
 

 

How the brain negotiates divergent executive processing demands: Evidence of network 

reorganization during fleeting brain states 

 
 

Mengting Liu1,2*, Robert A. Backer1*, Rachel C. Amey1, and Chad E. Forbes1 

 

*Both authors contributed equally to this manuscript.  

 

1 Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 
USA 
2 USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, 
University of Southern California, Los Angeles, CA, USA 
 
 
 
 
 
 
Corresponding Author: 
Mengting Liu, Ph.D. 
Postdoctoral Researcher 
USC Stevens Neuroimaging and Informatics Institute  
University of Southern California  
2025 Zonal Ave. 
Los Angeles, CA 90033 
Phone: 225-305-1636 
email: mliu@ini.usc.edu 
 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.30.125476doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.30.125476


Abstract 

During performance in everyday contexts, multiple networks draw from shared executive 

resources to maintain attention, regulate arousal, and problem solve. At times, 

requirements for attention and self-regulation appear to be in competition for a “limited 

pool” of resources. How does the brain attempt to resolve conflicts arising from multiple 

processing demands? In the present study, participants were exposed to either a stress or 

control prime, after which electroencephalographic (EEG) activity was recorded as they 

solved math problems. Phase-locking was examined within four networks implicated in 

math-solving and evaluative stress: frontopareital (FP), default mode (DM), emotion 

generation (EG), and emotion regulation (ER) networks. Findings revealed differing 

strategies, depending on the presence of stress: states dominated by frontopareital and 

emotion regulation network dynamics supported optimum performance generally, while 

during stress, states dominated by emotion regulation and default mode networks are 

more important for performance. Implications for networks’ cooperative dynamics and 

DMN’s role in coping are considered. 

 

Key words: network dynamics; neural states; hidden markov modeling; performance; 

stress; evaluative threat 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.30.125476doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.30.125476


How the brain negotiates divergent executive processing demands:  

Evidence of network reorganization during fleeting brain states 

Introduction 
 
Many tasks require negotiating processing demands that appear to be at odds with 

one another, yet how the brain manages to accomplish this remains somewhat of a 

mystery. One example is problem solving, which requires both efficiency in cognitive 

processes like attention and working memory, as well as regulating arousal, which often 

increases with task difficulty or evaluative threats—both of which rely on common 

executive processing resources. How does the brain manage these overlapping demands 

simultaneously, and what characterizes better performance under such conditions? To 

clarify these relationships, the present study contrasted the frontopareital network 

(FPN)—important for performing calculations—with additional networks involved in 

self-referent processing (DMN) and emotion regulation (ERN) as subjects solved math 

problems in the presence or absence of stressors. Hidden Markov Modeling (HMM) was 

applied to encephalography (EEG) data at the network level (network synchrony values) 

to identify brain states that differed based on these networks’ levels of activity, thus 

providing a functionally relevant measure of state composition. Findings suggested two 

routes to success as problem solving difficulty increased: FPN and ER dominant states 

were important generally, but for those under stress, states marked by high ER and DMN 

predicted optimal performance. Taken together, these findings suggest that, while 

problem-solving itself requires canonical FPN efficiency, individuals who perform better 

under stress are also able to recruit DMN in order to negotiate additional intrusions that 

would otherwise undermine their work.  
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Competition for Executive Resources During Problem Solving 

Neuroscience literature offers multiple examples of situations where two networks 

appear to be locked in competition with each other and must achieve a balance. For 

example, we know that basal ganglia and hippocampal systems compete, and that the 

FPN and DMN are frequently associated with a contest for internally vs externally 

oriented attention. In stressful performance contexts, there appears to be a similar 

relationship between managing arousal (associated with ERN) and orienting oneself to 

the “task at hand” (reliably linked to FPN). Since both networks draw from common 

executive resources in dorsolateral prefrontal cortex (DLPFC), it stands to reason that as 

FPN and ERN are engaged at the same time, people perform poorly. Conventionally, this 

has been explained as resulting from a “tug-of-war” for limited resources (e.g., Fig 1), 

and indeed, research has shown that co-activation of or cooperation between FPN and 

ERN often attenuates performance as difficulty and arousal increase.  

 

Figure 1. One of the hypothesis for the relationship between  emotion regulation and problem 

solving -- competiting for limited executive resources. 

Examining further, problem solving relies on coordination between visual, motor, 
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and higher-order cognitive processes. For example, Anderson, Lee, & Fincham (2014) 

have demonstrated how solving algebra problems occurs through a collection of 

functionally relevant states (define, encode, transform, compute, and respond), each 

drawing in differing proportions, from—among others—visual attention, executive 

control, metacognitive, and motor network regions. Better performance was predicted to 

the extent that states were dominated by essential areas, which are reliably linked to 

various aspects of math solving. Moreover, networks also must be able to dynamically 

reconfigure, in order to move from one state of processing to the next, sometimes 

iteratively (Anderson, Lee, & Fincham, 2014). This underscores that “optimum 

ingredients” for performance are time-locked. That is, what is helpful at one stage of 

processing (i.e. one state) may be counterproductive if “leaking” into other stages. Indeed, 

in the case of arousal or stress during performance, ill-timed activation of emotion or 

self-related brain regions during problem solving is precisely what is conceptualized to 

undermine performance (van Ast et al., 2016; Amey et al., 2018). This is also reflected in 

work associating stress during performance with too many or too few network states, to 

the decrement of performance outcomes (Liu, Amey, Forbes, 2017; Anderson et al., 2011).   

Yet, while prior work has characterized what is bad for performance on it’s own, 

we have yet to explore what might actually be good under realistic conditions where 

individuals must contend with everyday stressors during problem solving. Certainly, 

some individuals fare better than others in stressful performance, presumably due to 

network dynamics that make it possible to manage conflicting executive demands. 

Borrowing from negotiation terminology, it is possible that instead of the zero-sum 

situation articulated thus far, additional dynamics may emerge to effectively “widen the 
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pie” such that disparate networks are better able to cooperate. Many paradigms do not 

deliberately manipulate stressors with the goal of searching for predictors of better 

outcomes, and thus may fail to unearth such processes. In the following section, we 

review performance under stress, and discuss potential palliative mechanisms at play.   

Possible Modes of Network Cooperation During Problem Solving under Stress 

In stressful performance contexts, several abilities are often important: focus for 

solving actual problems—as has thusfar been discussed—as well as regulating arousal 

(e.g., the canonical Yerkes-Dodson law, 1908), and managing evaluative threats (Liu et 

al., 2020). There is ample evidence that when confronted with evaluative threats, people 

have intrusive self-doubts (Cadinu, Maass, Rosabianca, & Kiesner, 2005), which may 

initiate a cycle of hyper-vigilance for critical feedback and exacerbate negative arousal, 

further detracting from performance (Schmader, Johns, & Forbes, 2008). When 

confronted by self-doubts, two kinds of self-reflective responses may ensue: one may 

begin to self-denigrate (e.g. “I’m messing up again”, “I do this all the time”, “I’m not 

good at this”) or self-affirmation (e.g. “I have done  well on other things like this”, “I 

have the ability to handle this”). Thus, in addition to the activities of problem solving and 

managing stress, it may also be important to have an autobiographical memory system 

capable of retrieving positive self-content to assist in mitigating evaluative threats.  

