict possible effects on the overall stability in the face of substitution mutation. Given the 

fact that viral genomes are highly prone for mutation events, which in turn shapes their 

evolutionary fitness, this current exercise utilizing deep mutation scan and generating mutational 

landscape was therefore extremely critical in terms of understanding the positional tolerance and 

its concomitant effect on biophysical fitness (both on structure and receptor-recognition centric 

function). Mutational landscape (Figure 4C) shows a relatively high position-wide residue 

tolerance, which in our calculation is a function of -∆E (statistical energy) with particularly 

higher tolerance at positions at 124, 135, 139, 145, 158, and 170 (442, 453, 457, 463, 476 and 

488 respectively w.r.t the S-protein), where specific residue-based substitution is likely to confer 

higher stability. Intensity of blue colour in the boxes (Figure 4C) represents the degrees of 

stability being conferred upon substitution in the background of the current sequence, as guided 

by the colour bar on the left which scales the range of ∆E. This predictive mutational landscape 

based on epistasis model gives critical clues as to which substitutions could the sequence space 

potentially witness under the sequence space constraints.  

 

We further deployed Bayesian method to dissect the position stretch spanning from 121 to 180 

(i.e., from 439 to 498 in case of RBD), which represents maximal co-evolution signal and 

calculate the conservation score. Conservation score reflects (Figure 4D) that this stretch is 

characterized by an interesting interplay of conservation and variation. It is interesting to note 

that positions spanning from 150 to 164; i.e., 468 to 482 w.r.t the RBD (save 151 and 152) do 

show very low conservation, and, when compared to the mutation landscape, these regions also 

exhibit high tolerance. On the other hand, the positions with higher conservation (spanning from 

143 to 149; i.e., 461 to 467 the S-protein) have relatively stricter bias towards to substitution 

mutations and lesser tolerance (Figure 4C). We thereby provide a unified picture of how 

sequence conservation could be potentially addressed using deep mutation scan approach and is 

insightful in the current context of spike-RBD sequence space.  

 

We went on to generate the statistical energy profiles of the most commonly encountered 

substitution mutations in the sequence space for those residues, which are reported to participate 

in ACE2 receptor recognition. A sequence space logo as generated using Kullback-Leibler 

principle shows the residue variations and the pre-dominant residue occurrences in the sequence 

space (see Figure 4E). Residue substitution information was retrieved from those evolutionary 

trajectories, which were closest and were used for generating the phylogenetic tree (Figure 2). 

Statistical energy profile (Figure 4F) gives a quantitative idea as to which mutations would 

vastly stabilize the protein. Save the lysine substitution at position 137 (which designates residue 

455 in the S-protein) others mostly show comparable extent of stability and hence explain why 

they could occur in the other close relatives of Spike-RBD yet retaining the same structural 

integrity.  
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We further utilized the co-evolutionary signal to generate a weighted matrix and went on to 

apply graph theoretical approach to map the highest co-evolving residues. Using the 

Fruchterman-Reingold graph layout (Figure 4G) we observe that positions 123, 125, 126, 127, 

137, 148, and 165 (441, 443, 444, 445, 455, 466 and 483 respectively w.r.t. S-protein) represent 

the nodes with maximum edges; i.e., many residues are positionally interdependent. It is worth 

noting that these positions (except 148; i.e., 466 w.r.t. S-protein) also exhibited higher tolerance 

in the mutational landscape. As these positions are evolutionarily coupled with multiple residues, 

a mutational tolerance provides a dynamic evolutionary fabric which would tolerate mutations at 

other coupled positions and yet evolve in current constraints in the sequence space. Figure 3 

shows that many of these residues are located within intrinsically disordered regions.  

 

Our comprehensive sequence space analysis utilizing information theory, deep mutation 

approach, and graph theoretical analysis captures specific positions, which are extremely critical, 

and shapes the constraints in the sequence space of spike-RBD. Our results have shown the 

interesting aspects of position spanning from 121 to 180 (439 to 498 w.r.t S-protein), which 

captures the co-evolutionary picture of spike-RBD and depicts the evolutionary dynamics of the 

spike RBD.   

