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Abstracts  

Background: The expanding use of the phenome-wide association study (PheWAS) faces 

challenges in the context of using International Classification of Diseases billing codes for 

phenotype definition, imbalanced study population ethnicity, and constrained application of the 

results to clinical practice or research.  

Methods: We performed a PheWAS utilizing deep phenotypes corroborated by comprehensive 

health check-ups in a Korean population, along with trans-ethnic comparisons through the UK 

Biobank and Biobank Japan Project. Network analysis, visualization of cross-phenotype 

mapping, and causal inference mapping with Mendelian randomization were conducted in order 

to make robust, clinically applicable interpretations.  

Results: Of the 136 phenotypes extracted from the health check-up database, the PheWAS 

associated 65 phenotypes with 14,101 significant variants (P < 4.92x10-10). In the association 

study for body mass index, our population showed 583 exclusive loci relative to the Japanese 

population and 669 exclusive loci relative to the European population. In the meta-analysis with 

Korean and Japanese populations, 72.5% of phenotypes had uniquely significant variants. 

Tumor markers and hematologic phenotypes had a high degree of phenotype-phenotype pairs. 

By Mendelian randomization, one skeletal muscle mass phenotype was causal and two were 

outcomes. Among phenotype pairs from the genotype-driven cross-phenotype associations, 

71.65% also demonstrated penetrance in correlation analysis using a clinical database. 

Conclusions: This comprehensive analysis of PheWAS results based on a health check-up 

database will provide researchers and clinicians with a panoramic overview of the networks 

among multiple phenotypes and genetic variants, laying groundwork for the practical application 

of precision medicine.  
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Introduction 

From the healthcare perspective, the key concept of precision medicine generally refers 

to incorporating genetic, lifestyle, environmental, and cultural factors into one’s health status for 

the purpose of promoting health, improving diagnostic accuracy, preventing disease, and 

providing personalized treatment 1,2. To make precision medicine functional, a systematic and 

integrational understanding of each individual’s clinical and genetic information is required. The 

phenome-wide association study (PheWAS) is one tool able to fulfill the purpose of precision 

medicine 3. PheWAS explores associations among genetic variants and a wide range of traits, 

including clinical outcomes and lifestyle, environmental, and cultural factors 4. The rapid growth 

of genomic resources linked to electronic health record (EHR) databases has increasingly 

become leveraged by PheWAS 5. In laying the foundation for precision medicine, PheWAS has 

several advantages. It could identify pleiotropic effects (cross-phenotype associations) 6 and 

shared genetic factors that influence comorbidities or influential factors associated with 

phenotypes 3,7 or laboratory results 8,9, which can eventually enable a personalized healthcare 

approach 7. 

However, PheWAS to date has encountered several challenges in practice. First, most 

PheWASs defined phenotypes using International Classification of Diseases (ICD) terms such 

as billing codes or phecodes (a type of ICD code grouping). These billing codes can bring an 

underlying bias into healthcare practices 5,10. Second, most genetic association studies have 

been done in limited, non-Asian populations 10. A PheWAS performed on a homogeneous 

population from a singular nation can be more powerful as the pools of cases and controls are 

divided across the same populations. Though recent studies have involved Asian populations, 

such as a PheWAS study in the Japanese population 11 and construction of an Asian reference 

genome dataset 12, only a few studies have been conducted in Asian populations, and no 
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PheWAS has compared the ethnical differences. Third, in general, the final reports of a 

PheWAS are mainly comprised of a data-driven analysis and its results, including a multitude of 

phenotypes and statistical numbers; as a consequence, practical translation of the results to 

healthcare practices or clinical research has been constricted. While PheWAS incorporates a 

variety of phenotypes and the associations are provided in a collectively integrated manner that 

provides good perspective on the holistic view of a system, it is difficult to understand the 

meaning for particular diseases or phenotypes.  

In this study, we addressed these challenges by performing a PheWAS in a Korean 

population based on the deep phenotyping of a health check-up database. All phenotypes were 

corroboratively defined after performing laboratory tests, imaging tests, endoscopic tests, and 

detailed questionnaires on the same day using the same protocols and machines for individual 

participants. This comprehensive health check-up database merged with a biobank and specific 

to a Korean population is an unprecedented and unique database, which makes our PheWAS 

different from those previous. We attempted to compare our PheWAS results with results from 

the UK Biobank (UKBB) and Biobank Japan project (BBJ). We also leveraged cross-phenotype 

associations to perform systematic analyses of the PheWAS results, which consist of 

polygenicity, pleiotropy, a bipartite gene network, and a bipartite phenotype network. To ensure 

robustness of the PheWAS results, we further dissected them to suggest interpretations 

applicable to healthcare practice and clinical research (Figure 1). 

The results of this work will provide researchers and clinicians with a panoramic 

overview of the connections among phenotypes, diseases, genes, and loci, allow them to 

understand healthcare in the perspective of precision medicine, and also let them potentially 

uncover hidden connections among aspects of health and disease.   
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Subjects and Methods 

Gene-Environment of Interaction and phenotype (GENIE) cohort 

In this study, we used data from the Gene-Environment of Interaction and phenotype 

(GENIE) cohort, and the Health and Prevention Enhancement (H-PEACE) cohort, at the Seoul 

National University Hospital (SNUH) Healthcare System Gangnam Center. GENIE provides a 

comprehensive database of biomarkers related to non-communicable diseases, lifestyle, 

medical history, environmental factors, and individual genetic information. The details of the 

cohort have been described previously 13. Briefly, the SNUH Gangnam Center provides 

comprehensive health check-ups and screening, with nearly 20,000 people visiting this center 

annually. All participants go through complete questionnaires, physical examinations, laboratory 

blood and urine tests, abdominal sonography, and gastroscopy. Selectively and on participant 

request, they also receive advanced tests such as coronary computed tomography (CT), 

gastroscopy, abdominal CT, and brain magnetic resonance Imaging/magnetic resonance 

angiography (MRI/MRA). The study population is predominantly Korean. As per consent, we 

collected blood samples and aliquoted several blood specimens. We also annotated the H-

PEACE cohort as an electrical health record (EHR) database of comprehensive health check-

ups from the Korean population and the GENIE cohort as a genotype database linked to the 

EHR database. Further preprocessing was conducted for the information in the EHR database. 

Free text records and questionnaire answers were manually curated by clinicians based on the 

definitions shown in Table S1. Logical errors and artifacts in the results were manually probed 

and corrected.  

Ethics statement  

The Institutional Review Board (IRB) of the Seoul National University Hospital approved 

the biorepository with informed consent (IRB number 1103-127357). Construction of the GENIE 
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cohort was approved by the IRB (IRB number H-1505-047-671). We retrospectively collected 

the clinical and genetic data, for which the IRB approved this study protocol (IRB number 1706-

055-858) and waived additional informed consent. The study was performed in accordance with 

the Declaration of Helsinki. 

Genotype data quality control and imputation 

At the time of this study, a total of 10,349 individuals had been genotyped using the 

Affymetrix Axiom KORV 1.0-96 Array (Thermo Fisher Scientific, Santa Clara, CA, USA) by DNA 

Link, Inc. This array, referred to as the Korean Chip, was designed by the Center for Genome 

Science, Korea National Institute of Health; optimized for the Korean population; and available 

through the K-CHIP consortium. A Korean Chip comprises >833,000 markers, including 

>247,000 rare-frequency or functional variants estimated from the sequencing data of >2,500 

Koreans 14.  

We performed systematic quality control (QC) on the raw genotype data. SNPs with 

minor allele frequencies <1%, low marker call rate (<5%), and significant deviation from Hardy-

Weinberg equilibrium in controls (HWE < 1e-05) were excluded. Samples with discordant sex 

info (0.3 < X-chr homozygosity < 0.8, = PROBLEM), low sample call rate (call rate < 0.9, mind 

0.1), or extreme heterozygosity (heterozygosity rate > mean +/- 3 SD), along with one individual 

from any related pairs identified (IBD >= 0.125), were excluded. After quality control was 

performed, 548,755 SNPs remained. GWAS imputation was carried out using Eagle 2.4.1 

(https://data.broadinstitute.org/alkesgroup/Eagle/) and Minimac3 

(https://genome.sph.umich.edu/wiki/Minimac3). We used the Northeast Asian Reference 

Database (NARD) + 1000 Genome Phase 3 database (1KG) re-phased panel as the reference 

panel and the NARD imputation server (https://nard.macrogen.com) for imputation. NARD 15 

includes the whole-genome sequencing data of 1,779 individuals from Korea, Mongolia, Japan, 

China, and Hong Kong, which are not present in 1KG. We compared the imputation quality of 
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chromosome 22 using different reference panels, such as NARD vs. 1KG vs. NARD + 1KG, and 

determined that the NARD + 1KG panel had the best accuracy (Table S2). Analysis included 

only high-quality imputed common SNPs, which were those having minor allele frequency >0.01 

and imputation R2 (Minimac3's r-squared metric) >0.7. After sample-level QC, genotype-level 

QC, and imputation, a total of 6,860,342 SNPs from 9,742 individuals were included in the 

analysis. 

