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Abstract 
 
Mathematical models can aid the design of genetic circuits, but may yield inaccurate             
results if individual parts are not modeled at the appropriate resolution. To illustrate the              
importance of this concept, we study transcriptional cascades consisting of two           
inducible synthetic transcription factors connected in series. Despite the simplicity of this            
design, we find that accurate prediction of circuit behavior requires mapping the dose             
responses of each circuit component along the dimensions of both its expression level             
and its inducer concentration. With such multidimensional characterizations, we were          
able to computationally explore the behavior of 16 different circuit designs. We            
experimentally verified a subset of these predictions and found substantial agreement.           
This method of biological part characterization enables the use of models to identify             
(un)desired circuit behaviors prior to experimental implementation, thus shortening the          
design-build-test cycle for more complex circuits. 
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Introduction 
 

Synthetic biology utilizes biological parts such as transcription factors to build circuits that             
perform useful signal processing functions [1,2]. Advancements in DNA synthesis technology           
have rapidly grown the library of biological parts, but the construction of predictably performing              
circuits has lagged behind [3]. This lag is due in large part to two factors. First, it is now faster to                     
build new DNA constructs than to characterize them experimentally, leading to the creation of              
many poorly characterized biological parts [4]. Second, simple phenomenological models of           
individual parts often fail to predict the behavior of circuits composed of these parts, even in the                 
absence of contextual effects [5] or retroactivity [6]. Building more useful mathematical models             
of biological parts would greatly facilitate the forward design of genetic circuits with predictable              
behavior [7–10].  

A common feature of genetic circuits is the use of inducible synthetic transcription factors              
(iSynTFs) [11–13] as facile input nodes that can activate downstream elements in a             
dose-responsive manner. In Saccharomyces cerevisiae, a common architecture for iSynTFs          
consists of a fusion of a DNA binding domain (DBD), human hormone receptor (HR), and               
activating domain (AD) [11,14–16]. Absent their corresponding hormones, these iSynTFs are           
sequestered in the cytosol via interaction of the HR with Hsp90 [17,18]. This interaction inhibits               
nuclear localization until hormone is added, enabling dose-responsive control of transcription           
from a cognate promoter. iSynTFs are an indispensable part of the synthetic biology toolbox.              
Circuits containing iSynTFs have been used to probe the behavior of synthetic            
degradation-based feedback [19,20], investigate noise in transcription [11], and study the           
topology of endogenous circuits [15,21,22].  

iSynTFs are commonly characterized via their inducer dose response for one expression            
level of the transcription factor, but this represents only one dimension of their functionality.              
Genetic circuits often perform computation by modulating the expression level of transcription            
factors in a network. Thus, accurate prediction of circuit behavior should be contingent on              
understanding the behavior of these inducible transcription factors as they change expression            
level within a circuit.  

In this work, we developed a model to predict the behavior of a simple genetic circuit: a                 
transcriptional cascade consisting of two iSynTFs in which the first iSynTF activates expression             
of a second iSynTF. A simple Hill model reproduced the inducer dose response of an iSynTF at                 
a single expression level, but failed at different iSynTF expression levels due to nonlinearities in               
the behavior of these biological parts. We overcame this challenge by developing a mechanistic              
model to account for these nonlinearities and by fitting this model using a two-dimensional              
inducer and expression level dose response characterization. With this multidimensional          
characterization, we were able to predict the relationship between inducer concentration and            
expression level for three different iSynTFs. These models enabled the computational           
exploration of the full design space of two-step transcriptional cascades, totalling 16 possible             
circuits. We experimentally validated these simulations for a subset of circuits, confirming the             
predictive power of the model. These results serve as an example of the type of               
multidimensional biological part characterization that is required to accurately predict genetic           
circuit behavior.  
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Results and Discussion 
 

To predict the behavior of iSynTFs in genetic circuits, we attempted to fit a simple Hill model                 
to the hormone dose response of an iSynTF in isolation. We first studied GEM, a previously                
described iSynTF that consists of the Gal4 DBD, e strogen HR, and Msn2 AD, which activates               
transcription from the pGAL1 promoter in response to estradiol (E2) [11]. We constitutively             
expressed GEM from pRNR2—a medium strength constitutive promoter previously         
characterized in the yeast toolkit (YTK) [23]—and measured its dose response, as quantified by              
the fluorescence output of pGAL1-yellow fluorescent protein (YFP) as a function of E2. A simple               
Hill model accurately reproduced the basal activity, output saturation, and curvature of this             
pRNR2-GEM dose response (Fig. 1A; see Methods). 