 

 

Structural analysis 

 

In order to unravel the internal arrangement and inter-dependency of the residues in terms of 

their pairwise interaction, structure network analysis was deployed (3). By generating an all-

residue network coupled with community clustering, the evolutionarily coupled co-varying 

patches in the RBD were further analyzed. The residues of the RBD of the protein were found to 

be split into 30 sub-blocks (SBs); i.e., they were distributed through the space by forming 30 

clusters (Figure 5A). Among these clusters, mainly 5 were found to be comprised of large 

number of residues. Most of the remaining clusters were represented by a single residue, in some 

cases 3 or 4 residues were housed together (SI). Sub-block 2, 6, 12, 17, and 21 were found to be 

comprised of large number of residues (Figure 4). Also, due to their dense connection with other 

SBs, these clusters were selected for study in detail to understand how the residues in those 

clusters were significant in terms of evolutionary features, receptor binding, as well as local and 

global motion. 
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Figure 5.  Structure of RBD has loop dominant region, which plays critical role in ACE2 

receptor recognition and associated conformational dynamics. (A) Structure Network plot of 

spike RBD. (B) Root mean square fluctuations (in Angstrom) for the spike RBD as retrieved from 

Monte Carlo simulation. (C) Bar plots showing the effects of destabilizing mutations. (D) 

Docked complex of Spike RBD-ACE2 is shown in surface representation with cartoons 

representing the protein secondary structures. ACE2 receptor is shown in pink while RBD is 

shown as blue and green surfaces. Blue surface refers to the region in the RBD which 

participates in ACE2 receptor binding. (E) Docked complex is shown with surface charge 

representations. Region of high flexibility as observed from MC simulation is marked in the 

docked complex. Scale bar in the bottom refers to the gradient of surface charge as observed in 

the docked complex. (F) RBD-ACE2 interaction pocket (ACE2 is shown as surface and RBD in 

cartoon) is shown with purple coloured loops indicating substructure with high flexibility (as 

predicted from RMSF).  

 

According to the docking output, receptor was observed to have a cleft, which accommodated 

the interacting loop region of the RBD (Figure 5D). Residue patches from 28/346 to 34/352, 

97/415 to 102/420 and the loop segment from residue 126/444 to residue 182/500 were 

witnessed to be extremely decisive for the surface overlap. Monte Carlo simulation was 

performed with the Spike RBD to understand the dynamics associated with the Spike receptor 

binding domain. RMSF profile as retrieved from our simulation studies showed residue stretch 

159/477 to 166/484 and 123/441 to 127/445 having a very high fluctuation level of >6 Å (Figure 

5B). It is interesting to note that this region of high RMSF, which indicates high local dynamics, 

corresponds to two loop regions (highlighted in magenta, see Figure 5F) in the close vicinity to 

the residues associated with the ACE2 receptor recognition. This region is also predicted to be 

highly disordered (see Figure 3), and we believe that this can confer allostery and 
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conformational flexibility guiding effective receptor binding. As the bound complex formation is 

not entirely governed by opposite surface charges (Figure 5E), we hypothesize that local 

flexibility at stretches 123/441 to 127/445 and 159/477 to 166/484 is extremely critical in 

conferring conformational flexibility associated with a rather efficient receptor binding.  

 

It is further interesting to note that the segment of Spike-RBD, which resides in the close 

proximity to the ACE receptor complex (highlighted in blue, Figure 5D) strikingly overlaps with 

the position stretch of high co-evolution signal as retrieved from our evolutionary studies. A 

highly clustered abundance of mutually interdependent co-evolving residues clearly portrays the 

deep evolutionary importance of this region. The stretch has a very low structural organization 

and is pre-dominantly loop-dominant, which presumably provides extreme structural malleability 

in receptor recognition and associated allostery, and, hence its biophysical fitness. Loop regions 

in a protein further provide the ability to adopt transient context dependent conformations (4-6). 