The influence of ethnicity was assessed through analysis of population stratification 

using principal component analysis (PCA) implemented in EIGENSOFT package v6.1.4. We 

used the first three principal components (PCs) to adjust for population stratification (Figure S2). 

The steps by which the raw data was preprocessed are shown in Figure S3. 

Phenotype Data 

From the comprehensive health check-up database, we manually collated 65 

phenotypes as categorical case/control outcomes and 71 phenotypes as continuous numeric 

outcomes. Tests corroborative of the 136 phenotypes were abdominal/coronary CT scan, brain 

MRI/MRA, abdominal ultrasonography, esophagogastroduodenoscopy, fundoscopy, tonometry, 

electrocardiography, bone mineral densitometry (dual-energy x-ray absorptiometry, DEXA), 

blood/urine test, spinal X-ray, body composition analyzer (InBodyⓡ), and questionnaire interview 

(participant reported phenotypic data). Detailed methods of the test protocols have been 

described previously 13. The phenotypes were systematized into 13 biological categories 

according to the body system involved: anthropometric measure (AM), cerebro-cardio-vascular 

(CV), digestive system (DS), endocrine and metabolism (EM), hematologic system (HS), 

lifestyle (LS), mental and emotional (ME), minerals (MN), musculoskeletal (MC), ophthalmic 

system (OS), pulmonary system (PS), renal system (RS), and tumor marker (TM). Detailed 

information on the phenotypes, such as their definitions, categories, associated data formats, 
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and associated tests, are provided as a glossary in Table S1. An overview of the phenotypes is 

given in Table 1. 

Statistical and computational analyses 

Phenome-wide association study 

We used PLATO 16 to run logistic regression analysis on 65 categorical outcomes and 

linear regression analysis on 71 continuous outcomes, incorporating 6,860,342 genetic variants 

in an additive model. We included age, sex, and the first three principal components to adjust 

for any potential confounding bias due to these variables. To identify significant results, we 

implemented multiple test correction through LD-aware Bonferroni correction. The conventional 

Bonferroni test assumes that the association tests for all SNPs are independent and thus 

divides the alpha by the total number of tests. For our study, instead of correcting p-values with 

the total number of SNPs, we use LD pruning to identify independent SNPs 17. The threshold we 

used for association between SNPs was r2 = 0.3, which is provided by Sobota et al. for the East 

Asian population 18. We established genome-wide significance at P < 4.92x10-10. 

  Further exploratory analyses were performed using the associated 260,923 loci with a 

less stringent P < 1 x 10-4. Though we used the LD pruning method for Bonferroni correction, 

the p-value was still stringent. Thus, in addition to analyzing associations with a stringent p-

value cutoff, this exploratory threshold allowed us to further expand the boundaries of research 

by involving a much wider PheWAS landscape 17.  

To perform systematic analysis of the PheWAS results, we leveraged cross-phenotype 

associations, in which one locus is associated with multiple phenotypes 19. Such associations 

include polygenic inheritance, where a phenotype is influenced by more than one gene 20 

(Figure S4A); and pleiotropy, where a locus or a gene affects more than one phenotype 21 

(Figure S4B). To further explore and understand polygenicity and pleiotropy, we constructed two 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.126201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.126201
http://creativecommons.org/licenses/by-nc-nd/4.0/


networks: a bipartite phenotype network, connecting phenotypes that shared at least one locus 

19 (Figure S4C) and a bipartite gene network, connecting genes that shared at least one 

phenotype 19 (Figure S4D). In these connections or networks, the degree property indicates the 

number of direct connections between one core component and other components. For each 

core gene/phenotype, the number of genes associated or connected with it is defined as its 

gene degree, and the number of phenotypes associated or connected is its phenotype degree. 

We used the cross-phenotype association information to construct a phenotype-

phenotype network and a phenotype-genotype network in order to find hidden relationships 

among phenotypes or genotypes and also to identify hub genes or hub phenotypes. The Gephi 

software (https://gephi.org/) was used to visualize the network 22. 

Functional Annotations (p value < 1 x 10-4) 

We mapped genetic associations using the Ensembl Variant Effect Predictor (VEP) 23 in 

order to annotate the functional relevance of significant loci. Using the VEP annotation, we 

classified the biological consequences of loci in coding regions (stop-gained variant, slice 

acceptor variant, splice donor variant, and missense variant) and in non-coding regions. We 

also annotated UKBB and BBJ variants with VEP to conduct trans-ethnic and trans-national 

comparisons as described in a later section.   

Estimated heritability  

To determine the contributions of genetic variants to the risk of certain phenotypes, we 

estimated the heritability of each phenotype. We estimated heritability using LD Score 

regression with LDSC (version 1.0.1) 24 on summary statistics from the PheWAS for all 

phenotypes. For this analysis, we used the East Asian LD Scores from 1000 Genomes as 

reference LD Score, which served as the independent variable in the LD Score regression (ref-
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ld-chr) and regression weights (w-ld-chr). General instructions and the East Asian LD Scores 

from 1000 Genomes are provided here: https://github.com/bulik/ldsc. 

Since there are issues with missing heritability when estimating from genotype data 25, 

we utilized the reduction of phenotype dimensions in the cross-phenotype associations to 

improve explanation of the amount of heritability. We generated a heritability estimation model 

using the bipartite phenotype network explored by the pleiotropic nature of variants; this model 

incorporates all phenotypes in connection with a given phenotype through principal component 

analysis (PCA). Then, we compared the sole heritability of the given phenotype vs. the PCA-

based heritability of the same phenotype. To do this, we first separately imputed continuous and 

discrete phenotypes using the mice package in R 26. Then, we used PCA to generate principal 

components (PCs) and reduce the information of phenotypes sharing variants with the 

phenotype of interest. Next, we estimated the heritability of each phenotype using the generated 

PCs. If the group consisted solely of continuous phenotypes, then we simply used the prcomp 

package in R to calculate the PCs. However, if the phenotypes in the group were mixed, i.e. 

discrete and continuous, then we used the PCAmixdata package in R. We took the first principal 

component for each group, conducted a genome-wide association analysis, and estimated 

heritability using the summary statistics generated by LDSC as described above. 

Comparison in different populations  

To compare results across diverse populations, we performed a trans-ethnic 

comparison utilizing PheWAS results from a European population and a trans-national 

comparison utilizing results from a Japanese population. For European population, data from 

the UK Biobank (UKBB) 27 was used; for the Japanese population, data from the Biobank Japan 

Project (BBJ) 11 was used. We downloaded the summary statistics and estimated heritability 

results of the phenotypes of these results from the following URLs: http://www.nealelab.is/uk-

biobank/  and http://jenger.riken.jp/en/result. We tabulated lists of the phenotypes in the UKBB 
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and BBJ and searched for those that were most similar to phenotypes in our database. The 

manually curated overlapping phenotypes among GENIE, UKBB, and BBJ are given in Table 

S3.  

Mendelian randomization  

To better understand the causal inferences in cross phenotype mapping, we performed 

Mendelian randomization (MR) analysis on the phenotype pairs connected in the bipartite 

phenotype network. To avoid potential bias due to sample overlap between exposure and 

outcome, we split our dataset into two equal sets by random assignment of samples. PheWAS 

was conducted on each dataset separately to generate the summary statistics that were used 

as input to MR. Additionally, significant SNPs (P < 1x10-4) from the initial PheWAS with all 

samples were used as instrument variables (IV). Furthermore, all IVs that were significant in 

outcome (P < 0.01) were removed, as IVs should not be directly associated with outcome. We 

calculated p-values using the inverse-variance weighted (IVW) method from the 

MendelianRandomization package in R 28. We adjusted for multiple testing using FDR 

correction. We also performed sensitivity analysis using MR-egger and the median-based 

method. 

Meta-analysis of PheWAS 

We performed meta-analysis using our PheWAS results and the BBJ results for all 

phenotypes that were available in both datasets. The BBJ summary statistics came from 

different studies, requiring harmonization of the files. Phenotype matches between GENIE and 

BBJ are listed in Table S3. Some of the phenotypes from GENIE matched to multiple 

phenotypes in BBJ; in such cases, we carried out meta-analysis separately for each BBJ 

phenotype. The meta-analysis was implemented using METAL 29. The overall scheme of our 

study is shown in Figure 1. 
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Results 

After QC, the study population of the GENIE cohort included 9,742 participants, 

comprising 5,696 males and 4,046 females, with average age 50.7 +/- 10.0 years. The 

characteristics of the study population are given in Table S4.  