One candidate for such a role is the DMN, which is active during internally 

oriented processing like autobiographical memory, and, in stressful situations, may serve 

a coping role by enabling people to recall positive memories as a buffer to identity threats 

(Spreng, Mar & Kim 2011). Internally oriented processing is often thought of as 

reflecting on one’s past actions, contemplating social relationships, and sometimes mind 
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wandering. Thus, DMN has often been thought to conflict with externally focused 

attention and FPN-linked problem-solving. However, work has shown that DMN and 

FPN are not always anti-correlated, but can even work together during certain mental 

calculations like autobiographical memory tasks. Moreover, greater resting-state DMN 

synchrony has also been found to predict accuracy on post-task self-appraisals when 

individuals were exposed to evaluative threats during performance, further suggesting a 

role in coping. Self-awareness and coping are not typically considered regarding 

performance, but certainly plan an online role when significant stressors are present. Thus 

we posit that, for better performance in stressful contexts, three cognitive components are 

likely relevant, which we loosely relate to the 3 networks discussed thus far: executive 

attention (FPN), emotion regulation (ERN), and a self concept, capable of coping or 

putting evaluative threats into perspective (possibly DMN).  

Further Examining Network Dynamics during Stressful Performance 

Previous work on optimum ingredients for performance conventionally tell us that 

more FPN is good, while less ERN and DMN are counterproductive. Moreover, work on 

stress indicates that frontopareital integrity decreases, while emotion regulation areas 

instead come to predominate (Liston, McEwen, & Casey, 2009). However, we argue that 

defining the relationships in this ratio may not be giving us the full picture, since when 

ERN or DMN are couched as “at the expense of” FPN and viewed in experimentally 

neutral contexts, results are more likely to capture distraction. Instead, by exploring the 

roles of these networks in more ecologically-valid situations that place their related 

executive processes in direct conflict (i.e. performance where stress is high), we may gain 

a somewhat different story. Moreover, prior functional magnetic resonance imaging 
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(fMRI) work has largely looked at neural activity over large time blocks. Under such 

conditions, it is more likely that we would find the conventional pattern in Fig. 2A, yet 

neural states can be fleeting, and therefore it is possible that positive roles for ERN or 

DMN would be detected on shorter time scales, such as those measureable with EEG. 

The purpose of the present study is to examine what network dynamics emerge in this 

circumstance.  

Rather than individual regions, we focused on activation at the level of networks, 

which can enable us to characterize relationships between the broader cognitive processes 

we are interested in. Based on prior work, we anticipated that FPN would be required for 

problem-focused deliberation. We hypothesized that some nuanced interaction between 

networks would emerge as problem difficulty increased (relating to greater arousal), and 

in the presence of evaluative stressors. Because the “task at hand”, problem solving, 

would be largely reflected by FPN activity, it was necessary to adopt an approach capable 

of identifying fleeting brain states that might reflect more nuanced relationships between 

networks. We thus employed Hidden Markov Modeling (HMM) to individual-level data, 

capable of distinguishing states that predict better performance in the presence or absence 

of stressors (for reference, see Liu, Amey, & Forbes, 2017, and Anderson, Lee, & 

Fincham, 2014). We considered two possible dynamics that might emerge in states: states 

might either be dominated by a particular network (reflecting a particular functional 

process) or reflect greater cooperation between two networks.  

Specifically, we manipulated identity threat, a robust stressor closely tied to 

evaluative threats (Schmader, Johns, Forbes, 2008), across math problem solving 

experimental conditions. In math, negative stereotypes about women’s’ abilities prime 
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threat cues, inducing a maladaptive cycle of hypervigilance and attempts to regulate 

accompanying emotions. Past work (Liu, Amey, & Forbes, 2017) demonstrated that this 

paradigm is capable of inducing negative arousal in association with a quadratic trend in 

neural state entropy and poorer performance. As such, identity threat provides a realistic, 

evaluative threat stimulus strongly tied to self-related cognition. Thus, women across 

experimental cells would not differ in any other way, and men provide a contrast that 

allows for confirmation that identity indeed drove any effects. Men and women 

completed math problems while EEG activity was recorded, affording maximum 

temporal sensitivity. This study was the first we know of to examine neural states in short 

EEG timescales, while pitting processing demands against one another to assay what 

promotes better performance. As such, the nature of our HMM approach is best described 

as exploratory and data-driven. However, past literature did permit us to make some 

tentative guesses about what kinds of functional themes might emerge. We expected to 

find that FPN would predict performance on easier problems, in line with canonical 

expectations for math solving. As difficulty increased, we considered that either FPN 

alone, or in concert with ERN—to manage greater accompanying arousal—would 

continue be important for the general population (men and non-stressed women). Finally, 

we hypothesized that, for women (and not men) in the stress condition, individual 

differences in states characterized by some nuanced relation in FP, ER, or DM networks 

would predict better performance, reflecting efficiency in managing evaluative threats.   

Methods 

Participants.  

One hundred and fifty-seven white participants (84 females) completed this study 
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for payment. We recruited only participants who were aware of a negative female math 

stereotype. Specifically, participants needed to score a three or lower on the following 

question during a pre-study screening in order to qualify for the current study: 

“Regardless of what you think, what is the stereotype that people have about women and 

men’s math ability” (1= Men are better than women; 7= Women are better than men).” 

Four participants were excluded because their EEG data lacked more than half of the 

math solving trials. One further participant was excluded for having most of the math 

solving trials shorter than three seconds, likely to reflect arbitrary answers, rather than 

engagement in actual math solving. Finally, 152 participants (82 females) were remained 

for our analysis. 

Procedure.  

Upon entering the experiment room, participants were taken to a soundproofed 

EEG chamber, seated in front of a computer, and prepared for electroencephalographic 

recording. Following a previously established SBS manipulation (Forbes et al., 2019), 

participants were randomly assigned to either a “diagnostic math test” condition (DMT; 

SBS condition) or a “problem solving” condition (PST; control condition). In the DMT 

condition, participants were informed that results from the following tasks would be 

diagnostic of their math ability. In the PST condition, participants were informed that 

results would be diagnostic of the types of problem-solving techniques they prefer. To 

further prime stereotype threat, participants marked their gender in the DMT condition, 

all DMT sessions had a male experimenter present, and all instructions were read to them 

via a male experimenter’s voice (Forbes et al., 2018). Conversely, participants in the PST 

condition did not mark their gender, all PST sessions had all female experimenters 
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present and all instructions were read to them via a female experimenters voice. 

Following the instructions, participants completed a math feedback task for 34 minutes. 

Participants then answered a series of post-task questionnaires, after which they were 

debriefed and paid for their participation.  

Math Feedback Task.   

Participants completed a 34-minute math task identical to Forbes, Amey, 

Magerman, Duran, & Liu (2018). The task consisted of standard multiplication and 

division problems (e.g. 7x20=) presented on the computer screen. In a given trial, 

participants were provided with three answer options for each problem (A, B, or C). The 

correct answer to each problem was placed randomly in one of the three answer positions. 

Participants answered each multiple choice problem using a button box placed on their 

laps and were not permitted to use scratch paper. After answering, participants received 

feedback on the screen for 2 seconds (“Correct” or “Wrong”). After feedback, the next 

problem was presented. Each problem was displayed for a maximum of 17 seconds. If 

participants did not answer a problem within this period, they would, by default, receive 

negative feedback (“Wrong”). On average, participants completed 83.9 problems. Our 

measure of math score accuracy was calculated by dividing the total number of correct 

responses by the total number of attempted problems and multiplying that outcome by 

100. 

EEG Recording.   