Previous reports have highlighted the importance of residue L137/455, F168/486, Q175/493, 

S176/494 and N183/501 in receptor recognition (7). Our simulation-guided approach further 

establishes two additional sub-stretches, which potentially regulate effective interaction between 

the spike protein and its ACE2 receptor. 

 

The TKSA-MC method refers to the residues which has a destabilizing contribution to the 

protein native state(8). The algorithm calculates the protein electrostatic energy, taking into 

account the contribution of each residue with polar charged side chain. The bars in the bar-plot 

show the charge-charge energy contribution of residues, which are ionisable with respect to the 

protein native state stability. The bars on the positive y-axis refer to the residues to be mutated to 

enhance the protein thermal stability. As per Ibarra-Molero model, residues with unfavorable 

energy values show ΔGqq ≥ 0 and are exposed to solvent with SASA ≥ 50%(9). In the spike RBD 

protein, residues, which got selected in the destabilization simulation study, were predominantly 

outside the evolutionarily constrained region of 121 to 180. Residues 123 and 127 (designating 

position 441 and 445 in the S protein) occurring inside the evolutionarily constrained stretch 

have interestingly a high tolerance towards the substitution mutations in the deep mutation 

landscape with a probable indication of better fitness and cross-validated by TKSA-MC analysis.  

 

Comparison between Sequence and Structure index 

 

After capturing both sequence space and structure-based aspects of RBD, we went on to identify 

a stretch in the structure, which contains the highest evolutionary and structural information and 

could be a key for regulation of the evolutionary and structural trajectory of the protein. As 

discussed in the methods section, we specifically focused on selected evolutionary and structure 

parameters, which could reliably project evolutionary and structural information. We dissected 

the whole RBD into discrete structure blocks based on structure-network analysis and plugged 

evolutionary and structural information on to these blocks.  
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Figure 6: (A) Cluster dendrogram showing selected (from structure network analysis) structure 

blocks and their respective associated assigned structural and evolutionary properties. (B) Fuzzy 

clustering plot representing fuzziness in clustering of the structure blocks depending on the 

cumulative contribution of structural and evolutionary features. SB2 is indicated by blue sphere, 

SB6 is indicated by orange spheres, SB12 is indicated by green spheres, SB17 is indicated by red 

spheres and SB21 is indicated by magenta spheres. (C) In the ACE2 receptor (green region) 

bound RBD structure, the most important SB, SB 17 has been highlighted by red colour. Rest 

part of the RBD has been highlighted by cyan.  

 

 

The cluster dendrogram (Figure 6A) quantitatively represents the evolutionary and structural 

information associated with the top structure-blocks (the ones with significant evolutionary and 

structural information) and their extent of similarity. From the tree analysis (Figure 6A), it was 
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observed that SB21 shared similarity with SB12 in terms of the defined evolutionary and 

structural index. SB17 demonstrated similar characteristics with the previous two clusters with 

higher extent of overlap. Similarly, SB6 was found to resemble in properties SB2 (Figure 6A). 

Here, the imposed evolutionary property indexes displayed the propensity of the protein 

segments (SBs) towards conservation and interdependency. Defined structural properties dictated 

the contribution of the residues and, in turn, the clusters. The dendrogram was a representation of 

integral correlation between the SBs in terms of the above-mentioned properties.  

 

Fuzzy clustering analysis was carried out to understand, which blocks have maximal overlap and 

which one stands out with unique evolutionary and structural trait. We resorted to fuzzy c-means 

clustering technique as we believed that soft clustering approach would essentially capture 

overlap among the blocks and hence their evolutionary and structural traits. A considerable 

overlap was observed with maximum for SB2 and relatively lower for SB6 (Figure 6B). 