Phenome-wide association analysis for 136 phenotypes 

GENIE cohort (Korean population) 

From the PheWAS on 136 phenotypes, we found significant associations for 65 

phenotypes (50 from continuous variables, 13 from categorical variables) and 14,101 SNPs at P 

<= 4.92x10-10. The counts of significant loci and genes associated with each phenotype are 

given in Table S5.  Among continuous phenotypes, the top five most significant were activated 

partial thromboplastin time (aPTT), LDL cholesterol, serum total bilirubin, uric acid, and 

carcinoembryonic antigen (CEA). Among categorical phenotypes, the top five most significant 

were alcohol consumption, fatty liver, duodenal ulcer, coffee consumption, and Hepatitis B virus 

surface antigen (Table S6, Figure S5). In the Manhattan plot, aPTT had two top signal loci, in 

chromosome 5 (rs17876032, P = 3.29x10-83) and chromosome 9 (rs676996, P = 8.99x10-72). 

Table S7 lists the top five signals from the GWAS results for each phenotype.   

  We further performed functional annotation for 221,462 unique loci passing the less 

stringent p-value threshold of 1x10-4 using Ensembl Variant Effect Predictor (VEP) 23. 

Approximately 1% of variants were in coding regions and 98.885% were in non-coding regions 

(Figure S6), which result is similar to other large-scale PheWAS 17. In coding regions, this 

annotation identified 22 stop-gained variants, six splice acceptor variants, ten splice donor 

variants, and 1103 missense variants (Table S8 and S9).   

Among the 22 stop-gained variants, we replicated an association between rs121907892 

and uric acid that is a well-reported finding unique to the east Asian population (EAS) 30, 
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including Koreans 31. We further identified the stop-gained variant rs200340875 to be 

significantly associated with blood urea nitrogen (BUN; P = 2.75x10-07, beta = -0.373), calcium 

(P = 7.15x10-08, beta = -0.044), glutamic oxaloacetic transaminase (GOT; P = 9.65x10-6, beta = 

1.189), mean corpuscular hemoglobin (MCH; P = 4.93x10-7, beta = 0.21), mean corpuscular 

hemoglobin concentration (MCHC; P = 8.53x10-16, beta = 0.228), mean platelet volume (MPV; P 

= 8.06x10-7, beta = -0.088), urine protein (P = 1.16x10-10, beta = -0.135), and sodium (Na; P = 

1.92x10-15, beta = -0.371). According to 1000 Genomes, the minor allele of rs200340875 is 

reported in African populations (AFR) but not in EAS. The locus of this variant is associated with 

CD109 Molecule (CD109), which has been previously reported with diffuse large B-cell 

lymphoma 32, psoriasis 33, and gallbladder malignancy 34. Another stop-gained variant identified 

was rs145035679, which showed a protective effect for CEA (P = 1.07x10-8, beta = -0.166) and 

increased risk for carbohydrate antigen 19-9 (CA 19-9; P = 5.81x10-5, beta = 2.178); this variant 

is associated with Fucosyltransferase 6 (FUT6). FUT6 has previously reported associations with 

pancreatic cancer 35, breast cancer 36, and colorectal cancer 37. Among splice acceptor variants, 

rs112911835 was significantly associated with prothrombin time (PT; P = 1.12x10-10, beta = -

0.031), while rs112911835 was associated with Long Intergenic Non-Protein Coding RNA 1933 

(LINC01933), which has no known relationship with disease as of yet. The splice donor variant 

rs140944893 showed significant association with coronary vessel calcium scoring (P = 4.29x10-

5, beta = -127.7), and is associated with Phospholipase D3 (PLD3). This gene is reported to be 

related to Alzheimer’s disease in EAS 38 and EUR 39.  

Comparison with BBJ (Japanese) and UKBB (European) 

We systematically compared the significant associations of loci and their genes with 

phenotypes (P < 1x10-4) to results from the BBJ and UKBB to determine if our results were 

replicated in other populations and also to look for novel findings. Originally, each population 

used a different SNP array platform and a variety of different phenotypes. Accordingly, we first 
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filtered the examined loci and phenotypes to determine overlap with our data, then identified 

replicated and novel genes and loci. The schematic structures of the trans-ethnical and trans-

nationality comparisons are shown in Figure S7. We identified 52 phenotypes overlapping the 

Japanese biobank results (42 phenotypes had replicated loci) and 101 phenotypes overlapping 

with the UK Biobank results (59 phenotypes had replicated loci). Gene-level and locus-level 

comparisons are respectively given in Table S10 and Table S11. 

In the comparison between Korean and Japanese populations, aPTT and serum total 

bilirubin had high overlap of significant loci. Among the 4,016 loci significantly associated with 

aPTT in Koreans or Japanese, 920 loci (22.91%) were significant in both; among the 6,159 loci 

associated with total bilirubin in those populations, 1,263 (20.51%) likewise overlapped. Notably, 

loci associated with the ophthalmic system (cataract and optic fiber loss), cerebrovascular 

system (brain stenosis, aneurysm, and atherosclerosis), smoking habit, hepatitis C virus 

antibody, renal stone, gastric cancer, and bone mineral density were mutually exclusive 

between Koreans and Japanese.   

In the comparison between Korean and UK populations, fewer overlapping loci were 

identified, with the highest overlap ratio being 9.15% in fatty liver disease; 42 phenotypes did 

not have any overlap (Figure 2, Figure S8).  

Population comparisons were further investigated for body mass index (BMI) in 

particular. For this phenotype, 136 loci (0.42% of significant loci) were replicated in the 

Japanese population and 105 loci (0.07%) in the European population, respectively. Our 

population showed 583 exclusive loci (1.82%) when compared to the Japanese population, and 

669 exclusive loci (0.45%) when compared to the European population. We then looked more 

deeply into the BMI genes unique to the Korean population. Relative to the Japanese population, 

73 genes were exclusively associated with the Korean population; meanwhile, relative to the 

European population, 53 genes were exclusively associated with the Korean population. Of 
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these genes, 34 (714 loci) were unique relative to both Japanese and European populations 

(Table S12, Figure S9). Of those unique genes, 23 have previously reported associations with 

obesity or body weight; the corresponding literature review and references are given in Table 

S13. The other 11 genes have not been previously reported as associated with obesity in 

humans, and could be candidate novel genes for BMI or obesity; these were Vesicle Amine 

Transport 1-Like (VAT1L), Uromodulin-like 1 (UMODL1), Telomeric Repeat-Binding Factor 2-

Interacting Protein 1 (TERF2IP), Proline-rich Transmembrane Protein 3 (PRRT3), PRRT3 

Antisense RNA 1 (PRRT3-AS1), Long Intergenic Non-protein Coding RNA 578 (LINC00578), 

Family with Sequence Similarity 225 Member B (FAM225B), Cation Channel Sperm-associated 

1 (CATSPER1), Barrier To Autointegration Factor 1 (BANF1), Attractin-Like Protein 1 (ATRNL1), 

and Adherens Junctions-associated Protein 1 (AJAP1). Among those genes, TERF2IP is known 

from a mouse study to have roles in regulating adipose function and excess fat accumulation, 

and also protecting against obesity 40. ATRNL1 has no previous report related to obesity, but 

Attractin (ATRN) has similarity with the mouse mahogany protein, which is involved in 

controlling obesity 41,42. BANF1 has no known direct association for obesity, but it is reported to 

suppress expression of S100 calcium-binding protein A9 (S100A9) 43, which is a candidate 

marker for obesity in non-type 2 diabetes mellitus 44.  

 

Systematic analysis of the PheWAS results 

GENIE cohort (Korean population) 

To perform a systematic analysis of the PheWAS results, we leveraged cross-phenotype 

associations, where one locus is significantly associated with multiple phenotypes. For this 

analysis, significant loci were filtered by a less-stringent threshold, P < 1x10-4 (loci count = 

260,922, gene count = 14,907). The schematic structure for this analysis is shown in Figure S4. 
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Briefly, we constructed: “Possible polygenicity”, in which a phenotype is influenced by more than 

one gene (Figure S4A, Table S14); “Possible pleiotropy”, in which a locus or gene affects 

multiple phenotypes (Figure S4B, Table S15); a “bipartite phenotype network” based on the 

connections among phenotypes sharing at least one locus (Figure S4C, Table S16); and a 

“bipartite gene network” as the connections among genes shared by at least one phenotype 

(Figure S4D).  

Of the 260,922 significant PheWAS loci, the bipartite phenotype network comprised 

23,580 loci (2,902 genes) with 135 phenotypes. There were 1,926 distinct pairs of phenotypes. 

We calculated the degree properties of core phenotypes in this network (Table S17), where core 

phenotypes were those nodes connected to several phenotypes by shared variants; an example 

is phenotype 4 in Figure S4C. Notably, phenotypes in the tumor markers category had relatively 

high degree of phenotype connection. The highest phenotype degree was obtained for a 

representative tumor marker for pancreas cancer, CA 19-9, with 110 phenotypes connected 

through sharing of significant loci. Meanwhile, the highest possible polygenicity was observed 

for mean corpuscular hemoglobin concentration (MCHC), with 782 genes. 