The output of GEM is dependent on its ligand input, but this hormone dose response               
relationship may be modulated in non-trivial ways by the expression level of GEM itself. This               
effect could become significant if GEM is used in a circuit in which its expression level changes.                 
We therefore next sought to understand the relationship between GEM expression level and its              
hormone dose response. Using the simple Hill model fit to the pRNR2:GEM data, we simulated               
the dose response of GEM at multiple expression levels around pRNR2 (Fig 1B). Changing the               
GEM expression level (represented by X in the simple Hill model) simply changed the sensitivity               
(the half-max point of the sigmoidal curve) of the hormone dose response curve, while              
maintaining the same basal activity, output saturation, and curvature. 

We experimentally tested this prediction by measuring the dose response of GEM at several              
different expression levels using promoters of different strengths picked from the YTK part             
library [23]. We selected two promoters, pREV1 and pTEF1, that have lower and higher              
expression levels than pRNR2, and confirmed their relative expression levels using a promoter             
fusion to YFP (Fig. 1C). We then used these promoters to drive expression of GEM and                
experimentally measured each hormone dose response. Contrary to the prediction of the simple             
Hill model, changing the expression level of GEM did not just shift the hormone dose response                
sensitivity (Fig. 1D). We also observed a direct effect of GEM expression level on the basal                
activity (Fig. 1D, red highlight), the output saturation (Fig. 1D, orange highlight), and the              
curvature of each hormone dose response. These results demonstrate that iSynTFs are dose             
responsive in two dimensions: hormone concentration and iSynTF expression level. This           
prompted us to re-examine the choice of model and data used to fit the model. 

We hypothesized that the Hill model predictions failed because this simple model did not              
have sufficient resolution to describe the nonlinear effect of expression level on iSynTF             
behavior. Furthermore, we hypothesized that we used insufficient data to fit the original model.              
To address the former, we constructed a mechanistic model that takes into account the              
allosteric activation of the iSynTF [24], as well as the saturation on the promoter occupancy and                
elongation rate [25] (Fig. 2A; see Methods). To address the latter, we fit the mechanistic model                
with the hormone dose responses of GEM at three different expression levels: pREV1:GEM,             
pRNR2:GEM, and pTEF1:GEM. This new model was able to recapitulate all three of the              
experimental hormone dose responses (Fig. 2A), and predicted a clear relationship between            
GEM expression level and the basal activity, output saturation, and curvature (Fig. 2B).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.30.122077doi: bioRxiv preprint 

https://paperpile.com/c/sDIZmI/c8Up
https://paperpile.com/c/sDIZmI/3gQl
https://paperpile.com/c/sDIZmI/3gQl
https://paperpile.com/c/sDIZmI/907C
https://paperpile.com/c/sDIZmI/aFiw/?suffix=%3B%20Fig.%202A%3B%20see%20Methods
https://paperpile.com/c/sDIZmI/aFiw/?suffix=%3B%20Fig.%202A%3B%20see%20Methods
https://doi.org/10.1101/2020.05.30.122077
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

To test the accuracy of the mechanistic model, we selected a constitutive promoter of              
intermediate expression level from the YTK part library, pRPL18B, to drive expression of GEM.              
We measured the pRPL18B expression level relative to pREV1, pRNR2, and pTEF1 via a YFP               
promoter fusion (Fig. 2C, red) and input this information into the mechanistic model to predict               
the dose response of pRPL18B:GEM. Gratifyingly, we found that the model accurately            
reproduced the basal activity, output saturation, and curvature of the experimental           
pRPL18B:GEM hormone dose response on which it was not trained (Fig. 2D). 