 

 

Discussion 

 

Our current study provided a mechanistic insight into the evolutionary trail and structural facets 

of spike RBD resorting to an integrated evolutionary- and structure-guided approach, thereby 

capturing hidden uncharted traits of protein. This integrated approach cumulatively captures and 

explains some critical traits of the RBD with further identification of the regions key to both 

evolution and structural scope. Our sequence space exploration using sequence conservation and 

co-evolution signal provided an insight into the constraints of RBD sequence space and reflected 

the importance of stretch spanning from 121 to 180 (i.e., 439 to 478 in the S-protein), which 

strikingly coincides with the region of the protein forming the RBD-ACE2 interaction interface 

and which is predicted to be highly disordered. Further guided by our deep mutation analysis and 

epistasis model, we understood how the aforementioned stretch is evolutionarily an interplay 

between the conservation and variation. Deep mutation studies provided position-wide (121 to 

180; i.e., 439 to 478 in the S-protein) insight into the mutational tolerance. The deep mutation 

landscape potentially explained variations observed in the RBD sequence space and probable 

variations, which could be expected during mutations in the evolutionary trajectory. This stands 

out extremely critical and warrants comparison with evolving virus genome, as rapid mutation 

fixation is a key event in the viral evolution and RBD evolution is extremely critical as RBD 

dictates host receptor binding and all subsequent propagation events. We referred to the closest 

relatives of Spike-RBD to understand the variations observed in the region 121/439 to 180/478 

and their possible consequences on the spike-RBD structure. Statistical energy computed using 

epistasis model revealed comparable stabilities and no specific bias towards fixation of any of 

the substitution mutations observed. Thus, this stretch was a perfect poise of conservation and 

variation yet not disrupting the co-evolutionary dynamics.  
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Structure network analysis approach was deployed to understand the internal orchestration of 

RBD and how the global organization and structural adaptability is dictated by the significant 

SBs (which, in turn, house the majority of these evolutionarily co-evolving residues). From the 

community cluster network, six SBs were selected as significant by considering the number of 

residues housed inside (Table 1) and due to their dense connections with other clusters (Figure 

5A). These observations also indicated their importance to the overall structural dynamics of the 

domain. Interestingly, majority of the residues observed to be directly involved in interaction 

with the receptor protein from our docking study, were found to be distributed in all the 

important SBs, apart from SB6 (the biggest SB in terms of number of constituent amino acids). 

SB6 was found to be comprised of the major number of residues with mild Shannon‟s entropy 

values, indicating their moderate limit of tolerance to mutations (as quantified by ΔE with lower 

being comparable to the current wild-type form). These residues did not exhibit high propensity 

towards coevolution or being fully conserved. Hence, SB6, with its balanced abundance of 

conserved and co-evolving residues, can be hypothesized to be critical cluster, which is further 

validated by its constituent residues, which impose significant impact on the residue interacting 

with ACE2 receptor. Monte Carlo simulation revealed the importance of two sub-stretches, from 

residue 129/447 to 166/484 (residues of SB21) and from residue 123/441 to 127/445 (constituent 

of SB17). Among these two patches, the residues in SB 21 were observed to be in close vicinity 

with the binding groove of ACE2 receptor.  Residue 123/441, 124/442, 125/443, and 127/445 

(SB17) were found to be positioned in close proximity to the binding residues and in turn 

contributing to the conformational flexibility needed for effective binding. It is interesting to note 

that entire structural segment, which participates in the receptor recognition and occurs in and 

around the binding cleft is entirely loop-dominant and is predicted to be highly disordered. From 

an evolutionary and structural point of view it indicates high extent of mutational tolerance, as 

single substitution mutation would not impact low order structures viz. loops in this case and 

malleability needed to effective binding.  

 

Comparative analysis explored how the local structural orchestration and the stability factors, 

such as hydrophobicity (HP), have been associated with the evolutionary context of RBD. This 

comparison predicted that a SB with high HP index being comprised of majority of the 

hydrophobic residues demonstrated the propensity to become less co-evolving and vice versa. 