The bipartite gene network comprised 14,907 genes, which were connected through 

sharing associations with the same phenotypes. Table S18 give the gene degree and 

phenotype degree values for this network. The three genes with the highest phenotype degrees 

were; CUB and Sushi Multiple Domains 1 Protein (CSMD1), RNA-binding Fox-1 Homolog 1 

(RBFOX1), and Protein Tyrosine Phosphatase Receptor Type D (PTPRD); this could be due to 

possible pleiotropy. The same three genes had the highest gene degree values; gene degree 

comprises the edges in bipartite gene networks. Notably, CSMD1 was significantly associated 

with 58 phenotypes (showing possible pleiotropy) and connected to 12,602 genes through 

common associations with phenotypes. CSMD1 has been reported to function as a complement 

control protein 45; complement is implicated in many diseases through the mechanisms of 
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inflammation and autoimmunity 46. In some cancers, it functions as a tumor suppressor gene 

47,48.  

Bipartite phenotype network comparison with BBJ and UKBB  

We compared the bipartite phenotype networks of the GENIE (Korea), BBJ (Japanese), 

and UKBB (European) cohorts. There were 49 GENIE phenotypes in common among all 

datasets, which were used to generate the bipartite phenotype network. Figure S10 shows a 

Venn diagram of the phenotype-phenotype pairs observed in each population; 288 pairs were 

simultaneously observed in all three populations (Table S19). Notably, these included the 

pairing of red blood cell count (RBC) and brain vascular atherosclerosis. There are reports of 

RBC having relation to coronary artery disease 49 and  stroke mortality 50, but not directly to 

brain vascular atherosclerosis.  

Applicable interpretation of the PheWAS results 

Heritability analysis 

Heritability was calculated for each of the 136 phenotypes by regression of LD scores 

(Table S20). The top heritability values were obtained for compression fracture (h2 = 0.459), 

spondylolisthesis (h2 =0.425), height (h2 = 0.322), and bone mineral density (h2 = 0.298). In 

terms of biological categories and body systems, the highest heritability values were obtained 

for the musculoskeletal system (mean h2 = 0.244), the pulmonary system (mean h2 = 0.225), 

anthropometric measures (mean h2 = 0.213), and the hematologic system (mean h2 = 0.188) 

(Table S21).  

For further interpretation of heritability, we produced an integrated phenotypic trait using 

a dimensionality reduction approach. Specifically, we performed principal component analysis 

(PCA) for each phenotype using connected phenotypes from the bipartite phenotype network 

(for example, phenotype 4 group in Figure S4C). Then, we calculated heritability for the 
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resulting new phenotypic trait, the 1st principal component (1st PC) of the given phenotype. To 

observe the effect of this dimensionality reduction approach, delta h2 was calculated by 

subtracting the original heritability (mean heritability or heritability of a single phenotype) from 

the heritability of the 1st PC (Δh2 for 1st PC).  There were 135 phenotypes that have at least 

one phenotype in connection by sharing variants. The results are given in Figure S11A and 

Table S20. Of our 135 phenotypes, 82 had improved heritability values.  As shown in Figure 

S11A, particularly high delta h2 values were obtained for spondylosis, exercise, liver 

hemangioma, and gastroesophageal reflux.  

The Ensembl variant effect predictor (VEP) provides information regarding the effect of 

loci on genes and protein sequences, categorized as modifier impact (usually for non-coding 

variants or variants affecting non-coding genes, where predictions are difficult or there is no 

evidence of impact), low impact (mostly harmless or unlikely to change protein behavior), 

moderate impact (non-disruptive variant that might change protein effectiveness), and high 

impact (high, disruptive impact on the protein) 

( https://useast.ensembl.org/Help/Glossary?id=535). We divided the significant loci (1x10-4) into 

two groups according to their annotated impacts, namely “modifier low” vs. “moderate, high”, 

and evaluated the correlation between impact group and heritability in each phenotype. A 

significant correlation was observed (P = 0.001, correlation (r) = 0.281, 95% CI = 0.117-0.429).   

We further compared the heritability in our population with that in the Japanese and 

European populations (Table S20). Of phenotypes that overlapped with ours, BBJ provides 

heritability for 35 and UKBB for 101. Since the provided heritability values were determined 

using different loci and methods, we normalized the heritability to make it comparable. 

Comparisons to each of the Japanese and UK populations are shown in Figure S12, while the 

three-way comparison among Korean, Japanese, and UK populations is shown in Figure S11B 

(33 phenotypes overlapped among the three populations). Generally, most phenotypes had 
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similar trends in heritability across populations. Noticeable differences were observed in percent 

eosinophils among white blood cell counts (BASOPHIL), prothrombin time in the international 

normalized ratio (PT), and activated partial thromboplastin time (aPTT). BASOPHIL had 

relatively high heritability in the Korean population relative to both others. Meanwhile, PT and 

aPTT, which are biomarkers of coagulation function, showed similar trends in the Korean and 

Japanese populations, but manifested relatively high heritability in Koreans relative to the UK 

population. 

 

Network analysis   

Using cross-phenotype association information, we constructed phenotype-phenotype 

and phenotype-genotype networks in order to find hidden relationships among phenotypes or 

genotypes and to discover hub genes or phenotypes.  

First, a network representation of gene-phenotype associations related to metabolic 

syndrome was constructed (Figure 3A).  We selected the nodes by filtering for genes associated 

with metabolic syndrome, which were identified by annotating the significant loci (P < 10-4). 

Then, we filtered for phenotypes significantly associated with those selected genes. In the 

process, edges corresponding to loci not annotated by VEP were not included. Ultimately, 132 

genes associated with metabolic syndrome and 128 phenotypes sharing 102 genes with 

metabolic syndrome were used to construct the network (Figure 3A). The nodes were colored 

with respect to gene and phenotype, while the edges are associations between phenotypes and 

genes. In the metabolic syndrome sub-network, five genes had high degrees of connection and 

could be considered hub genes: PTPRD, DCC Netrin 1 Receptor (DCC), Proprotein Convertase 

Subtilisin/kexin Type 6 (PCSK6), Unc-13 Homolog C (UNC13C), and Contactin 4 (CNTN4). The 

phenotypes in this network comprised: of cardiovascular diseases, of metabolic diseases, used 
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as markers for obesity, and other various disease. The phenotype nodes included triglyceride 

(TG), HDL cholesterol (HDL), hypertension, diabetes, and waist circumference (WC). These 

results give a genetic rationale for the definition of metabolic syndrome in the PheWAS 

perspective.   

We also constructed a phenotype-phenotype network using 1,926 phenotype pairs 

based on shared loci (P < 1x10-4). Figure S13 shows the phenotype-phenotype network for the 

whole dataset, and an interactive visualization tool of the phenotype-phenotype network is 

available (https://hdpm.biomedinfolab.com/genie/). 

 

Relationships among obesity indices  

Ever since the American Medical Association (AMA) declared obesity to be a disease, 

interest in and research into obesity has been growing 51,52. However, definitions of pathological 

obesity make inconsistent use of variable traits such as body mass index (BMI), waist 

circumference (WC), total adipose tissue area (TAT), and visceral adipose tissue area (VAT). 

There are reports of an obesity paradox when defining obesity by BMI 53. The defining 

parameter for obesity also varies between researchers and with respect to the target disease. 

To investigate the relationships among these parameters, we constructed Venn diagrams 54 and 

visualized the overlap or exclusiveness among BMI, WC, TAT, and VAT based on the bipartite 

phenotype network (phenotype level) and pleiotropy/polygenicity potential of genes (gene level). 

As shown in Figure 3B, connections were observed as quadrant intersections among BMI, WC, 

TAT, and VAT for seven phenotypes: CA19-9, GOT, GPT, body fat mass, body fat percent, 

weight, and metabolic syndrome. There were 15 phenotypes connected exclusively with VAT 

and WC, and the intersection between these traits had two exclusive genes associated. Of the 

15 phenotypes, most were crucial intermediate phenotypes that link obesity with diseases. 
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Accordingly, it can be postulated that when defining obesity, VAT or WC would better represent 

the characteristics of pathogenic obesity. The two genes that are exclusively overlapped 

between VAT and WC (Figure S14) could be candidate genes for explaining the pathogenic role 

of obesity. The elements in each set are listed in Table S22.   

 

Cross-phenotype mapping 

Cross-phenotype mappings were generated based on the bipartite phenotype network, 

in which the connected phenotypes shared at least one locus.  