To generalize these results beyond GEM, we examined two other iSynTFs: Z3PM (a fusion              
of the Zif268 DBD, p rogesterone HR, and Msn2 AD) and Z4EM (a fusion of the Z4 synthetic zinc                  
finger DBD, e strogen HR, and Msn2 AD) [15]. Z3PM activates transcription from pZ3 in a dose                
responsive fashion to progesterone (Pg), and Z4EM activates transcription from pZ4 in a dose              
responsive fashion to estradiol (E2). To characterize these iSynTFs, we repeated the workflow             
developed for GEM: we expressed Z3PM and Z4EM from pREV1, pRNR2, and pTEF1,             
experimentally measured each hormone dose response, and used these data to fit specific             
parameters for each iSynTF to the same mechanistic model as above (Fig. S1A). Using the               
fitted models, we next simulated the effect of iSynTF concentration on the hormone dose              
response (Fig. S1B). Simulations of Z3PM and Z4EM displayed similar trends to GEM, but they               
showed a much greater effect of iSynTF expression level on the basal activity and output               
saturation. Lastly, we validated the accuracy of the Z3PM and Z4EM models against the              
pRPL18B expression level dose response (Fig. S1C). The Z4EM model accurately captured the             
basal activity, output saturation, and shape of the pRPL18B dose response curve.The Z3PM             
model reproduced the output saturation, but it underestimated the basal activity and            
overestimated the sharpness of the curve.  

When comparing the model fittings for each iSynTF, we found that multiple parameter sets fit               
the observed data equally well, producing similar dose response profiles (Fig. S2). The 100 best               
fitting parameter sets for each iSynTF showed that some kinetic parameter values were very              
well constrained (e.g. basal activity ), while others appeared undetermined (e.g.     α       
hormone:iSynTF affinity constant, ). It may be possible to further resolve differences   KX          
between the simulations and experiments with a more detailed description of the hormone             
regulation.  

Using these multidimensional, fitted, mechanistic models of GEM, Z3PM, and Z4EM, we            
explored all possible variants of a two-step transcriptional cascade: a circuit configuration where             
the constitutively expressed first iSynTF induces expression of a second iSynTF, which in turn              
induces expression of a YFP reporter (Fig. 3A). With two orthogonal HRs, there are four               
possible configurations of the three iSynTFs (GEM → Z3PM, Z4EM → Z3PM, Z3PM → GEM,               
Z3PM → Z4EM). Taking into account four possible expression levels for the first iSynTF              
(pREV1, pRNR2, pRPL18B, pTEF1), in total there are sixteen possible circuit variants. Because             
GEM, Z3PM, and Z4EM each have a unique response to hormone and changing expression              
level, we expected that each circuit variant would behave differently in response to the two               
hormone inducers. In agreement, the simulations displayed different responses to both           
inducers, basal activities, and output saturations (Fig. S3). These multidimensional, fitted           
models enable efficient screening of these circuit variants, guiding the selection of designs to be               
tested experimentally.  
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We sought to verify the accuracy of the model simulations by experimentally measuring the              
hormone dose responses of a subset of circuit variants. First, we studied the effect of changing                
the first iSynTF expression level for a single configuration by measuring the output of GEM →                
Z3PM at all four expression levels of GEM (Fig. 3B). We found that the model accurately                
predicted several key aspects of the circuit behavior such as the changing output saturation and               
curvature. Notably, the simulations underestimated the effect of E2 on the basal activity in the               
absence of Pg. For comparison, we simulated the output of these circuits using the simple Hill                
model fit only to the pRNR2:iSynTF dose responses (Fig. S4A) or the mechanistic model fit only                
to the pRNR2:iSynTF dose responses (Fig. S4B). The predictions with the simple Hill model              
show no change in output saturation or basal activity (Fig. S4D), while the predictions with the                
mechanistic model with no multidimensional characterization show excessive basal activity and           
leaky expression (Fig. S4E). Neither match the experimental results, indicating that the            
multidimensional characterization is necessary for the accurate prediction of circuit behavior. 

Next, we compared three circuit configurations (GEM → Z3PM, Z4EM → Z3PM, Z3PM →              
GEM) at the pRNR2 expression level of the first iSynTF (Fig. 3C). As predicted by the model                 
simulations, the Z3PM → GEM configuration displayed the greatest responsiveness to the            
second TF inducer in the absence of the first TF inducer. The simulations were also able to                 
qualitatively predict the curvature of the second TF inducer dose response curves, as well as               
the effect of the first TF inducer on output saturation. As before, the simulations underestimated               
the effect of the first TF inducer on circuit output in the absence of the second TF inducer.  