Hence, majority of the interacting residues of RBD were positioned in the SBs with less HP. This 

comparison of structural property with conservation/coevolution trend for the selected sub-

blocks of the protein uncovered the significance of structural adaptability in sustaining the 

functional dynamics of the enzyme, along with the sequence variations that confer specificity. 

Our extension of the study to deploy fuzzy clustering technique was needed to have an approach, 

which could effectively unveil the overlap of RBD substructures (which we referred to as the 

structure blocks) based on their cumulative evolutionary and structural traits. We observed that 

the SB6 stands out with a unique distribution pattern having the least overlap owing to its distinct 

structural features and propensity towards conservation.  
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On the other hand a significant overlap in the fuzzy cluster profile was observed between SB17 

and SB21 based on their evolutionary and structural features. Some residue stretches in SB17 

and all residues of the SB21 were observed to be highly co-varying from evolutionary 

perspective as quantified from MI. Being associated with ACE2 interaction and forming the 

RBD-ACE2 interaction sphere, residues constituting SB17 and SB21 were thus found to be 

critical for interaction and the associated conformational changes. Furthermore, the mutation 

landscape unveiled some residues with high tolerance to be housed in SB 17 (123/441, 125/443, 

126/444, and 12/445) indicating their implication on structure and evolution. 

 

Therefore, resorting to this two (evolutionary and structural) inter-linked component-multi-tier 

analysis protocol, we strongly hypothesize that SB17 (Figure 6C) is an extremely critical 

component of the spike RBD structure, which could be an important therapeutic target. Unlike 

the other reports specifically pointing the residues associated with ACE2 receptor recognition, 

we provided an extended picture of regions in the protein structure, which, if targeted, could 

potentially inhibit virus propagation and block the probable mutational escape routes, thereby 

functioning as an anti-evolution strategy. Furthermore, this evolution- and structure-based 

analytical pipeline could potentially be used to understand the critical sub-structures of other 

proteins and could be plugged in for other therapeutic purposes. 

 

Table 1: RBD Structure Block/Cluster Members 

Structure Block/Cluster id Residue Member 

1 319 

2 320:325, 374:376, 399:400, 407:410, 434:436, 

485, 488:489, 508:510, 540:541 

3 326 

4 327, 530, 532:533 

5 328 

6 329:330, 333:338, 355:366, 369, 377:398, 

411:415, 425:433, 511:527, 534:539, 544:545, 

550:555, 585:591 

7 331:332 

8 339 

9 340:345 

10 346 

11 347:348, 354 

12 349:353, 416, 418:424, 454, 457:469, 554:569, 

571:578, 582, 584 

13 367:368 
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14 370:373 

15 401 

16 402 

17 403:406, 438:451, 496:507 

18 317 

19 437 

20 452:453, 455, 492:495 

21 456, 470:484, 486:487, 490:491 

22 528:529 

23 531 

24 542 

25 543 

26 546 

27 547 

28 348 

29 570 

30 579:581, 583 

 

 

Materials and Methods 

We started with the sequence retrieved from the recently solved Cryo-EM structure of SARS-

CoV-2 spike protein (10). Here we selected only the receptor binding domain (RBD) of the 

protein for our study. NCBI Protein Blast was performed with the sequence corresponds to the 

RBD. Only those non-redundant protein sequences were selected that shares at least 75% 

sequence identity with the RBD region. This enzyme dataset was further used in Clustal Omega 

in order to obtain multiple sequence alignment (MSA) (11, 12). Followed by MSA, sequence 

space analysis was performed. Then protein structure was investigated in detail and connection 

between sequence information and structure were studied. 

 

Sequence Space Analysis 

Phylogenetic tree was constructed using neighbor-joining (NJ) (13), algorithm based on the 

aligned sequence as implemented in the Rate4Site program(14). 