First, we constructed a cross-phenotype mapping focused on tumor markers. Several tumor 

markers are used in screening for cancer, monitoring its recurrence, and evaluating its response 

to interventions. Commonly-used tumor markers include carcinoembryonic antigen (CEA), 

carbohydrate antigen 19-9 (CA19-9), alpha fetoprotein (AFP), and prostate-specific antigen 

(PSA); specifically, CEA serves as a marker for colorectal cancer 55, CA19-9 for pancreato-

biliary cancer 56, AFP for liver cancer 57, and PSA for prostate cancer 58.  However, the limitation 

of using the tumor markers is that it can have low sensitivity or specificity 59, such that a test 

result could be associated with or affected by various non-malignant conditions. For instance, 

CEA is known to be affected by hemoglobin level 60, and CA19-9 is reported to be elevated in 

nonmalignant respiratory disease 61. Table S23 shows the respective connected phenotypes we 

obtained for tumor markers; among these, CEA is associated with hemoglobin level and CA19-9 

with pulmonary function test, which are consistent with previous reports 60,61. Figure S15 shows 

the cross-phenotype mapping for CEA, which could be considered during oncological practice in 

order to take into consideration all the possible effects of phenotypes other than colorectal 

cancer progression itself. 
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Second, we constructed a cross-phenotype mapping focused on lifestyle factors. The 

analyzed phenotypes included lifestyle factors such as coffee consumption and alcohol 

consumption. Several studies have shown genotype x environment interactions (G x E) in 

smoking behaviors 62. In this study, we visualized the cross-phenotype mapping for the coffee 

consumption as a starting point for G x E study in this phenotype. Coffee consumption had 27 

phenotypes connected through sharing of significant loci (Figure 3C). Several reports have 

documented relationships between coffee consumption and obesity 63, hypertension 64, diabetes 

65, renal function 66, and lipid metabolism 67. The phenotypes connected with coffee consumption 

in this mapping (Table S16) support the previous reports of clinical association studies. In the 

mapping for alcohol consumption, 38 phenotypes shared significant loci. Various studies have 

identified heavy alcohol consumption as a risk factor for renal disease 68 and coronary artery 

calcification 69. The results of these and other cross-phenotype mappings could provide the 

genetic background to explain interactions between environmental factors and disease, and 

might further provide basic knowledge necessary to conduct G x E analysis. 

 

Mendelian randomization analysis 

We estimated the causal inferences in phenotype pairs based on cross-phenotype 

associations using Mendelian randomization (MR). Table S24 shows the MR results for each 

pair having false discovery rate (FDR) < 0.05. Of the phenotype pairs, significant in the cross-

phenotype association, 1766 retained significant association after the Mendelian randomization 

analysis. As shown in Figure 3D, we drew a causal inference mapping centered on skeletal 

muscle mass. The network grid is based on information from the bipartite phenotype network of 

skeletal muscle mass. We excluded those pairs whose biological categories were 

anthropometric measurements, which category includes skeletal muscle mass. The Mendelian 

randomization analysis yielded nine significant phenotypes, of which one was causal for skeletal 
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muscle mass, two phenotypes were outcomes from skeletal muscle mass, and six had 

bidirectional relationships with skeletal muscle mass. This analysis revealed that skeletal 

muscle mass was a significant causal factor for metabolic syndrome and alcohol consumption. 

Its bidirectional relationships were with bone mineral density, liver function (GPT), pulmonary 

function (FVC, FEV1), renal function (glomerular filtration rate), and triglyceride. 

We also performed Mendelian randomization with a focus on lifestyle factors that were 

causal exposures in cross-phenotype associations, such as alcohol consumption, coffee 

consumption, exercise amount, and smoking history. Table S25 shows the significant outcome 

phenotypes (FDR < 0.05) from this analysis. Alcohol consumption was a significant causal 

exposure for ten phenotypes, coffee consumption for three phenotypes, exercise amount for six 

phenotypes, and smoking history for two phenotypes. Coffee consumption was also a significant 

causal exposure for three anthropometric measurements: body fat mass, visceral adipose tissue 

area, and waist circumference. 

Comparison of the phenotype-phenotype pairs between PheWAS-driven vs. EHR-driven   

“Penetrance” in genetics is the proportion of those individuals carrying a certain genetic 

variant who also exhibit the associated phenotype, while “expressivity” measures the proportion 

of individuals that are carriers of a certain variant and show the associated phenotype to a 

certain extent 70. As an indirect method to investigate the penetrance or expressivity of the 

significant loci identified in our study, we repeated bipartite phenotype network construction 

using an electronic health records (EHR)-driven method. This clinical database consisted of 

81,086 distinct participants who went through comprehensive health check-ups from 2004 to 

2015 in the SNUH Gangnam Center (H-PEACE cohort). The tests and questionnaires included 

most of the phenotypes used in the PheWAS study; specifically, 76 phenotypes were also 

recorded for this cohort. PheWAS-driven pairs (1164 pairs) were selected based on shared 

SNPs with association P < 1x10-4, and EHR-driven pairs (1938 pairs) were selected based on 
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correlation analysis with multi-test corrected P < 0.05. We compared these phenotype-

phenotype pairs (Table S26) and evaluated the overlap or exclusiveness of the pairs for each 

phenotype. Of the 1164 pairs identified in the PheWAS-driven approach, 834 (71.65%) also 

manifested significance in the EHR-driven analysis. As shown in Figure 5 and Table S27, high 

ratios of overlap were identified for skeletal muscle mass (95%) and alkaline phosphatase 

(93.48%), and low ratios for thyroid cancer (0%) and alpha fetoprotein (8%). When viewed in 

terms of biological category, the highest average % replication was obtained for anthropometric 

measurement (86.43%).  

Meta-analysis of PheWAS from Korean and Japanese populations  

We performed a PheWAS meta-analysis by incorporating our data with the BBJ data 

(Japanese population). The results are given in Table S28, Figure S16 and Figure S17. All 51 

phenotypes used in the meta-analysis had an increased number of significant variants in the 

Korean population, while 37 phenotypes had variants uniquely significant in the meta-analysis. 

Furthermore, height, diabetes and body mass index had more than 100 variants that were 

uniquely identified as significant in the meta-analysis. 

 

Discussion 

 With the advancements in healthcare research that are being driven by big data, 

increasing efforts are being made to carry out data-wide association studies. PheWAS is one of 

the tools in that paradigm. However, previous studies faced major challenges in terms of deep 

phenotyping due to generally using ICD codes, which have limited clarity in their definitions; 

making the results applicable and interpretable in healthcare practices and clinical research; 

and the characteristics of population genetics, being highly affected by race and ethnicity. Here, 

we carried out PheWAS in a Korean population using comprehensive health check-up data 
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linked with genotype data, and furthermore identified applicable interpretations of the PheWAS 

results. We also compared the results of PheWAS studies conducted in different populations to 

evaluate trans-ethnic differences. Finally, our bipartite phenotype network analysis of 

phenotypes using shared genetic association revealed hidden patterns between phenotypes. 

The deep phenotypes we used in our studies were corroborated during comprehensive 

health check-up by various confirmatory methods such as laboratory tests, endoscopy, CT 

scans, MRI, interview questionnaires, and so on. For each participant, all tests were done in the 

same institute and on the same day. This process of generating deep phenotypes makes for 

data quality that is well controlled and consistent when compared to results from phenotypes 

based on ICD codes, which can be discrepant with actual clinical diagnoses due to biases in 

billing pattern 71. As we were able to use the raw data produced by the test, our analysis 

included a lot of endophenotypes. Endophenotype (intermediate phenotype) is a quantitative 

biological trait 72 that is reported to reliably reflect the function of the categorical biological 

system 72,73 and has reasonable heritability 74. As such, an endophenotype could be more 

closely related to the genetic basis and cause of a clinical trait than would be a broad clinical 

phenotype such as an ICD code 75.  

 We compared our PheWAS results with studies done in European (UK Biobank) and 

Japanese (Biobank Project Japan) populations and found several novel loci, replicated loci, 

replicated phenotype-phenotype pairs. We furthermore compared estimated heritability among 

the populations. Significant variants in the Korean population were partly replicated in both 

European and Japanese populations, though the replication rate was higher in the Japanese 

population. We also identified SNP-phenotype associations that were unique to the Korean 

population when compared to not only the European but also the Japanese population. 

Noticeably, in the comparison of significant variants associated with body mass index (BMI), the 

Korean population had novel unique variants (Figure S8) associated with TERF2IP, ATRNL1, 
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and BANF1. The results from these trans-ethnic and trans-nationality comparisons seemingly 

emphasize the importance of considering genetic differences among ethnicities, and also race. 

Koreans are generally included in the East Asian population; however, study of the human Y-

chromosome 76 suggests that compared to other populations from Asia, the Korean population 

has characteristics of a distinct, mostly endogamous ethnic group, and living in a confined 

peninsula area has preserved these monogenic nationality traits. In a study comparing genetic 

structure and divergence among Han Chinese, Japanese, and Korean populations those three 

East Asian populations were shown to have distinct genetic make-up and could be distinguished 

based on their genetic characteristics 77. In the meta-analysis of our population and the 

Japanese population, 72.5% of phenotypes had variants that were uniquely significant in the 

meta-analysis. Our study shows that the common and exclusive genetic associations of 

phenotypes should be taken into consideration when performing a population-based clinical 

study. Furthermore, meta-analysis of PheWAS studies in populations of the same ethnicity but 

different nationalities can discover uniquely significant variants.    