Continuous EEG activity was recorded using an ActiveTwo head cap and the 

ActiveTwo Biosemi system (BioSemi, Amsterdam, Netherlands). Recordings were 

collected from 128 Ag-AgCl scalp electrodes and from bilateral mastoids.  Two 
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electrodes were placed next to each other 1 cm below the right eye to record startle eye-

blink responses (Liu et al., 2020; Liu et al., 2017).  A ground electrode was established by 

BioSemi’s common Mode Sense active electrode and Driven Right Leg passive electrode.  

EEG activity was digitized with ActiView software (BioSemi) and sampled at 2048 Hz.  

Data was downsampled post-acquisition and analyzed at 512 Hz. EEG signals were 

epoched and stimulus locked to 500 ms before participants were presented with a math 

problem to the time they solved the math problem. EEG artifacts were removed via 

FASTER (Fully Automated Statistical Thresholding for EEG artifact Rejection) (Nolan, 

Whelan, & Reilly, 2010), an automated approach to cleaning EEG data that is based on 

independent component analysis (ICA) and incorporates multiple statistical steps. 

Specifically, raw EEG data were initially filtered through a band-pass, finite impulse 

response (FIR) filter between 0.3 and 55 Hz. First, EEG channels with significantly 

unusual variance (operationalized as activity with an absolute z score larger than 3 

standard deviations from average), average correlation with all other channels, and Hurst 

exponent were removed and interpolated from neighboring electrodes using spherical 

spline interpolation function. Second, EEG signals were epoched and baseline corrected, 

and epochs with significant unusual amplitude range, variance, and channel deviation 

were removed. Third, the remaining epochs were transformed through ICA. Independent 

components with significant unusual correlations with EMG channels, spatial kurtosis, 

slope in filter band, Hurst exponent, and median gradient were subtracted and the EEG 

signal was reconstructed using the remaining independent components. Finally, EEG 

channels within single epochs that displayed significant unusual variance, median 

gradient, amplitude range, and channel deviation were removed and interpolated from 
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neighboring electrodes within those same epochs. 

Source Localization 

In order to map electrodes signals to activity in neural regions, forward model and 

inverse models were calculated with MNE-python, an open access software (Gramfort et 

al., 2013 and Gramfort et al., 2014). Forward model solutions for all source locations 

located on the cortical sheet were computed using a 3-layered boundary element model 

(BEM) (Hämäläinen and Sarvas, 1989), constrained by the default average template of 

the anatomical MNI MRI. Cortical surfaces extracted with FreeSurfer were sub-sampled 

to about 10,242 equally spaced vertices on each hemisphere. Further, a noise covariance 

matrix for each individual was estimated from the pre-stimulus EEG recordings after the 

preprocessing. Forward solution, noise covariance and source covariance matrices were 

used to calculate the dynamic statistical parametric mapping (dSPM) estimated (Dale et 

al., 2000) inverse operator (Dale et al., 1999). Inverse computation was done using a 

loose orientation constraint (loose = 0.11, depth = 0.8) (Lin et al., 2006). Surface was 

divided into 68 anatomical regions of interest (ROIs; 34 in each hemisphere) based on the 

Desikan–Killiany atlas (Desikan et al., 2006). For each participant, a time course was 

calculated for each area/node by averaging the localized EEG signal of all of its 

constituent voxels at each time point during task performance. 
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Figure 2. Construction of adjacency matrix cortical source space 

 

Frequency Selection 

Managing cognitively demanding tasks in stressful situations depends upon a 

number of cognitive resources: cognitive control, working memory, emotion regulation, 

attention, etc. Such functions are supported by contributions from multiple neural 

regions, which operate within networks. Network activity is diversely reflected through 

regions’ coherence. That is, regions communicate through neural synchrony, and as 

groups of neurons become entrained for a given purpose, their oscillatory firing rates 

align at various frequencies. 

For instance, fronto-parietal coherence in theta (4–8 Hz) and upper alpha (8-12 

Hz) frequency ranges has been found to reflect working memory functioning (Sauseng et 

al., 2005). Additionally, past work also demonstrates converging evidence that working 

memory persistence is supported by coherence in the theta and gamma (30–100 Hz) 

ranges (Lisman, 2010; Raghavachari et al., 2001; Liu et al., 2017) in frontal and parietal 

cortex. 
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A number of emotion-related processes are also reflected in oscillatory activity. 

For instance, amygdala neurons display elevated theta band activity during emotional 

arousal (Denis Paré et al., 2002). Emotion processing—especially negative arousal 

processes—was long thought to be primarily instantiated by alpha band amygdala 

activity (Aftanas et al., 2005). However, it has been recently identified that long-range 

interaction of prefrontal structures and the amygdala occurs within in the theta. 

Moreover, past research found an increase in frontal theta oscillations during emotion 

regulation and a relationship between frontal theta power and the subjective success of 

emotion regulation (Ertl et al., 2013). Across the frontal cortex, theta activity, appears to 

reflect a common medium for carrying out cognitive control (Cavanagh & Frank, 2014).   

 

Given the multiplicity of cognitive components involved in performance under SBS, it 

was necessary that our frequency band selection allowed for the examination of diverse 

neural functions. In contrast to other bands, theta activity has been consistently 

incorporated across different components relevant to math solving within emotion 

contexts. Hence, we chose to examine neural activity within the theta band in this study, 

which allows us to examine the relationships of these functions on a common frequency 

scale. 

 

Time varying functional connectivity estimation and network construction 

EEG data was collected from 150 participants (79 threat, 71 control). Each math 

problem—one trial—was presented for a maximum of 17 seconds, during which 

participants could provide their answer. EEG data was only analyzed within the time 
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period they actually solved problems (i.e. until they gave their answer). Trials with 

solving times of less than 3 seconds were excluded, because these trials were likely to 

have reflected arbitrary answering rather than serious solving of math problems. After 

pruning short trials, 10,950 math-solving trials remained. 

Separate time series were extracted for all 68 sources on each trial, using MNE. 

For all pairings of the 68 sources, dynamic functional connectivity between a given pair 

of two sources was computed across the time series by using a sliding window approach 

(Hutchison et al., 2013). Time series were divided into 128 smaller temporal points, and a 

window of 1 second in length was applied in steps (0.0625 seconds each) across the 

series from beginning to end. The two band-power spectra of each source pair, within a 

given time window, were cross-correlated using Pearson's correlation coefficient (Chen, 

Ros & Gruzelier, 2012). In other words, for each math-solving trial, we obtained a 

symmetric 68 × 68 connectivity score matrix for each of the time window periods. Each 

matrix was first converted to a sparser, positive-only matrix by removing all negatively 

weighted edges (i.e. pairs of connections between sources) due to the ambiguous meaning 

of negative connectivity (Rudie et al., 2013). The remaining matrix was further pruned by 

applying a statistical threshold (Liu et al., 2011, 2013) to retain coefficients ��� <= 50% of 

the total positive connections. Specifically, we further optimize our model by examining 

activity over several smaller functional subnetworks (subsets of the entire matrix) 

relevant to understanding performance under stress. 

Functional sub-networks 

Problem solving under stress requires a number of cognitive resources, e.g. 

executive function (EF), working memory (WM), attention, emotion, emotion regulation 
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and self-regulation. We selected the fronto-parietal network (FPN) as a proxy for EF, WM, 

and attention.  