By analyzing the MSA of homologous proteins, we can explore two types of residue 

information: conserved amino acids at certain positions and co-varying residues throughout the 

course of evolution (3, 15). Amino acids that do not alter throughout the evolutionary timeframe 

are designated as conserved residues. Mutations in non-conserved positions result in 

compensatory substitution at another position to preserve or restore the structural orchestration as 
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well as biophysical properties of the protein. Since evolutionary perturbations in the sequences 

are constrained by a number of requirements, using the information confined in MSAs would 

have been useful to predict residues which were likely to be interdependent in the three-

dimensional structure. Here we deployed information theory to predict positional correlations in 

MSA to investigate these conserved as well as interdependent positions respectively having 

structural or functional significance (3, 16). 

In order to refine the MSA by reducing the number of gaps, any column in the alignment for 

which there was a gap in the specified coordinate file segment was removed. Similarly any rows 

comprised of more than 20% gaps were also removed. 

To reveal evolutionary conserved positions, entropy calculation was accomplished as a function 

of sequence conservation. By deploying the Shannon information entropy measurement, the 

tolerance of a particular sequence position to amino acid substitution was understood (17). 

 ( )   ∑  (  )    (  )
  
    

……… (1) 

 

In equation 1, „i’ represented the sequence position, P(ai) designated the probability of amino 

acid „a‟ to be present at the „i‟th column of MSA. S(i) represented the Shannon entropy score, its 

lower values correspond to the fully conserved amino acid residues at ith position (16). Whereas 

increase in Shannon entropy score indicated the probability of that particular position to be less 

conserved, i.e. more random. Gaps in each column were treated as uniformly distributed amino 

acids (16). 

Structural as well as functional restraints of a protein molecule could be labeled by the 

evolutionary co-varying segments (18-21). In order to understand the degree of co-evolutionary 

relations between amino acid positions of the RBD region, i.e., interdependency of the residues 

along the sequence, mutual information (MI) theory was deployed, 

 

  (   )   ∑ ∑  (     )   
 (     )

 (  ) (  )

  
    

  
    

……. (2) 

 

Where P(ai, bj) described the probability of finding amino acids of type a and b at the respective 

sequence positions i and j simultaneously (22). MI(i,j) indicated the coevolution propensity of 

position i and j. The gaps were treated as the 21st amino acid type. This MI(i,j) value diverges in 

the range from 0 to MImax where 0 corresponds to the fully uncorrelated residues and the highest 

value indicate the most interdependent pairs of residues. In order to study the correlation 

between highly coevolving residues in RBD in detail, cut off value for MI was selected as 0.75. 

We went on to calculate the conservation score for individual sites which corresponds to the 

position‟s evolutionary rate. The rate of evolution at each site was calculated using the empirical 

Bayesian (Mayrose et al., 2004). The stochastic process underlying the sequence evolution and 

the phylogenetic tree were explicitly considered.  
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We resorted to an unsupervised method for predicting the mutation effects that specifically 

captures residue dependencies between positions. On Python 3 we deployed EVcoupling to 

assess the quantitative effects of mutations in RBD(23).  Deep mutational scan was performed to 

understand the effects of substitution mutations in RBD and generate the mutational landscape. 

Existent proteins show signatures of selection throughout their evolutionary trajectory. For genes 

separated by hundreds of millions of years it is not uncommon that they exhibit negligible 

sequence identity and still exhibit remarkable conservation of their structures and functions. We 

aimed to present a statistical approach that could potentially reveal dominant constraints. 

In our analysis the evolutionary a sequence σ with probability P(σ) was denoted as: 

P(σ)=(1/Z)exp{E(σ)} 

“Energy” function E(σ) in the model was to capture constraints on the sequences. Z is to 

normalize the distribution to sum to one over all possible sequences of a fixed length. E(σ) was 

represented as (negative) energy of a model from statistical physics or as proportional to the 

scaled fitness NeF in toy, equilibrium models of population genetics(23). We used the energy 

function E(σ) with two types of constraints viz. 1.pairwise constraints to depict co-dependencies 

in combinations of amino acids for each pair of sites and 2.site-specific constraints reflecting 

bias towards or away from specific amino acids at each position. As per the calculation on 

EVcoupling platform the total energy for a specific sequence E(σ) was represented sum of 

coupling terms Jij between every pair of residues and a sum of site-wise bias terms hi (fields), 

E(σ)= ∑ihi(σi)+∑i<jJij(σi,σj) 

Combining the sequence model with our energy function a model was generated which is 

basically a pairwise undirected graphical model in computer science and a Potts model in 

statistical physics(23).  