In the calculation of heritability for each phenotype, we generated a heritability 

estimation model that incorporated all phenotypes having cross-phenotype association through 

principal component analysis (PCA) into the 1st principal component (1st PC). For spondylosis, 

exercise, liver hemangioma, and gastroesophageal reflux, this estimated heritability using the 

1st PC had higher explanation than did the value estimated without incorporating cross-

phenotype associations. Heritability is the contribution of genetic variants that explains 

phenotypic variation 78. There is a well-known gap between the contribution calculated from 

genome-wide association results and that from classical heritability methods, termed missing 

heritability 79. The speculative explanations for explaining are a lack of statistical power of the 

variant 80, epistatic interactions, gene-environment interactions, and structural variations 81-83. 
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The results in our study suggest that incorporating cross-phenotype association information for 

each phenotype could help fill out the missingness in heritability.  

When comparing estimated heritability among different populations, the heritability in the 

Korean population of biomarkers for coagulation function, such as PT and aPTT, showed similar 

trends with that of the Japanese population, but manifested relatively high heritability when 

compared to the UK population. This indicates that the contribution of genetic variants to 

variation in coagulation traits is affected by ethnical differences. Evaluating heritability difference 

by ethnicity will be important supportive information in the development of drugs as an aspect of 

precision medicine. 

 We also leveraged the cross-phenotype association results to provide a panoramic 

overview of the network connections among multiple phenotypes and genetic variants. 

Specifically, we generated a phenotype-genotype network focused on metabolic syndrome 

(Figure 3A). Metabolic syndrome is a cluster of metabolic abnormalities that are known to be 

associated with visceral adipose obesity 84. A large number of epidemiological studies have 

been conducted on metabolic syndrome because it is a crucial target for healthcare, imposing 

an increased risk of developing conditions such as cardiovascular disease 84, malignant disease 

85, depression 86, and metabolic disease 84. Early diagnosis is important to prevent the negative 

consequences of metabolic and this may be done by modifying the lifestyle and risk factors.  

The network we constructed provided a rationale for defining metabolic syndrome by 

phenotypes of TG, HDL, hypertension, diabetes, and WC, and for using the characteristics of 

metabolic syndrome to collectively integrate heterogeneous and complex disease status. The 

network included phenotypes of cardiovascular disease (coronary calcium score, cardiac 

ischemia, brain atherosclerosis, malignant disease (thyroid cancer, gastric cancer), and 

depression and metabolic disease (fatty liver, uric acid), which are known to be complications of 

metabolic syndrome. Other phenotypes in the network related to obesity, specifically visceral 
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obsesity indicator and visceral fat amount; obesity is a well-known cause of metabolic syndrome 

84. Furthermore, lifestyle factor phenotypes such as alcohol consumption, smoking habit, and 

exercise amount were also part of the network. These suggest modifiable targets for preventing 

the complications of metabolic syndrome. Finally, the network suggested hub genes associated 

with metabolic syndrome. Similar network analysis of PheWAS results might provide genotype-

based evidence of connections among phenotypes or variants, which to date have been 

assumed from epidemiological research, and can also provide novel insights into connections 

that have not been previously reported or recognized.  

We additionally used the bipartite phenotype network to perform cross-phenotype 

mapping. Table S23 shows the cross-phenotype mapping constructed for tumor markers. 

Tumor markers are highly used in clinical practice for tasks such as oncological screening and 

monitoring recurrence after treatment. The marker carcinoembryonic antigen (CEA) is 

recommended by the National Comprehensive Cancer Network (NCCN) guidelines for colon 

cancer and American Society of Clinical Oncology (ASCO) to test a diagnosis of colon cancer 

as a baseline for monitoring and then to regularly monitor for recurrence or metastasis of the 

colon cancer 87,88. Testing for the marker PSA is recommend by the American Cancer Society 

(ACS) for men aged >50 years, after an informed decision-making process 89. Regular testing 

for another marker, serum alpha-fetoprotein (AFP), is recommended by the NCCN guideline in 

the follow-up of hepatocellular carcinoma 90.  

However, while testing for tumor markers is essential in the surveillance of malignant 

disease, their usage faces problems in the form of low sensitivity and specificity and the 

potential that they could be affected by factors other than the cancer itself. Thus, providing a 

cross-phenotype mapping for tumor markers could support an oncologist in interpreting the 

results of each tumor marker test. For instance, hemoglobin was included in our CEA cross-

phenotype mapping. Thus, if a colorectal cancer patient has severe anemia, we should be 
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cautious about interpreting a change in CEA; the anemia could attenuate or exaggerate its 

reflection of the patient’s cancer status 60. There are several reports that have used not only one 

tumor marker but a combination of tumor markers to monitor malignancies 91-93. In Table S23, 

each tumor marker has pairs with multiple other tumor markers, which provide supporting 

evidence for combining tumor markers as a means to improve their utility in malignancy 

surveillance.  

We also built cross-phenotype mappings for environmental factors. Figure 3C shows 

the cross-phenotype mapping for coffee consumption in particular. Similar visualization of the 

correlations between environmental factors and other phenotypes could provide insight into 

which disease should be considered for the investigation of the benefits or hazards of given 

environmental factors, and what also connections could provide a candidate model for gene x 

environment interactions.  

In our study, we applied Mendelian randomization analysis to cross-phenotype 

networks in order to generate corresponding causal inference networks. To the best of our 

knowledge, this is the first approach to utilize MR in network-based analysis. MR enables the 

estimation of causal inference by evaluating the relationship between genetic susceptibility to 

the causal factor and the outcome in question 94. As shown in Figure 3D, we specifically drew a 

causal inference map for skeletal muscle mass. We visualized this map because skeletal 

muscle mass is regarded as an endocrine and paracrine organ, and is also suggested as a 

marker in diseases such as metabolic syndrome, diabetes, and more 95. The analysis revealed 

skeletal muscle mass as having significant causal inference for metabolic syndrome. Thus, by 

performing MR, we can suggest which phenotype could be causal or an outcome in relation with 

a trait and also begin to elucidate the mechanism or pathophysiology for a disease of interest. 

Our study has several advantages. First, to the best of our knowledge, this is the first 

PheWAS study performed in the Korean population. As described above, several loci in this 
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population differ from the Japanese population. We were also able to carry out trans-nationality 

analysis for the PheWAS. Second, we defined phenotypes directly using results from health 

check-ups and questionnaire responses from personal participants. This make the resolution, 

clarity, and reliability of this study’s results better than those of a PheWAS based on ICD codes. 

Third, since all tests were performed in the same institute, under the same conditions, and by 

using the same machines, protocols, and chemicals, the produced data is consistent and its 

quality is highly controlled. Fourth, we tried to translate the PheWAS results in ways meaningful 

to healthcare practice and clinical research, so that the results could be highly applicable and 

utilized more practically. We constructed a phenotype-phenotype network using all the 

phenotypes in our study (Figure S13). Similarly constructing a phenotype-phenotype network 

based on comprehensive, deep phenotypes could provide clinicians and researchers with a 

detailed landscape of the interconnections between phenotypes and enable better 

understanding of their underpinnings. Furthermore, the phenotype-phenotype network not only 

includes disease status but also contains information on genes, environment, and lifestyle. 

Precision medicine pursues prevention and treatment strategies that take individual variability 1, 

such as in genes, environment, and lifestyle, into account 2. Accordingly, the networks 

generated by PheWAS would provide fundamental information for realizing precision medicine 

in healthcare practice and clinical research.  

Our study has several limitations. First, we did not have a set Korean replication 

population because it was not possible to find such datasets with the variety of deep 

phenotypes incorporated in our study. However, we instead introduced the UKBB and BBJ as 

replication sets, and consequently identified multiple replicated loci. We also replicated the 

phenotype-phenotype pairs using a larger EHR-driven database of Korean samples to 

investigate whether the genetic connection was reflected at the actual phenotype level. Second, 

the study population was collected from those who had regular health check-ups, and therefore 
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samples with positive morbidity were relatively few. Accordingly, the significance of the loci was 

low for some phenotypes. We tried to overcome this lack of statistical power by performing a 

meta-analysis with the UKBB and BBJ summary statistics, in which we were able to pick up 

additional significant loci. In a future study, we will incorporate diverse disease cohorts from the 

Korean population to increase the study power.  