Emotion consists of a set of reactions triggered by affective internal or external 

stimuli (Gross, 1998; Kohn et al., 2014), which may be separated into two major 

components, namely emotion generation and emotion regulation (Kohn et al., 2014; 

Goldin et al., 2008; Gross & Barrett, 2011). it’s long been proposed that emotion 

generation engages the limbic system (LeDoux, 2000; Phan et al., 2003), such as 

amygdala and ventral striatum. Recent studies also found some closely related cortical 

regions such as anterior insula and anterior cingulate cortex (ACC; Etkin et al., 2015). 

Particularly, identity threat stimulated emotion may start from an independent type of 

emotion called top-down emotion generation (Ochsner et al., 2009), which is closely 

associated with medial prefrontal cortex (mPFC)/ventral ACC (vACC) (Silvers et al., 

2015).  Due to the limited spatial resolution for reconstructing brain activity in deep 

sources like amygdala in EEG techniques, we only selected insula and vACC and created 

an emotion generation (EG) network. On the other hand, emotion regulation refers to a 

conscious or unconscious process to evaluate, modulate or alternate emotion trajectory 

(Etkin, Buchel & Gross, 2015). Meta analysis of neuroimaging studies has revealed that a 

number of brain regions, including dorsolateral prefrontal cortex (DLPFC), ventrolateral 

PFC (VLPFC), vACC, dorsal ACC (dACC), mPFC, orbital PFC, and precuneus 

(especially for self-regulation) (Wager et al, 2008;Ochsner & Gross, 2005; Buhle et al, 

2014; Phillips, Ladouceur & Drevets, 2008; Ochsner et al., 2004;Kohn et al., 2014; 

Ochsner et al., 2002; Ferri et al., 2015). Hence, we engage these regions to our emotion 

regulation network (ER).  
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Furthermore, default mode network (DMN) was also added to our analysis, not 

only for its role of task-negative network—which can be considered as a control for EF 

network—but also for the recent findings of its character in emotion coping and self-

regulation(Forbes et al., 2015; Jordano & Touron 2017; Ossandon et al., 2011; Leitner & 

Forbes, 2015).  

All brain regions engaged in four sub-networks were selected from the one of the 

68 whole-brain atlas. Figure 3 represents all the brain regions involved in each network.  

 

Figure 3. Brain regions involved in four sub-networks 

 

Graph measure for each subnetwork 

The brain is a complex system, it consists of several functional modules, or nearly 

decomposable units (Simon, 1991). This structure aggregates subsystems that can 

perform independent functions without interacting the rest of the system (Bessett, et al., 

2011). In other words, modules are groups of brain regions with many intra-module links, 

but few inter-modular links to external groups. It has been found that brain networks 

typically show high modular architectures. In brain networks, topological modules are 

often made up of anatomically neighboring and/or functionally related cortical regions, 
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inter-module connections tend to appear in relatively long distance (Meunier, Lambiotte 

& Bullmore, 2010). Brain regions or the constituent nodes of topological modules are 

often anatomically co-localized in the brain (Bertoleroa, Yeo & D’Espositoa, 2015). This 

arrangement seems to be advantageous in terms of minimizing the connection distance or 

wiring cost of intra-modular edges. For example, modularity analysis conducted on 

whole brain network will always yield fronto-temporal, central, parietal, occipital and 

default-mode modules at the highest level of the hierarchy. Little is known however, that 

how the topological modularity of large-scale brain networks is related to other aspects of 

modularity psychologically (Meunier, Lambiotte & Bullmore, 2010). For example, a 

brain network that is psychologically/cognitively meaningful (e.g. working memory 

network) can be widely distributed among several anatomical modules. Traditional 

modularity analyses cannot answer the question of whether regions in psychologically 

meaningful network would work together in a more efficient and close manner during 

cognitive tasks. To address this question of modular organization within psychological 

communities, we apply a novel measure of modularity that extends the rationale of 

modularity in whole network analyses to a priori defined sub-networks, thought to play 

integral roles in psychological processes of interest. We define this new measure as 

selected modularity (Forbes et al., 2018).  

Selected modularity is a measure that compares within module connectivity 

(within a predefined sub-network) to between module connectivity (operationalized as 

Pearson correlation coefficient between pre-defined subnetworks or other regions across 

the whole brain network). Selected modularity was calculated using the equation below: 
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Selected modularity measures the integrated level or within network connectivity of a 

subnetwork of interest with respect to either another subnetworks of interest, or the whole 

brain (in our case it’s with respect to the whole brain). Higher selected modularity 

indicates that the nodes within a subnetwork are more efficiently interconnected with one 

another, compared to other nodes in the whole brain as well as connections that would be 

expected by chance. Therefore, higher selected modularity suggests that a network was 

more active or efficient during a given cognitive process; obtaining this measure at each 

temporal point affords us an index of networks’ dynamic roles during cognition.  

Brain States Identification 

After the estimation of whole-brain dynamic functional connectivity and dynamic 

graph analyses, the obtained dynamic graph patterns were summarized into a smaller set 

of graph states, which allows identification of recurring spatio-temporal graph patterns 

(Preti, Bolton & Ville, 2017). Several machine-learning methods have been demonstrated 

for discovering neural states, such as k-mean clustering (Allen et al., 2012; Mantena et 

al., 2009), hierarchical clustering (Ou et al., 2013), or modularity approaches (Yu et al., 

2015). In this study, we utilized Hidden Markov Model (HMM) to identify these states, 

as it confers unique advantages over other methods (e.g. Chen, et al., 2016). 

Hidden Markov Model (HMM). (new model used) 

An HMM is a state-space stochastic model. Let s� and o� denote assignment of a 

hidden state and an observation at time t, respectively. Hidden and observable processes 

over T time-length can be denoted by �s�, � , s�, � , s�� and �o�, � , o�,� , o��. For the 
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hidden process, we model it with a first-order Markov chain, which means the hidden 

state at time t, i.e., s�, is dependent on the hidden state at time �t 
 1�, i.e., s���. The 

observable variable at time t, i.e., o�, is dependent on the hidden state at the same time, 

i.e., s�.  
Formally, when we consider a number K of hidden states, a hidden process is 

defined by two probability distributions: state transition probability and initial state 

probability. A state transition probability A � �a����,�
��,�,��, where 

a�� � P�s� � j|s��� � i�, denotes the probability of changing from one hidden state 

(s��� � i) to another hidden state (s� � j). When i � j, suggesting the state doesn't 

transition, the state transition probability is replaced by a duration probability D � �P��t 


τ)] for a specific hidden state, where  is the initial time for the current specific hidden 

state, and t 
 τ represents the duration of the current state. In this work, we use a 

Gaussian distribution for duration probability. Also an initial state probability Π �
�π���
��,�,��, where π� � P�s� � i), which models the probability of starting from a 

specific hidden state at time t � 1, denotes where the state transition begins. The 

observable process is depicted by an emission probability density function B �
�b���
��,�,��, where b� � P�o� � x�|s� � i�, which denotes the likelihood of observing the 

specific observation x� when residing at the hidden state of i. We also use a single 

Gaussian distribution for emission probability. Thus, an HMM is defined by the 

parameter set of λ � �Π, A, B, D� (Rabiner, 1989; Suk, et al., 2016). 

Determination of HMM states 

HMM was trained using the data from all 10,950 math solving trials .The number 

of states in this study were determined via a threshold for marginal increase of log-
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likelihood for the whole dataset (Celeux, 2007). That is, the number of state N was 

selected when the log-likelihood increased less than 1% with respect to the number of 

state N+1. Based on this criteria, we selected 10 as the optimal number of states to 

construct the model. In order to avoid the errors in determining the number of states 

caused by different methods, and also to avoid the random effect that appears when only 

10 states are used, we extend our analyses to 8 to 12 states. Patterns were confirmed only 

when they were repeatedly found within all these numbers of states.  