We used these models to make sequence-specific predictions representing the relative selective 

chances of mutation events. Starting from a multiple sequence alignment, we measured the site 

and coupling parameters h and J using regularized maximum pseudo-likelihood. After the 

parameters were inferred, we measured the effects of single or higher-order substitutions on a 

particular sequence background with the log-odds ratio of sequence probabilities between the 

WT form and substitution-mutant sequences. 

ΔE(σmut,σwt)=log[P(σmut)/P(σwt)]=E(σmut)−E(σwt) 

Sequence logo was generated using Seq2logo platform using aligned sequences as inputs. Logo 

was generated using Kullback-Leibler method to give a clear visual image of the conserved and 

variable regions. The Y-axis describes the amount of information in bits. The X-axis shows the 

position in the alignment. At each position the stack of symbols represents the amino acids 

observed to make up the sequence space. Large symbols represent frequently observed amino 

acids, big stacks represent conserved positions and small stacks represent variable positions. 
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Hobohm clustering algorithm was selected during logo generation which was devised to reduce 

redundancy of biological sequence data sets and the threshold was set at 0.63. 

Co-evolutionary network was generated using Thomas Fruchterman & Edward Reingold graph 

layout (24). It simulates the graph as a system of mass particles in a force directed layout. The 

nodes are the mass particles and the edges are springs between the particles. The algorithms try 

to minimize the energy of this physical system.  

 

 

Structure-Based Analysis 

Model Selection 

Sequence retrieved from the recently solved Cryo-EM structure of S protein were subjected to 

model building using I-TASSER (25). The reported stretch corresponds to RBD, i.e. 319 to 591 

were truncated from the built structure of the protein. The ACE2 receptor protein model was 

resorted from PDB (ID: 1R42). These models were used for further analysis. 

 

Structure Network Analysis 

The structure network illustration of a protein is a depiction of topological analysis of 3D 

structure irrespective of its secondary structure and folding type (26). The internal motions as 

well as structural dynamics of proteins are very much associated with its function and activity; 

hence we used normal mode analysis (NMA) for the prediction of functional motions in the 

protein segment (27). Followed by NMA, a correlation analysis was performed to generate cross-

correlation matrix. Then by means of correlation network analysis, we generated structure 

network using the RBD of the spike protein. 

 

By means of correlation network analysis, an all residue network was generated and it was split 

into a highly correlated coarse grained community cluster network by using Girvan-Newman 

clustering method where the highly interacting residues were clumped together in the clusters 

(28). 

 

 

Molecular simulation 

To understand the dynamics of the RBD we resorted to Monte Carlo simulation technique to 

simulate the RBD dynamics deploying CABS (C-alpha, beta, and side chain) coarse grained 

protein model. We deployed the standalone version CABS-flex on python 3 which employs the 

Monte Carlo dynamics and asymmetric Metropolis scheme satisfying the requirements of 

microscopic reversibility and Boltzmann distribution of generated ensembles(29). The simulation 

parameters were modified at the number of cycle (Ncycle) and number of model skipped keeping 

the seed for random number generator at 3864. The „Number of cycles‟(Ncycle) field was set at 

100 resulting in 20 × 100 = 2000 models in the trajectory The „Cycles between trajectory frames‟ 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.05.31.126615doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.126615


20 
 

(Nskipped) which refers to the number of models skipped on saving models was kept at 100. 