In conclusion, our study highlights the capacity for realizing interpretable clinical 

applications of PheWAS through comprehensively exploiting the results. With the information 

generated by PheWAS, we attempted to provide a landscape that integrated an individual’s 

genetic, lifestyle, and environmental factors along with health status. We provided several 

samples of actionable applications such as constructing a gene-phenotype association network 

related to metabolic syndrome; constructing cross-phenotype mappings; and visualizing causal 

inference mappings. Through analysis in the context of differences in ethnicity and nationality, 

our study shows that some phenotypes are common or exclusive in their genetic associations, 

and this should be taken into consideration when performing a population-based clinical study. 

The paradigm of PheWAS suggested in our study will eventually be the cornerstone for 

applying the core concepts of precision medicine to research and healthcare practice. 
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Table 1. Overview of the studied phenotypes 

 

Category Phenotype Symbol 
Significant 
loci count 
(p<1x10-4) 

Significant loci 
count 

(p<4.916x10-10) 

Significant gene 
count 

(p<1x10-4) 

Heritability  
(h2) 

AM Anthropometric measure AM         
AM Height Ht 2415 5 257 0.3221 
AM Weight Wt 995 0 132 0.2292 
AM Body mass index BMI 886 0 142 0.2375 
AM Skeletal muscle mass Skeletal_m 1479 0 192 0.2769 
AM Body fat mass Fat_mass 1135 0 144 0.1995 
AM Body fat percent Fat_percent 1324 0 149 0.2142 
AM Waist circumference WC 841 0 129 0.1781 
AM Total adipose tissue area TAT 1251 0 128 0.1505 
AM Visceral adipose tissue area VAT 981 0 131 0.1082 
CV Cerebro-cardio-vascular CV 

   CV Heart rate HR 1318 40 130 0.1681 
CV Axis on EKC Heart_axis 959 0 142 0.1496 
CV EKG : Sinus bradycardia Sinusbradycardia 862 40 99 0.1062 
CV EKG : Right bundle branch block  RBBB 786 0 141 0 
CV EKG : 1st degree atrioventricular block      1DAVB 894 0 156 0.0119 
CV EKG : Myocardial infarction infarct 853 0 160 0.0915 
CV EKG : Myocardial ischemia EKG_ischemia 1459 0 276 0.2081 
CV Coronary CT : Coronary calcium score          Cal_score 2688 19 629 0.1278 
CV Coronary CT : Coronary vascular plaque cor_plaque 1241 0 114 0 
CV Coronary CT : Coronary vascular stenosis cor_stenosis 654 0 102 0 
CV Coronary CT : Aortic dilatation ao_dilatation 619 0 127 0.1247 
CV Brain unidentified bright object (UBO) br_UBO 519 0 92 0.1272 
CV Brain small vessel disease br_SVD 789 0 117 0.0202 
CV Brain vascular atherosclerosis br_atherosclerosis 521 0 105 0.1204 
CV Brain vascular stenosis br_stenosis 901 0 182 0.1987 
CV Brain aneurysm          br_aneurysm 720 0 111 0.147 
CV Brain atrophy br_atrophy 1246 0 166 0.2294 
CV Diagnosed of hypertension   HTN 1039 0 138 0.1024 
DS Digestive system DS         
DS Gall bladder adenomyomatosis        GB_adenom 817 0 140 0.0733 
DS Pancreas IPMN IPMN 873 0 164 0.0875 
DS Liver hemangioma Hemangioma 714 4 121 0.0003 
DS Gall bladder cholecystitis Cholecyst 836 1 156 0.0232 
DS Gall bladder stone GB_stone 765 0 135 0.0276 
DS Gall bladder polyp GB_polyp 904 1 122 0.1163 
DS Fatty liver  Fatty_liver 849 144 111 0.1332 
DS Atrophic gastritis AG 610 0 103 0.015 
DS Intestinal metaplasia of stomach  IM 1074 0 151 0.1527 
DS Duodenal ulcer Duodenal ulcer 833 54 106 0 
DS Gastric ulcer GU 1000 0 200 0.0315 
DS Gastroesophageal reflux disease GERD 565 0 101 0.0143 
DS Serum total protein  Prot 945 52 203 0.1993 
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DS Serum albumin  Alb 1310 21 231 0.2325 
DS Serum total bilirubin  Tbil 2570 1151 137 0.274 
DS Alkaline phosphatase  ALP 2631 299 203 0.1203 
DS Glutamic oxaloacetic transaminase GOT 2209 8 462 0.0334 
DS Glutamic pyruvic transaminase GPT 1266 6 255 0.0609 
DS Gamma-Glutamyl Transferase                       GGT 2716 78 512 0.0818 
DS Gastric cancer Gas_Ca 982 0 207 0.1719 
DS Hepatitis B virus surface antigen HBV 3762 324 252 0.1679 
DS Hepatitis C virus antibody HCV 1119 0 231 0.0809 
EM Endocrine and metabolism EM 

   EM Fasting blood glucose level glucose 1842 0 212 0.1116 
EM Uric acid Urate 3977 1261 284 0.2186 
EM Triglycerides TG 2676 333 258 0.1385 
EM HDL cholesterol HDL 2036 442 171 0.2471 
EM Hemoglobin A1c  HBA1C 1861 0 245 0.1084 
EM Free T4 T4 1652 2 194 0.1547 
EM Thyroid-Stimulating Hormone TSH 15064 741 2549 0.1016 
EM Total cholesterol T_chol 1061 17 151 0.0678 
EM LDL cholesterol LDL 1279 63 142 0.0367 
EM Metabolic syndrome Metabolic syndrome 811 2 132 0.1583 
EM Thyroid cancer Thy_Ca 836 0 225 0.0023 
EM Breast cancer Br_Ca 952 0 210 0.0522 
EM Diagnosed of diabetes DM 1507 0 187 0.0824 
EM Diagnosed of dyslipidemia Dyslipid 1103 2 150 0.1251 
HS Hematologic system HS         
HS White blood cell count WBC 1629 143 153 0.1454 
HS Platelet count PLT 3040 185 278 0.2375 
HS Neutrophil percent among WBC Neut 2080 250 200 0.1423 
HS Lymphocyte percent among WBC LYMPHO 1978 247 190 0.1524 
HS Monocyte percent among WBC MONOCYTE 1948 18 194 0.2067 
HS Eosinophils percent among WBC EOSINOPHIL 3109 11 343 0.2822 
HS Basophils percent among WBC BASOPHIL 4043 293 373 0.2941 
HS Red blood cell count RBC 1997 209 181 0.2582 
HS Hemoglobin HB 1707 12 199 0.1854 
HS Mean corpuscular volume MCV 3270 250 251 0.2444 
HS Mean corpuscular hemoglobin MCH 3077 134 358 0.2204 
HS Mean corpuscular hemoglobin concentration MCHC 4982 1266 979 0.1389 
HS Plateletcrit PCT 2747 68 299 0.2023 
HS Mean Platelet Volume MPV 3843 188 591 0.1353 
HS Prothrombin time  PT 4515 227 846 0.061 
HS Activated Partial Thromboplastin Time aPTT 2092 691 181 0.1725 
HS Hematocrit HCT 962 0 170 0.1544 
HS Red blood cell distribution width RDW 2489 146 244 0.1575 
LS Life style LS 

   LS Smoking history Smoke 939 0 99 0.062 
LS Alcohol consumption Alcohol 2158 612 156 0.0908 
LS Exercise amount Exercise 1657 1 357 0 
LS Education level education 558 0 134 0.0264 
LS Marital status marital 0 0 0 0.0048 
LS Coffee consumption Coffee 680 17 109 0.0317 
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LS Nocturia per night Nocturia 652 0 98 0.0339 
ME Mental and emotion ME         
ME Sleep onset latency               SOL 503 0 112 0.0931 
ME Wake Time After Sleep Onset WASO 869 0 121 0.066 
ME Depressed mood Depressed 1043 0 163 0.1041 
ME Appetite change increase Appetite_inc 808 0 114 0 
ME Diminished cognitive functioning Cognitive function 918 0 152 0.0769 
ME Worthlessness or guilty feeling Guilty feeling 1033 0 104 0.0399 
ME Suicidal ideation Suicidal 1334 0 285 0.2812 
ME Loss of interest or pleasure      Loss_of_interest 993 0 160 0.169 
ME Fatigue Fatigue 888 0 158 0.046 
ME Psychomotor retardation         retardation 869 0 149 0.0698 
ME Psychomotor agitation  agitation 1093 0 188 0.0663 
ME Depression score depression_score 839 0 141 0.0614 
MN Minerals MN 

   MN Calcium level CALCIUM 3792 597 763 0.2503 
MN Phosphorus level PHOSPHORUS 1461 1 177 0.106 
MN Sodium level Na 3992 776 821 0.1384 
MN Potassium level K 632 0 94 0 
MN Chloride level CL 763 3 213 0.0967 
MN CO2 level TCO2 759 0 116 0.0499 
MN Vitamin D3 VitD3 1271 8 117 0.0743 
MC Musculoskeletal MC         
MC Bone density by DEXA DEXA 799 0 88 0.2982 
MC Spondylosis           spondylosis 419 0 73 0 
MC Spondylolisthesis     spondylolisthesis 939 0 147 0.4245 
MC Compression fracture  compression_fracture 1189 0 229 0.4589 
MC Intervertebral disc space narrowing spine_disc_narrowing 529 0 97 0.0603 
OS Ophthalmic system OS 