This slight quantitative discrepancy can likely be explained by a shortcoming in the model’s              
ability to predict the expression level of the second TF as a function of the first TF inducer. The                   
model assumes that expression of the second TF will be equivalent to expression of a YFP                
reporter, despite the fact that contextual factors such as transcript length (e.g. YFP vs. iSynTF),               
5’ UTR, or terminator sequence (e.g. tPGK1 vs. tSSA1) have a known effect on output [26–28].                
Unfortunately, directly measuring the expression level of the second iSynTF via a fluorescent             
protein fusion is challenging, as this also alters these variables. Despite this shortcoming, the              
simulations were still able to predict key qualitative aspects of the experimental data based on               
the circuit configuration and expression level. Taken together, these data indicate that models             
can serve as a guide to genetic circuit design when an appropriate characterization of individual               
parts is performed.  

Quantitative model fits can be important in certain scenarios, such as building models to              
automate genetic circuit design. Recently an algorithm was developed to automate the design of              
genetic logic gates given a set of user constraints and a library of transcriptional repressors [29].                
The algorithm was successful at designing most circuits, but was not perfect; failed circuits              
adopted intermediate states that did not meet the digital threshold as a result of unexpected part                
behavior. This issue of unpredictable part behavior plagues synthetic biology in general and is a               
thorn in the side of many modeling efforts.  

An alternative application of part models, given the universal issue of unpredictable part             
behavior, is theory-guided exploration of potential circuit behavior. Theory can reveal circuit            
topologies that produce a desired phenotype, and has been used in the past to study               
biochemical adaptation [30,31]. However, insights gained from these studies can often be            
difficult to translate into actual designs because there is no guarantee that biological parts exist               
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in the required parameter regimes to implement such circuit designs. It may be possible to use                
our part characterization methodology to constrain the parameter space of theoretical           
explorations, biasing the results towards circuits that can be constructed using existing parts.             
However, our results suggest that parts would need to be characterized based on the design               
goal of the circuit. For example, dynamic part data would need to be collected if dynamic circuit                 
behavior is desired, and functionality of parts under stressors such as glucose depletion may be               
important if the circuit is expected to function under stress-inducing conditions.  