Total numbers of generated models were thus 20x100x100= 200,000. We used a T=1.2 which is 

close to the native state temperature. 

We further deployed Tanford-Kirkwood model (TK) in which protein molecule is treated by a 

spherical cavity with dielectric constant ϵp and radius b surrounded by an electrolyte solution 

modeled by the Debye-Hückel theory(8). We further resorted to the modification of the model 

which included solvent static accessibility rectification for each of the residues which are 

ionisable and which takes into account the irregular protein-solvent interface. The model is 

referred as the Tanford-Kirkwood model with solvent accessibility and we in our study would 

refer to it as TKSA.  

Molecular Docking Study 

In order to determine the structure of the ACE2-RBD complex and to identify the 

residue/segments of the RBD interacting with the ACE2 receptor protein, we resorted the 

computational strategy of protein-protein docking (30). In this approach, the coordinate 

information of the ACE2 receptor protein was resorted from protein data bank (PDB) (PDB ID: 

1R42). The energy minimized model of ACE2 was subjected to interact with the model RBD 

structure using the tools from ClusPro depending on the PIPER docking algorithm based on the 

Fast Fourier Transform Correlation technique (31, 32). In this rigid body docking method, the 

ACE2 receptor protein was considered as the rigid body, and the RBD segment (considered as 

the ligand) was placed on a movable grid, where the angular step size for rotational sampling of 

ligand orientations was set to about 5° in terms of Eular angles. Energy minimization followed 

by root-mean-square deviation (RMSD) based clustering was performed for accurate and near-

native conformational sampling and refinement of the complex structure (32). The topmost 

docking outputs defined by centers comprised of highly populated clusters correspond to lowest 

interaction energy between the two proteins. 

 

Comparison between Sequence and Structure Index 

In order to bridge evolutionary index with the structural properties of different selected 

significant segments of the receptor binding domain, we imposed three subsets of properties that 

decipher structural characteristics and two subsets decoding the sequence space information of 

the SBs. Here only the sub-blocks (SBs) having significant number of residues as well as 

significant impact on structure were focused. Three imposed structural traits were Mean 

Hydrophobicity (Mean HP), Hydrophobicity Abundance (HP Abundance) and Order Index. 

Similarly conservation and coevolution index were also calculated for the highly interdependent 

positional patches in the sequence. 

 

         
∑                                                          

                                               
 

 

                                                                       

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.05.31.126615doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.126615


21 
 

 

             
∑                                                                                

                                   
 

 

                    
∑                                                          

                                        
 

 

                   
∑          (     )

                                            
 

 

 

In order to understand the correlation between the structural and sequence properties within the 

selected significant SBs (structure blocks), a cluster dendogram was generated.  

 

Fuzzy C-means Clustering 

Fuzzy clustering based on fuzzy logic principles was used to cluster multi-dimensional structure 

blocks of Spike-RBD where each block had evolutionary and structural features. FCM or fuzzy 

C-means clustering technique was utilized to partition a finite collection of “n” elements 

X={x1,... xn} into a collection of c fuzzy clusters. With a finite set of data, the algorithm returns a 

list of c cluster centres as C={c1……cn) along with a partition matrix. Any point x has a set of 

coefficients giving the degree of being in the kth cluster wk(x). With fuzzy c-means, the centroid 

of a cluster is the mean of all points, weighted by their degree of belonging to the cluster, or, 

mathematically, 

CK = Σxwk (x)
m

 x / Σ 

Where, m is the hyper- parameter that controls how fuzzy the cluster will be. The higher it is, the 

fuzzier the cluster will be in the end. 

 

Analysis and Representation 

Majority of evolutionary and structural analysis were done with Python3. Visual renditions were 

made using Seaborn library of Python. For statistical analysis and representations Origin Pro 9.0 

and Tableau were also used. For Graph theoretical modelling Gephi graphing tool was used. 

Protein models were represented using PyMol. Structure network analysis using Bio3D package 

was carried out on RStudio. 
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