To first construct HMM models, a learning phase was applied, where an 

individual HMM model was optimized for best fit of the data. This model was trained via 

an efficient method proposed by Yu and colleagues (Yu & Kobayashi, 2003, 2006). HMM 

analyses were conducted on time periods during which individuals solved math problems 

using the evoked selected modularity curve elicited from the 4 cortical networks outlined 

in our source model. Once the HMM models were constructed, a second decoding was 

applied to the selected modularity curves stemming from each source in order to identify 

what is the most likely state sequence in the model that produced the observations. We 

obtained a series of states generated from the selected modularity curve in every trial. 

Figure 4 illustrates the flow chart of HMM analysis in our study.  
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Figure 4. Flowchart of the pipeline for HMM analysis. 

 

Drawing upon past research on dynamic neural states (Hutchison & Morton, 

2015), the following three individual measurements assessed state expression separately 

for each participant during task: (1) duration occupancy (DO), measured as the 

proportion of all windows labeled as instances of particular states, and computed 

separately for each of the states; (2) mean dwell time occupancy (MDTO), measured as 

the proportion of average number of consecutive windows labeled as instances of the 

same state, and computed separately for each of the states; and (3) the number of 

states/transitions (NS), measured as the number of states across all math solving tasks. 

Brain state measures. 

Together with the state distributions, the HMM inference estimates the time 

courses of the visits to each of the brain states. We used these to look at the extent to 

which the temporal characteristics of different cognitive states differed in each group. 

The three features used to characterize the brain states are: the fractional occupancies 

(reflecting the proportion of time spent in each state); the mean lifetimes (or dwell times, 
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i.e. the amount of time spent in a state before moving into a new state); and the interval 

times between consecutive visits to a state. 

Results 

Stress manipulation check 

Initial analyses on amygdala activity (assessed via startle probes elicited to 

positive and negative feedback and operationalized as a measure of stress) were 

conducted in Forbes et al. (2018). These analyses indicated that all participants elicited 

marginally greater amygdala responses to negative feedback received on the math 

feedback task compared to positive feedback and women elicited larger amygdala 

responses to feedback compared to men. However, only women under the stress 

condition exhibited a unique non-linear (quadratic) relationship in their amygdala 

responses to feedback over time, suggesting a unique stress response among individuals 

under conditions of evaluative threat. Women under stress also performed worse on the 

math task compared to all other conditions (planned contrast on math test accuracy: t (1, 

156)=3.17, p=.002, d=.51). These behavioral results, overall, provide supporting evidence 

that the evaluative threat and thus stress induction manipulation was successful (see 

details in supplementary results). 

Ten states were identified using HMM 

Using EEG trials math solving data from 152 subjects, mapped to four 

subnetwork based on a 68-region parcellation using dSPM estimated inverse operator, we 

identified 10 HMM states using Bayesian Hierarchical Hidden Markov Models (HMM). 

Essentially, this technique finds, in a completely data-driven way, recurrent patterns of 

network (or HMM state) activity. Each HMM state has parameters describing brain 
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activity in terms of network activity covariations. The method provides information that 

is temporally resolved (different networks are described as being active or inactive at 

different points in time). Importantly, while the spatial and temporal description of the 

states is common to all subjects, each subject has their own state time course, 

representing the probability of each HMM state being active at each instant. See Fig. 3 

for a graphical example, and an illustration of the entire pipeline. 

 

 

Figure 5. Latent brain states during math solving, their dynamic properties. A) Pie chart 

represents to what extent (in percentage) the selected modularity of each network contributes to 

the total variance of selected modularity within each state. B) Bar plot represents correlation 

between all pairs of network dynamics with in each of latent brain state. C) State transition matrix 

for latent brain states at time instance t remained within the same brain state in the previous time t 

− 1. D). State transition probability without considering the self-transition.  

 

Transition probabilities of brain states 
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Next, we investigated dynamic temporal properties of transitions between hidden 

brain states. A powerful feature of HMM is that it provides moment-by-moment 

estimates of the probability of either switching between latent states or staying within the 

same brain state. We computed the state transition matrix for each participant and first 

examined the likelihood that a brain state at time instance t remained within the same 

brain state in the previous time t − 1. This analysis revealed that all 10 brain states are 

sticky: i.e., states are not volatile from one-time step to another. (Fig. 4 C). These findings 

are important because they suggest that the latent brain states are stable over time. We 

also include in Fig. 4D the state transition probability without considering the self-

transition (i.e., factoring out sticky states of the same kind, to view other possible 

relationships between states).  

Brain states and their interpretations 

States were defined with HMM via network selected modularity extracted from 

each of the 4 networks included this study. Consistent with past research (Anderson, et al., 

2014) we operationalized several reliable patterns of neural activity present in the HMM 

models. HMM is an exploratory approach, and requires choosing an artificial number of 

states beforehand; it is impossible to know a priori what the ideal state number will be, 

and often a portion of the resulting states may lack empirical relevance or be difficult to 

interpret clearly. This necessitates choosing a criteria for determining which states to 

focus on further (e.g., Liu, Amey, & Forbes, 2018; Vidaurre et al., 2018). We therefore 

applied two criteria in selecting relevant states: (1) network dominance or (2) high inter-

network synchrony (which could, alternatively, reflect either a hybrid functional process 

or more efficient accommodation between two networks.  
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Four out of ten states were easily defined for their unique dominant network 

selected modularity value (≥50%) within each of the 4 networks we are interested in (see 

figure 5). For other states, their meanings are difficult to interpret, because they 

represented certain level of network activity for combination of 4 networks without 

revealing one dominant. To avoid the ambiguities and to make the analysis clearer, we 

only focused on these four well-defined states and their states properties, we call them 

SDMN, SFP, SEM and SER respectively. Figure 5A represents the 10 extracted states in 

terms of to what extent (in percentage) the selected modularity of each network 

contributes to the total variance of selected-modularity within each state. 

To gain further insight in to the role of states, we also investigated the network 

global synchrony by measuring whether oscillatory activity in each network varied in 

conjunction with one another or oscillated more randomly. We indexed synchrony by the 

Pearson's correlation coefficient between all possible pairwise networks in a specific state 

(Figure 5B). Findings indicated that interestingly, in state 5, the frontoparietal and 

emotion regulation networks were strongly correlated (r = 0.57; corrected p < 0.0001; 

zscore = 4.01). Thus, we considered that state 5 might also play important role in solving 

math problems and hence state 5, named SFP-ER, analyzed together with other 4 well 

defined states. Other large synchrony between networks were found that in SEM state, 

EM network and ER network are highly anti-correlated (c = -0.31; corrected p < 0.0001; 

zscore = 3.17), indicating in SEM state the ER function was completely muted. Another 

finding is in SER state ER network and DM network are highly anti-correlated (c = -0.22; 

corrected p < 0.0001; zscore = 2.68). We think other states might be a different transition 

stage between the 4 functional states. 
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Proportional occupancy of states predicts math performance 

 

Figure 6. Proportional occupancy of states predicts math performance. A) Random forest analysis 

using out-of-bag samples calculated importance score of each brain states of interest in predicting 

math performance. B) RFR using important brain states can predict math performance score using 

10-fold cross validation. C) The occupancy rate of individual brain states with higher importance 

score is associated with performance during math solving. 