   OS Cataract cataract 865 0 98 0.0214 
OS Drusen drusen 842 0 124 0 
OS Macular change macular_change 881 0 137 0.0347 
OS Optic disc cupping optic_disc_cupping 755 0 133 0.0856 
OS Optic nerve fiber loss optic_fiber_loss 886 0 144 0.1659 
OS Intraocular pressure, right  IOP_rt 1468 30 263 0.156 
OS Intraocular pressure, Left IOP_Lt 1451 4 175 0.1074 
PS Pulmonary system PS         
PS Forced vital capacity (L) FVC_L 1519 0 188 0.2408 
PS Forced vital capacity (%) FVC_percent 1524 0 192 0.2426 
PS First second of forced expiration (L) FEV1_L 1474 0 182 0.2895 
PS First second of forced expiration (%) FEV1_percent 2066 0 168 0.2876 
PS FEV1/FVC  FEV1_FVC_percent 1611 86 228 0.2055 
PS Pulmonary punction test category PFT_categoric 563 0 95 0.081 
RS Renal system RS 

   RS Blood Urea Nitrogen  BUN 2551 123 450 0.1825 
RS Renal stone Renal_stone 824 0 143 0.1145 
RS Creatinine CREATININE 2059 29 399 0.2535 
RS Estimated glomerular filtration rate  GFR 1353 34 207 0.2791 
RS Urine pH urine_PH 3432 651 772 0.1166 
RS Urine albumin        urine_PU_cat 1388 0 212 0.1625 
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TM Tumor marker TM         
TM Cancer Antigen 125   CA125 7923 145 1508 0 
TM Carbohydrate antigen 19-9  CA19_9 27140 936 4624 0.0312 
TM Alpha Fetoprotein   AFP 4244 119 654 0.1803 
TM Carcinoembryonic antigen                   CEA 1835 202 375 0.0356 
TM Prostate-Specific Antigen          PSA 12999 279 2559 0.1082 
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Figure legends 

Figure 1. Overview of the study design.  

A. We utilized a health check-up cohort whose participants had collected CT, MRI, electrocardiography (ECG), bone densitometry 
(DEXA), ultrasonography (sono), gastroscopy (endoscopy), blood and urine laboratory tests, and questionnaires for medical and 
medication histories. Sub-cohorts of this cohort are the Gene-EnvironmeNtal IntEraction and phenotype (GENIE) cohort, which 
includes biobank data from 800K SNP array for 10K samples, and the Health and Prevention EnhAnCEment (H-PEACE) cohort, 
which includes an EHR database of the health check-up results for 80K participants.   

B. Phenome wide association study (PheWAS) was performed for 136 phenotypes adjusting for age, sex, and PC1-PC3.  

C. We leveraged cross-phenotype associations to perform systematic analysis of the PheWAS results, which were polygenicity, 
pleiotropy, a bipartite gene network, and a bipartite phenotype network. The details are described in Figure 4.  

D. To ensure robustness of the PheWAS results, we further dissected the results to suggest applicable interpretations. The 
heritability for each phenotype was calculated using LD regression. We evaluated the correlation between phenotype heritability and 
the effect of the loci on genes and protein sequences associated with phenotypes, provided by Ensemble variant effect predictor 
(VEP). We performed a principal component analysis (PCA) for each phenotype using the connections in the bipartite phenotype 
network, calculated heritability for the 1st principal component (1st PC) of that phenotype, and compared heritability values of the 
single phenotype vs. its 1st PC.  

E. Using cross-phenotype association information, we constructed phenotype-phenotype and phenotype-genotype networks to find 
the hidden relationships among phenotypes or genotypes, as well as to find hub genes or hub phenotypes.  

F. We visualized the comparison of obesity indices (body mass index, waist circumference, visceral adipose tissue, and total adipose 
tissue amount) by drawing a Venn diagram of the cross-phenotype associations of phenotypes or genes.  

G. We constructed cross-phenotype mappings, which have a core phenotype (Pheno-1 in the figure) and branches of connected 
phenotypes that share loci. These were partitioned by color according to the biological system involved.  

H. We estimated causal inferences in the phenotype pairs from cross-phenotype associations using Mendelian randomization and 
constructed a causal inference map.  

I. Utilizing summary statistics from the UK Biobank and BioBank Japan Project, we performed trans-ethnic and trans-nationality 
analysis among Korean, European, and Japanese populations. We performed a PheWAS meta-analysis and trans-ethnic 
comparisons for significant loci, heritability, and cross-phenotype mapping.  

J. We compared phenotype-phenotype pairs generated from SNP-based cross phenotype-association in the Biobank analysis with 
those generated from correlation analysis in the EHR-based H-PEACE cohort. We evaluated the overlap or exclusiveness of pairs for 
each phenotype by phenotype degree. 
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Figure 2. Trans-ethnic, trans-nationality comparison of PheWAS 

 We compared PheWAS results among Korean, Japanese, and European populations. Phenotypes existing in all datasets were used. 
We evaluated loci significantly associated only in Koreans (black bar), in both populations (gray bar), and only in the other population 
(bright gray bar). The colored bar at the top indicates phenotype categories. The Y axis denotes the ratio (%) of loci in each 
classification, with 100% being the total significant in the compared populations.  

A. PheWAS result comparison between Korean and Japanese populations.  

B. PheWAS result comparison between Korean and European populations. 

 

Figure 3. Applicable interpretations.   

A. Network analysis A network representation of gene-phenotype associations related to metabolic syndrome was constructed 
from 102 genes associated with metabolic syndrome and 128 phenotypes sharing those genes. Each edge is a phenotype-
gene association, with genes for significant loci (P < 10-4) being annotated by VEP. Node size is proportional to degree, 
which is the number of connections. Pink nodes correspond to phenotypes and green nodes to genes. The genes PTPRD, 
DCC, and PCSK6 had high degree, which implies the possibility of being hub genes. Among phenotype nodes, CA19-9 and 
TSH were of high degree. 

B. Relationships among obesity indices We visualized the comparison among the obesity indices such as body mass index 
(BMI), waist circumference (WC), visceral adipose tissue (VAT) and total adipose tissue (TAT) amount by drawing a the 
venn-diagram for cross phenotype association of phenotypes or genes. There were 7 phenotypes (CA 19-9, body fat percent, 
body fat mass, GOT, GPT, weight, and metabolic syndrome), which are simultaneously associated with BMI, WC, TAT and 
VAT. 15 phenotypes (alcohol consumption, coffee consumption, ALP, GGT, creatinine, GFR, glucose, diabetes, HDL 
cholesterol, hypertension, WBC, neutrophil, RDW, protein and albumin) were associated exclusively with VAT and WC and 
this intersection had 2 genes associated. 

C. Cross-phenotype mapping Cross-phenotype mappings were generated based on the bipartite phenotype network, in turn 
constructed from the connections among phenotypes sharing at least one locus. Coffee consumption, which is one of the 
lifestyle phenotypes, had 31 phenotype degrees in the bipartite phenotype network. 

D. Causal inference mapping We estimated causal inferences in phenotype pairs based on cross-phenotype associations 
using Mendelian randomization (MR), and constructed a causal inference map. This figure shows the map for skeletal muscle 
mass (Skeletal muscle). The network grid is based on information from the bipartite phenotype network of Skeletal muscle. 
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We excluded pairs whose biological categories are anthropometric measurements, the same as skeletal muscle. We then 
performed pair-wise Mendelian randomization for each phenotype pair. Pairs with significant P values (false discovery rate 
[FDR] less than 0.05) are indicated by arrows. The direction of the arrow is the causality result from MR (Blue arrows, WBC 
as outcome; Red arrows, WBC as exposure; Green arrows, bidirectional). Pairs observed in the bipartite phenotype network 
but insignificant in MR have straight black lines without arrows. 

 

Figure 4. Comparison of phenotype-phenotype pairs between PheWAS driven and EHR-driven analysis.  

There were 76 phenotypes also recorded in the EHR-driven cohort (H-PEACE cohort). PheWAS-driven pairs (1164) were based on 
shared SNPs with association P < 1x10-4, and EHR-driven pairs (1938) on correlation analysis with multi-test corrected P < 0.05 
(Table S26). Skeletal muscle mass (95%) and alkaline phosphatase (93.48%) had high ratios of overlap, while thyroid cancer (0%) 
and alpha fetoprotein (8%) had low ratios. In terms of biological categories, the average replication % was highest for anthropometric 
measurement (86.43%) Of the 1164 pairs from the PheWAS-driven approach, 834 (71.65%) also manifested significance in the 
EHR-driven analysis. 
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