Model based simulation of genetic circuit behavior can guide circuit designs and limit the              
number of constructs that need to be tested to achieve a desired behavior. In this work, we                 
focused on a two-step transcriptional cascade of iSynTFs where the expression level of the              
second iSynTF in the cascade changes in response to input from the first iSynTF. We presented                
a methodology for model design and fitting that considered the effect of both inducer              
concentration and expression level on iSynTF output, thus enabling the accurate prediction of             
genetic circuit behavior. Our results highlight the necessity of understanding biological part            
behavior in the functional context of potential circuit designs. Such multidimensional           
characterization requires an upfront investment of time, but it can pay dividends in the long-term               
by shortening the design-build-test cycle for more complex circuits.  
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Figure 1: Simple Hill model fit to a single hormone dose response fails to capture the full                 
behavior of iSynTF. (A) Left, A constitutively expressed (pC, constitutive promoter) inducible            
synthetic transcription factor (iSynTF) is bound by its hormone inducer and activates            
transcription of a downstream YFP reporter (output). Right, Inducer dose response of GEM at a               
single expression level (pRNR2, constitutive promoter) as a function of hormone, here estradiol.             
A simple Hill model (see inset: , maximum synthesis rate, , basal activity level; , iSynTF      μY    α     X   
concentration; , hormone concentration; , activation coefficient; , Hill coefficient) was fit to H    K    n       
the observed data. (B) Left, Expression level of iSynTF can change in response to inputs in a                 
genetic circuit. Right, Simple Hill model prediction (inset for used parameter values) of inducer              
dose response for different expression levels of GEM (see legend for fold-change values). (C)              
Measurement of constitutive promoter expression levels using a pC-YFP fusion (where pC            
represents pREV1, pRNR2, or pTEF1). (D) Comparison of model predictions and experimental            
data for GEM inducer dose response at three different expression levels of GEM. Insets in Red                
and Orange boxes highlight the differences in basal activity and output saturation. Solid lines              
represent model predictions, open circles and filled squares represent experimental mean, and            
error bars represent s.d. of three biological replicates. 
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Figure 2: Mechanistic model fit to hormone dose responses at multiple iSynTF            
expression levels enables accurate prediction of part behavior. (A) Left, Schematic of a             
mechanistic model where iSynTF activation, promoter occupancy, and synthesis dynamics are           
considered (see Methods for details). Right, Inducer dose response of GEM at three expression              
levels (pRNR2, pRNR2, and pTEF1 constitutive promoters). The mechanistic model (described           
in the left) was fit to the observed data. Insets in Red and Orange boxes highlight the                 
recapitulation of the basal activity and output saturation (compare to Fig. 1D). (B) Mechanistic              
model prediction (inset for used parameter values) of inducer dose responses for different             
expression levels of GEM (see legend for fold-change values). (C) Measurement of constitutive             
promoter expression levels using a pC-YFP fusion including pRPL18B (where pC represents            
one of pREV1, pRNR2, pRPL18B, or pTEF1). (D) Comparison of model prediction and             
experimental data for pRPL18B:GEM inducer dose response as validation. Solid lines represent            
model predictions, open circles and filled squares represent experimental mean, and error bars             
represent s.d. of three biological replicates. See Supplementary Figure 1 for the equivalent             
analysis using the Z3PM and Z4EM iSynTFs.  
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Figure 3: Using refined models to explore circuit designs. (A) A constitutively expressed             
(pC, constitutive promoter) iSynTF (1st TF) is bound by its hormone inducer (1st TF inducer)               
and activates transcription of a second downstream iSynTF (2nd TF), which in turn binds its               
hormone inducer (2nd TF inducer) and activates transcription of the downstream YFP reporter             
(output). (B) Comparison of the mechanistic model predictions (top row) and experimental data             
(bottom row) for circuit output as a function of 2nd TF inducer (x-axis, Pg) at four different                 
expression levels of the 1st TF (see plot titles). The 2nd TF inducer dose responses were                
simulated or measured at eight different concentrations of the 1st TF inducer (see legend in the                
top). (C) Analogous to panel B, but varying the circuit configuration instead of the promoter               
strength (see plot titles). Solid lines represent model predictions, open circles and dotted lines              
represent experimental mean, and error bars represent s.d. of three biological replicates. See             
Supplementary Figure 3 for simulations of all circuit designs.   
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Methods 
 
Construction of DNA Constructs 
 
Hierarchical golden gate assembly was used to assemble plasmids for yeast strain construction             
[23]. Individual parts were ordered as gBlocks (IDT) or PCR amplified (NEB Q5 High-Fidelity 2x               
Master Mix). PCR products were purified with a GeneJET PCR Purification Kit (Thermo Fisher              
Scientific). These sequences were domesticated with FastDigest Esp3I (Thermo Fisher          
Scientific). Transcriptional cassettes were constructed using BsaI-HF v2 (NEB). Multigene          
plasmids were constructed using FastDigest Esp3I. Plasmids are listed in Supplementary Table            
1, and oligos are listed in Supplementary Table 2. The pZ4 sequence was modified from               
McIssac et al. [15] to remove a Gal4 binding site (sequence in supplement). 
 
Chloramphenicol and Ampicillin resistant plasmids were transformed into chemically competent          
Mach1 E. coli (QB3 Macrolab), while Kanamycin resistant plasmids were transformed into            
chemically competent XL1 Blue E. coli (QB3 Macrolab). Cultures were grown over the course of               
the day (Mach1) or overnight (XL1) before prep. Following growth, cultures were prepared using              
a GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific). Part plasmids were verified by             
sequencing (Elim Biopharmaceuticals) using the listed sequencing primers, while all other           
plasmids were verified by restriction enzyme digestion. 
 
Yeast Growth Media 
 
Overnight yeast cultures were grown in YPD (1% w/v bacto-yeast extract; 2% w/v             
bacto-peptone; and 2% w/v dextrose). Yeast transformation cultures were diluted into fresh            
YPD. Cultures for flow cytometry were diluted into SDC (0.67% w/v Difco yeast nitrogen base               
without amino acids; 0.2% complete supplement mixture (MP Biomedicals); and 2% w/v            
dextrose). For prototrophic selection following yeast transformation, SDC agar plates with the            
appropriate selection were used (Teknova). 
 