 

To probe the relation between latent brain states and task performance, we 

examined whether time-varying brain state changes could predict math performance. 

Meanwhile, instead of examining the predictive role of every single brain state, we set 

out to determine how all brain states, integrally, contribute to the success of math 

performance—i.e., relative ability for each of the states to predict performance. This is 
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difficult to obtain by conventional linear or multiple linear models used in past studies 

(Taghia et al., 2018). Thus, in our study we predicted math performance using random 

forest regression (RFR), a supervised machine learning algorithm, which obtained a 

ranking of brain states importance by using the out-of-bag samples (Dvornek et al., 2018). 

 

Specifically, RFR first calculated variables’ (brain states’) importance for 

predicting math performance using out-of-bag error (Figure 6). Higher values mean 

greater importance in prediction, while negative values indicate a given variable would 

harm the performance prediction (Bukhari, et al, 2016); said differently, the values 

provided can be conceived as the percentage by which a predictor contributes to the 

model. We then trained an RFR model to estimate math performance accuracy using 

occupancy rates of brain states that had importance scores over a 0.1 threshold, applied 

the model on unseen data to predict accuracy using 10-fold cross validation, and 

evaluated model performance by comparing estimated accuracy and observed scores 

across all the subjects. This analysis revealed a significant relation between predicted and 

actual accuracy in all participants (p < 0.0001, Pearson’s correlation, same below). 

Conducting the same analysis for each experimental cell of participants revealed 

significant relationships for men under control (p = 0.008); men under stress (p = 0.014), 

and women under stress (p = 0.011). No significant relation was found for women under 

control (r < 0). 

We then tested the hypothesis that the occupancy rates of individual brain states 

having higher importance scores would be associated with performance during math 

solving. We found that for all participants, math performance accuracy was positively 
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correlated with the occupancy rate of FP-ER state (p = 0.008) and ER state (p = 0.024).  

For men under control, math performance accuracy was negatively correlated with the 

occupancy rate of the DMN state (p = 0.003), and marginally positively to the FP-ER 

state (p = 0.105). For men under stress, math performance accuracy was positively 

correlated with the occupancy rate of marginally for the ER state (p=0.087) and the FP-

ER state (p = 0.107), For women under stress, math performance accuracy was positively 

correlated with the occupancy rate of the DMN state (p = 0.017) and the ER state 

(p=0.022) 

Mean lifetime of states predicts math performance 

Next, we investigated the mean lifetime, another feature of the temporal evolution 

of latent brain states, in relation to math performance using the same analytic procedures 

described above. This analysis revealed a significant relationship between predicted and 

actual accuracy in all participants (p = 0.0004). Group-wise analysis revealed a 

significant relationship in men under control (p = 0.01) and in men under stress (p = 

0.023). No significant relationships were found in the two women’s groups (p’s > 0.251). 

Predictor importance analysis indicated that for all participants, FP and EM states had 

importance scores above threshold. Group-wise analysis revealed that the DMN state 

played an important role in men under control, while the EM state was an important 

predictor for men under stress. Simple linear regression also suggested that for all 

participants, mean life of the FP state was positively associated with math performance 

(marginally significant: p = 0.082) and that the EM state was negatively associated with 

math performance (marginally significant: p = 0.118). For men under control, the DMN 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.30.125476doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.30.125476


state negatively correlated with math performance (p < 0.001). For men under stress, the 

EM state negatively correlated with math performance (marginally significant: p = 0.103). 

Transition between different states 

State transition probability is also an important index for describing the state 

propogation during the math solving process. It labels the temporally sequential 

relationship bet ween different states. In this study, the transition between two functional 

states (among the 5 states are interested in) may be concatenated with one or more 

transition states (among the 6 states). Thus, instead of measuring the direct transition 

between two functional states, we measured the average interval time between two 

functional states. We compared the 5 x 5 transition intervals between each pair of the 

functional states. Results revealed a main effect for gender (Men: 22.580.66 vs Women 

20.260.63), corrected p = 0.027 and for condition (Control: 22.550.65 vs stress: 

20.290.64) corrected p =0.038; from EM state to DM state. This result indicated female 

and stressed participants showed less time when they switch their brain from EM state to 

DM state. Simple two-tailed t-test was further conducted between women under stress 

and other participants in state transition from EM to DM, results revealed a significant 

effect (p = 0.009). This result is a further evidence DM state might play a role of emotion 

buffer when individuals were placed in stressful situation. 

Reliability test conducted: number of states between 9-11 

To examine whether the number of states can impact the patterns we found, we 

evaluate the findings by using number of states of 9 and 11 respectively, instead of using 

only 10 states in HMM model. same analytic procedures described above were conducted. 

To certify that states we picked up from different models are the same states, we 
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tested how many time window we believed belong to same state for two models were 

overlapped. For example, we first found a default network dominant state in model A and 

another default network dominant state in model B. Then we selected all time windows 

belonged to this state in Model A, and all time windows belonged to this state in Model B. 

Then we measured how many time windows among them are same time windows, and 

their proportions on all the time windows selected. This step was conducted on all pairs 

of models, final overlap proportion is the average of all pairs of models for each state. 

Results indicated that for default dominant state, 69.7% of time windows were 

overlapped average from all pairs of models; for emotion regulation dominant network, 

66.3%; for stress buffer dominant, 69.3%; and for task positive dominant, 67.3%. We can 

conclude from these results that the state we selected across models that represent the 

same function were accurate. See supplementary results for the cross state validations. 

Discussion 

 Results indicate that, when the brain is tasked with competing processing 

demands during problem solving, it accommodates through brief neural states that 

facilitate better cooperation between networks. Further, distinct neural states predicted 

better performance under conditions varying in difficulty and stressfulness. In line with 

prior work, FPN-dominant states reliably predicted better performance overall on easier 

math problems. However, other factors appeared more important for performance when 

difficulty increased, and diverging patterns emerged in as a function of stress condition. 

We will focus on difficult problems data for the majority of this discussion. Overall, we 

observed that states involving ER and FP-ER cooperation predicted better performance 

for more difficult problems. Examining further, when identity threats were introduced, 
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FP-ER states remained, while suppressed DMN became important for the control group 

(men). Contrastingly, for the stress group (women), ER and DMN states predicted better 

performance. Thus, it appears that, through brief neural states, two routes to 

accommodation emerged in response to conflicting processing demands, which we 

venture to interpret in the following paragraphs.  

 Returning to our “tug-of-war” analogy (Fig. 1) it would seem that, overall, 

participants who incorporate ER and ER-FP network-dominant states in relation to better 

performance under increased difficulty are able to do so without “maxing out” their 

shared executive resources. It may be that ER states, for these subjects, are managing an 

arousal accompanying increased difficulty that is not negative in nature, and that ER-FP 

states then reflect more efficient integration between the two demands of executive 

attention to problems and regulation of internal states. Indeed, classic literature shows 

that arousal can in fact enhance performance.  

Trends depart somewhat from this overall theme as we examine what happened 

with the addition of an evaluative threat. While men who performed well under identity 

threats continued to show ER-FPN states and down-regulated DMN, women’s states 

ceased to show FPN but rather added DMN. Why might this be the case? From identity 

threat literature, we know that men do not report feeling stressed and may even perform 

better on difficult math problems due to “stereotype lift”, or primed competence when 

gender is made salient; likewise, our males also did not evince signs of stress. The 

women in the evaluative threat group, on the other hand, did report feeling negative 

arousal. This suggests a difference in the experience of arousal between the stress and 

control group: a “challenge” (positive) versus “threat” effect, which is known to track 
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with better or poorer performance under conditions of evaluative threat (Blascovich, 

2013). 

In light of this dynamic and given that both DM and ER states predicted better 

performance for the stress group, it suggests that DMN played a unique positive role—

perhaps either in coping with evaluative threats by providing autobiographical buffer, or 

by more effectively managing internally oriented cognitions—thereby assisting in the 

regulation of negative arousal. This would fit with prior suggestions that DMN may play 

a role in coping, and it extends work demonstrating that DMN at rest contributed to more 

favorable self-assessments following stressful performance (Forbes, Duran, Schmader, & 

Allen, 2014). The fact that FP-ER states were no longer prominent in this condition may 

also reflect poorer coordination between these two functional systems. Said differently, in 

the “tug of war” between problem solving and self-regulation, ER may have gained 

priority. In contrast to the stress group, the men under evaluative threat conditions 

performed better in relation to states that suppressed DMN; while they retained the FP-

ER states, ER states were no longer prominent. If the “tug of war” becomes more strained 

under evaluative threats, it follows that efficient cooperation and avoidance of anything 

that might tip the balance would be most critical in such situations.  

 It is important to add the caveat that the men in the evaluative threat condition 

may not have been truly be stress-free. but instead could have reflected lesser levels of 

stress compared to the women, which leant to a different response. This consideration 

stems from the fact that men exposed to evaluative stressors did differ from men under 

control—it became more important to down-regulate DMN. On the other hand, women 

benefitted from DMN-active states. Taken together, this may indicate that under 
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evaluative threats, the brain seeks to mitigate intrusions when possible, but if necessary 

can opt for a “plan B”, that involves more of DM and ER. Putting things into perspective, 

women who displayed the DMN-dominant state fared better under stress, though 

performed worse overall than their male counterparts.  

 Finding that the brain is able to simultaneously accommodate demands for 

emotion regulation and executive attention to facilitate problem-solving performance 

lends new perspective to previous work, which largely documented a conflicting 

relationship. How can we reconcile these two stories? First, the present paradigm allowed 

us to deliberately manipulate stress. Therefore, the neural patterns we find in 

experimental cells are naturally characteristic of what predicts better performance given 

those contexts. This effectively allows us to tell a more complex story about problem 

difficulty and added stress, where before processes related to arousal and evaluative 

threat would have only surfaced as an individual difference measure in the general 

population. Thus, it makes sense here why some of these markers could actually be taken 

as beneficial, instead of muddying. This certainly does not detract from the fact that FPN 

processes remain the dominant ingredient for success on problem solving tasks. Rather, 

our aim was to spotlight what makes the difference under varying contexts with 

conflicting demands, all else considered.  

Second, it is beneficial to briefly review what our data approach affords us (and 

it’s limitations). Applying HMM to measures of EEG network synchrony allows us a 

data-driven way to identify extremely fleeting neural states (ranging from, on average, 

0.3-0.5 seconds), which may occur at any point in the time series. Hence, while the FPN 

dominant states evident for easy problem solving appear to share common ground with 
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prior work, we are limited in our ability to make direct comparisons to prior work 

regarding of ERN and DMN findings. With respect to novel markers that emerged under 

increased difficulty and stress, we suggest these appear because of additional demands in 

those circumstances. Further, we warrant a measure of caution when interpreting EEG 

activation as regionally specific. We therefore minimize these drawbacks by using a 

carefully placed, high-density electrode array and adopting advanced Bayesian source 

localization (incorporating dSM operators) and confining analyses to cortical surface 

areas. Future research should complement these findings by applying spatially attuned, 

fMRI imaging—particularly given the importance of amygdala and medial temporal 

regions in arousal and self-referential processes (Forbes et al. 2018). 

Conclusion  

Taken together, the findings present an intriguing window into how the brain 

might mitigate conflicts in processing demands that are often thought of as zero-sum, 

suggesting individual difference variables promoting success. By deliberately 

manipulating novel contextual variables of established problem-solving paradigms, we 

also move closer to more sophisticated, ecologically valid models of cognition. The 

resulting neural states we have reviewed underscore that network behavior may be highly 

nuanced at more micro time scales, involving the emergence of counterintuitive 

functional themes and inter-network cooperation. This emergent avenue of cognitive 

neuroscience offers a promising area for future research, with a variety of basic science 

applications.   
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Supplemental Information 
 
Stress manipulation check: Stress and math performance score.  

To examine whether there were overall performance differences between conditions on 

math score performance, an initial 2 (Gender: Men or Women) x 2 (Condition: DMT or 

PST) factorial ANOVA was conducted on participants’ accuracy on the math feedback 

task (number correct/number attempted). This analysis yielded a main effect for gender, F 

(1, 156) =16.56, p<.001, d=.63. There were no other main effects or interaction (p’s>.38). 

Given the well documented effects of stereotype threat on performance (for a review see 

Schmader et al., 2008), however, planned contrasts were also conducted to compare DMT 

women’s performance on the math feedback task to the other three conditions. These 

analyses indicated that DMT women (i.e., those experiencing stereotype threat) 

performed worse on the math feedback task compared to the other three conditions, t (1, 

156)=3.17, p=.002, d=.51.  

With respect to the role of task difficulty, given the nature of our math feedback 

task, which was lengthy and contained easy, medium and difficult questions, it’s possible 

that these various problem types had variable effects on performance across groups. To 

examine this, a 2 (Gender: Men or Women) x 2 (Condition: DMT or PST) x 3 (Problem 

Type: easy, medium or difficult) mixed factors ANOVA with repeated measures on the 

latter variable was conducted. This analysis yielded a main effect for gender, F(1, 

156)=12.38, p=.001, d=.55, that was qualified by a problem type by condition interaction, 

F(1, 156)=4.44, p=.01, d=.35, and problem type by gender interaction, F(1, 156)=3.41, 

p=.03, d=.29. Simple effects analyses using a Dunn-Sidak adjustment to control for 
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multiple comparisons indicated that DMT women performed worse on easy, F(1, 

156)=4.17, p=.04, d=.33, and difficult problems, F(1, 156)=4.73, p=.03, d=.35, compared 

to PST women. Men did not differ from one another with respect to condition, p’s>.23. 

DMT women also performed worse on easy, F(1, 156)=11.99, p=.001, d=.56, and 

moderately difficult problems, F(1, 156)=3.77, p=.05, d=.31, compared to DMT men. 

Women in the PST condition performed worse on easy, F(1, 156)=6.51, p=.01, d=.41, and 

moderate problems, F(1, 156)=5.64, p=.02, d=.38, compared to men in the PST condition. 

Interestingly only DMT women did not perform differently on easy, medium and difficult 

problem types, presumably because they underperformed across problem types in general 

(p’s>.12). All other groups showed the expected patterns, i.e., performing better on easy 

compared to moderate and difficult problems, and moderate compared to difficult 

problems (p’s<.04). Results overall provide supporting evidence that the stereotype threat 

manipulation was successful. 

FPN in easy problem predict performance 

 

Reliable test was conducted on number of states between 9-11 
 

State analysis for 11 states 
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2, Same figures for other states. 

3, explanation of the meaning for all other states. 

 

Proportional occupancy of brain states in different conditions 

A 2 (condition: stress or control) x 2 (gender: male or female) between factors ANOVA 

was conducted on proportional occupancy of the four brain states we are interested in. 