Construction of Yeast Strains 
 
All DNA constructs were transformed into a yeast strain derived from BY4741 (MATa his3Δ1              
leu2Δ0 met15Δ0 ura3Δ0) that had the HIS3 locus repaired. Yeast transformations were            
performed as described previously [23] with modifications. One wash with 100 nM lithium             
acetate was performed. DNA was combined with 115 microliters of transformation mixture and             
incubated at 42 °C for 30 minutes. All DNA constructs were genomically integrated. Three              
microliters of prepared plasmid were linearized for integration in a twenty microliter NotI-HF             
(NEB) reaction for one hour and then added to the transformation mixture without purification.              
Strains are listed in Supplementary Table 3. 
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Flow Cytometry experiments 
 
Yeast strains were streaked out onto YPD plates from glycerol stocks. Individual colonies were              
picked into 1 mL of YPD in a 2-mL V-bottom 96-well block (Corning/Costar) for overnight growth                
at 30 °C and 900 rpm in a Multitron shaker (Infors HT). For the individual iSynTFs experiments,                 
overnight cultures were diluted 1:500 in 12 mL of fresh SDC in an 8-row block and 450                 
microliters were aliquoted into a row across 2 new 96 well blocks. For the cascade experiments,                
overnight cultures were diluted 1:500 in 45 mL of fresh SDC in a 50 mL trough (Corning) and                  
400 microliters were aliquoted into all wells of a new 96 well block. The YFP-promoter fusion                
strains were diluted 1:500 in 500 µL of fresh SDC in a new 96 well block. Following dilution,                  
blocks were returned to the shaker for a 2 hour outgrowth.  
 
During the 2 hour outgrowth, estradiol (Sigma-Aldrich) and progesterone (Fisher Scientific)           
induction gradients were prepared. Ten-times concentrated solutions were prepared in fresh           
SDC from 36 micromolar (estradiol) and 32 micromolar (progesterone) stock solutions.           
Gradients were then prepared by a one-to-one serial dilution from the maximum induction             
solution. For the individual iSynTF experiments, 50 microliters of the corresponding solution            
were added to the appropriate wells. For the cascade characterizations, 50 microliters of each              
solution were added to each well in the corresponding combinations. Blocks were then returned              
to the shaker for 4 hours. 
 
Following the 4 hour induction, the cultures were prepared for flow cytometry. One hundred              
microliters of culture were mixed with 100 microliters of fresh SDC in a 96-well U-bottom               
microplate (greiner bio-one). Samples were measured on a BD LSRFortessa X20 (BD            
Biosciences) using a high-throughput sampler. YFP-Venus fluorescence was measured using          
the FITC-H channel (voltage = 434). Measurements were normalized by dividing by SSC-H             
(voltage = 200). Analysis was performed with Python 3.7, custom scripts, and the             
FlowCytometryTools package. All experiments were performed in triplicate, with replicates          
collected on separate days. Reported values represent the mean and standard deviation of             
median normalized fluorescence values of the triplicates. 
 
Model: Simple Hill Function 
 
Under this model, we assume that the iSynTF is constitutively produced and has reached its               
steady state concentration ( ). The concentration of hormone in the media is denoted by .   X            H  
Then the steady-state concentration of the reporter protein is described as a simple Hill function               
with maximum synthesis rate , basal activity , dissociation constant , and Hill    μY    0, ]α∈ [ 1    K    
coefficient :n  

(X , ) (α 1 ) )f sh H = μY + ( − α (X ·H)n

(X ·H) +Kn n (Eq. 1) 
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Model: Mechanistic 
 
As shown in Fig. 1, the simple Hill model described above fails to capture the effect of the                  
iSynTF concentration ( ) on the basal expression level and saturation of the inducer dose  X             
response output. To better recapitulate the observed behavior, we propose a mechanistic model             
including the following considerations: 

1. In the absence of hormone ( ), increasing iSynTF expression (e.g. using a stronger     H = 0         
constitutive promoter) increases the output expression level, suggesting some leaky or           
basal activation of the regulated promoter by free iSynTF. 

2. As the iSynTF expression decreases, a minimum output expression level is observed for             
low hormone concentrations, suggesting some leaky expression of the regulated          
promoter independent of the iSynTF. 

3. As both iSynTF and hormone concentration increase, the output expression level           
saturates at a maximum value. This can be explained both by the saturation of the               
regulated promoter occupancy, and by the saturation of the number of polymerases            
simultaneously transcribing the output gene. 