There was also a two-way interaction between condition and gender for EM state 

(corrected p = 0.063), Simple effect analyses indicated that stressed women showed more 

EM state (M=7,7%, std=1.8%) in comparison to stressed men (M=7.2%, std=1.6%), p = 

0.009. Simple effects were not found in control between men and women. No other main 

or effects were significant (corrected p's > 0.91). No other main or interaction effects 

were significant for other states (corrected p > 0.117). 

 

Proportional occupancy of states predicts math performance 
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This analysis revealed a significant relation between predicted and actual accuracy for 

DM state (in negative relationship, corrected p = 0.041, Pearson’s correlation) for men 

under control. Thus, the dominant DM state is a behaviorally harmful brain state for math 

solving performance—the more time spent in this brain state the worse math task 

performance in people without any stress context. 

This analysis also revealed a marginal significant relation between predicted and actual 

accuracy for DM state (in positive relationship, corrected p = 0.043, Pearson’s correlation) 
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and ER state (in negative relationship, corrected p = 0.271, Pearson’s correlation) for 

women under stress. Default network has been found in past that buffers stress (Brewer et 

al., 2011), emotion regulation network has straightforward effect on stress regulation. 

Thus, we hypotheses these two states both plays a stress buffer function during math 

solving process, hence the combination of the two states would help suppress the stress 

emotion generated and in turn increase the math performance for individuals in stressful 

context. To investigate this, a new state was created by combining the two states 

mentioned above, and was named as stress buffer state (SB). Same analysis was 

conducted on the new stress buffer state and math solving accuracy. Significant effects 

were found were found for women under stress (p = 0.026). Thus, the dominant stress 

buffer state is a behaviorally optimal brain state for math performance for people in 

stressful context — the more time spent in this brain state the better math task 

performance. 

Mean interval of brain states in different conditions 

A 2 (condition: stress or control) x 2 (gender: male or female) between factors ANOVA 

was conducted on mean interval time of the four brain states we are interested in. There 

was also a two-way interaction between condition and gender for EM state (corrected p = 

0.056), Simple effect analyses indicated that stressed women showed less interval time 

between two EM state (M=193.9ms, std=6.4ms) in comparison to stressed men 

(M=214.8.8ms, std=8.1ms), p = 0.006. Simple effects were not found in control between 

men and women. No other main or effects were significant (corrected p's > 0.23). There 

was also a difference between condition for ER state (corrected p = 0.063), Simple effect 

analyses indicated that stressed participants showed less interval time between two ER 
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state (M=187.7ms, std=6.4ms) in comparison to control participants (M=205.4ms, 

std=9.2ms). No other effects were found (p > 0.34). No other effects were found in other 

states(p>0.33). 

Mean lifetime predicts math performance 

Next, we investigated the mean lifetime, another key feature of temporal evolution of 

latent brain states, in relation to math performance using the same analytic procedures 

described above. We found that the mean lifetimes of DM brain states in the men under 

control negatively predicted math performance accuracy (corrected p = 0.109). Mean 

lifetime of the DM state was also a most robust predictor of the underperformance in the 

math task. 

Transition between different states 

State transition probability is also an important index for describing the state propogation 

during the math solving process. It labels the temporally sequential relationship bet ween 

different states. In this study, the transition between two functional states (among the 4 

states are interested in) may be concatenated with one or more transition states (among 

the 6 states). Thus, instead of measuring the direct transition between two functional 

states, we measured the average interval time between two functional states. We 

compared the 4 x 4 transition intervals between each pair of the functional states. Results 

revealed a main effect for gender (Men: 24.51�0.53 vs Women 22.34�0.49), corrected p 

= 0.032 and for condition (Control: 23.66�0.50 vs stress: 22.18�0.58) corrected p 

=0.058; from EM state to DM state. This result indicated female and stressed participants 

showed less time when they switch their brain from EM state to DM state. Simple two-

tailed t-test was further conducted between women under stress and other participants in 
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state transition from EM to DM, results revealed a significant effect (p = 0.021). This 

result is a further evidence DM state might play a role of emotion buffer when individuals 

were placed in stressful situation. 

 

 

Stat analysis for 9 states 

 

 

Proportional occupancy of brain states in different conditions 

A 2 (condition: stress or control) x 2 (gender: male or female) between factors ANOVA 

was conducted on proportional occupancy of the four brain states we are interested in. 

There was also a two-way interaction between condition and gender for EM state 
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(corrected p = 0.043), Simple effect analyses indicated that stressed women showed more 

EM state (M=9.8%, std=2.1%) in comparison to stressed men (M=9.2%, std=2.2%), p = 

0.009. Simple effects were not found in control between men and women. No other main 

or effects were significant (corrected p's > 0.54). No other main or interaction effects 

were significant for other states (corrected p > 0.224). 

Proportional occupancy of states predict math performance 

 

 

This analysis revealed a significant relation between predicted and actual accuracy for ER 

state (in negative relationship, corrected p = 0.075, Pearson’s correlation) for men under 

control. Thus, the dominant DM state is a behaviorally harmful brain state for math 
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solving performance—the more time spent in this brain state the worse math task 

performance in people without any stress context. 

This analysis also revealed a marginal significant relation between predicted and actual 

accuracy for DM state (in positive relationship, corrected p = 0.65, Pearson’s correlation) 

and ER state (in negative relationship, corrected p = 0.035, Pearson’s correlation) for 

women under stress. Default network has been found in past that buffers stress (Brewer et 

al., 2011), emotion regulation network has straightforward effect on stress regulation. 

Thus, we hypotheses these two states both plays a stress buffer function during math 

solving process, hence the combination of the two states would help suppress the stress 

emotion generated and in turn increase the math performance for individuals in stressful 

context. To investigate this, a new state was created by combining the two states 

mentioned above, and was named as stress buffer state (SB). Same analysis was 

conducted on the new stress buffer state and math solving accuracy. Significant effects 

were found were found for women under stress (p = 0.013). Thus, the dominant stress 

buffer state is a behaviorally optimal brain state for math performance for people in 

stressful context — the more time spent in this brain state the better math task 

performance. 

Mean interval of brain states in different conditions 

A 2 (condition: stress or control) x 2 (gender: male or female) between factors ANOVA 

was conducted on mean interval time of the four brain states we are interested in. There 

was also a two-way interaction between condition and gender for EM state (corrected p = 

0.115), Simple effect analyses indicated that stressed women showed less interval time 

between two EM state (M=46.21ms, std=1.38ms) in comparison to stressed men 
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(M=50.03ms, std=1.51ms), p = 0.002. And compared to women under control 

(M=50.251,std=1.46), p=0.001. Simple effects were not found in control between men 

and women. No other main or effects were significant (corrected p's > 0.23). There was 

also a two-way interaction between condition and gender for ER state (corrected p = 

0.003), Simple effect analyses indicated that stressed women showed less interval time 

between two ER state (M=50.68ms, std=1.44ms) in comparison to control women 

(M=56.9ms, std=1.53ms). No other effects were found (p > 0.44). No other effects were 

found in other states(p>0.37). 

Mean lifetime predict math performance 

Next, we investigated the mean lifetime, another key feature of temporal evolution of 

latent brain states, in relation to math performance using the same analytic procedures 

described above. We found that the mean lifetimes of DM brain states in the men under 

control negatively predicted math performance accuracy (corrected p = 0.074). Mean 

lifetime of the DM state was also a most robust predictor of the underperformance in the 

math task. 

Transition between different states 

No significant effects were found for any of the states in any of the groups. 
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