4. With low iSynTF expression, the output expression level saturates at a lower level as              
hormone concentration increases, suggesting that the stoichiometric relationship of the          
iSynTF and hormone molecules might play an important role in output regulation. 

 
Then, the proposed model is: 
 

 such that H ) X  X0 = XH
2 − ( + XT + KX H + H T XH ≤ XT (Eq. 2) 

 0, ]Xo = (X +βX )H ⊘
n

(X +βX ) +KH ⊘
n n ∈ [ 1 (Eq. 3) 

(X ) (1 1 ) exp( ))fm o = μY − ( − α μY

−k XB o (Eq. 4) 

 
Where is the concentration of free (inactive) iSynTF, is the active iSynTF (i.e. X⊘          XH       X⊘  
bound to the hormone), and is the total iSynTF concentration in the cell (e.g.     XT = X⊘ + XH           
determined by the used promoter driving iSynTF expression). is the total intracellular        H      
hormone concentration, which is assumed constant throughout the experiment, and proportional           
to the amount added to the media. is the regulated promoter occupancy, which is modeled       Xo          
as a Hill function of the active iSynTF and a fraction ( ) of the inactive iSynTF in the nucleus,           β         
with Hill coefficient and dissociation constant . Finally, the synthesis rate of the regulated   n     K         
promoter is modeled as proposed in Ben-Tabou de-Leon & Davidson (2009), where (X )fm o             μY  
is the maximum synthesis rate given the translocation rate and gene, is the efficiency rate of           kB       
the transcription factor, and is the basal expression of the output gene (in the    0, ]α∈ [ 1            
absence of iSynTF). Here, (1) the parameter represents the basal activation by free iSynTF;       β         
(2) the parameter represents the leakiness of the regulated promoter; (3) both Eqs. 3 & 4   α               
consider the two possible sources of saturation; and (4) Eq. 2 incorporates the stoichiometric              
relationship between the free iSynTF, hormone, and active iSynTF. This model recapitulates            
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most of the qualitative behavior of the iSynTF regulation for several constitutive promoter             
strengths and hormone concentrations (see Fig. 2 & Fig. S1).  
 
Model: Fitting 
 
The goal is to minimize the error between the observed data (D) and the model prediction (Y)                 
for a given model and parameter set (θ). We define our error function simply as the sum of                  
squared errors in logarithmic scale: 
 

χ ( ) 2 = ∑
 

 
2σlog (D)10

Σ(log (D)−log (Y ))10 10
2

 

 
Then we use a Metropolis Random Walk algorithm to explore the parameter space implemented              
as follows: 

1. Choose some initial parameters  and calculate its fitting error .θ1 χ2
(1)  

2. Iterate over  as follows:1, , ..., t }t = { 2   MAX  
a. Draw a random proposal where is a Multivariate    ϕ ~ θ(t) × 2N (0,Σ)||θ||   (0, )N ||θ|| Σ     

Normal distribution with the same dimension as , mean zero and covariance       θ(t)      
matrix . We enforce that the parameters stay in a realistic range with the .1Σ = 0              
following limits: ; ; ;  1 0 , 00]KX = [ × 1 −4 1  2 0 , .2]β = [ × 1 −7 0  1 0 , 0]n = [ × 1 −5 1  

; . And and1 0 , 00]K = [ × 1 −4 1  α 2 0 , .2] = [ × 1 −7 0   .01minγY = 0 −1  ax(D)·μY = m γY  
have fixed values. 

b. We construct a likelihood function using a Gaussian function: 
(D|θ) xp(− )P = e χ2  

where is the set of parameter to be optimized, D is the optimal data, and is θ                χ2   
the error function. Note the likelihood is maximal when the error is minimal. Then              
we calculate the likelihood ratio: 

xp(− )P (D|ϕ)
P (D|θ )(t)

= e χ2
ϕ + χ2

(t)  

Accept the proposed if the ratio is larger than a random number .The    ϕ           [0, ]~ U 1  
proposed value is always accepted if the error is smaller (i.e. it is better). 

c. Update parameters with probability ; otherwise,  θ(t+1) ← ϕ    in(1, )m P (D|ϕ)
P (D|θ )(t)

  

.θ(t+1) ← θ(t)  
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