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Abstract 
The development of realistic musculoskeletal models is a fundamental goal for the theoretical 
progress in sensorimotor control and its engineering applications, e.g., in the biomimetic control 
of artificial limbs. Yet, accurate models require extensive experimental measures to validate 
structural and functional parameters describing muscle state over the full physiological range of 
motion. However, available experimental measurements of, for example, muscle moment arms 
are sparse and often disparate. Validation of these models is not trivial because of the highly 
complex anatomy and behavior of human limbs. In this study, we developed a method to validate 
and scale kinematic muscle parameters using posture-dependent moment arm profiles, isometric 
force measurements, and a computational detection of assembly errors. We used a previously 
published model with 18 degrees of freedom (DOFs) and 32 musculotendon actuators with force 
generated from a Hill-type muscle model. The muscle path from origin to insertion with wrapping 
geometry was used to model the muscle lengths and moment arms. We simulated moment arm 
profiles across the full physiological range of motion and compared them to an assembled dataset 
of published and merged experimental profiles. The muscle paths were adjusted using custom 
metrics based on root-mean-square and correlation coefficient of the difference between 
simulated and experimental values. Since the available measurements were sparse and the 
examination of high-dimensional muscles is challenging, we developed analyses to identify 
common failures, i.e., moment arm functional flipping due to the sign reversal in simulated 
moments and the imbalance of force generation between antagonistic groups in postural 
extremes. The validated model was used to evaluate the expected errors in torque generation 
with the assumption of  constant instead of the posture-dependent moment arms at the wrist 
flexion-extension DOF, which is the critical joint in our model with the largest number of crossing 
muscles. We found that there was a reduction of joint torques by about 35% in the extreme 
quartiles of the wrist DOF. The use of realistic musculoskeletal models is essential for the 
reconstruction of hand dynamics. These models may improve the understanding of muscle 
actions and help in the design and control of artificial limbs in future applications.  
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New & Noteworthy 
Realistic models of human limbs are a development goal required for the understanding of motor 
control and its applications in biomedical fields. However, developing accurate models is 
restrained by the lack of accurate and reliable musculoskeletal measurements in humans. Here, 
we have overcome this challenge by using multi-stage validation of simulated structures using 
both experimental data and the identification of structural failures in the high-dimensional muscle 
paths. We demonstrate that the rigorous structural and functional validation method is essential 
for the understanding of force generation at the wrist.  

Introduction 
Movement is a fundamental behavior of all living organisms allowing them to manipulate the 
external environment to achieve survival objectives. The motor system is easily able to coordinate 
complex muscle activation patterns to produce torques that lead to skilled movements. Extreme 
examples are human thumb muscles representing high-dimensional kinematic relationships as a 
function of six degrees of freedom (DOF). It is not surprising that thumb control is a challenge in 
powered prosthetics {ref} or in the related process of decoding motor intent from 
electromyography {ref}. The sophisticated algorithms for the control of relatively simpler artificial 
limbs have yet to reach the robustness and accuracy of their biological counterparts (Crouch and 
Huang, 2016; Dantas et al., 2019; Resnik et al., 2018). One biomimetic solution is the model-
based prosthetic control mimicking the presence of MS computations within neural computations 
of planning and execution pathways (Lillicrap and Scott, 2013; Shadmehr et al., 2016). In 
engineering, the use of embedded models of controlled structure has been employed in the 
Smith’s predictor approach (Smith, 1957) and more recently, non-linear system models have been 
used in the model predictive control applications. This general approach can be potentially used 
for prosthetic control (Crouch and Huang, 2016; Sartori et al., 2018); however, achieving robust 
control with the multidimensional MS models is the challenge, especially in real-time applications. 
The effort to create valid muscle-driven MS models spans dozens of years in the context of non-
invasive analysis of gait, posture, and reaching movements (Arnold et al., 2010; Carbone et al., 
2015; De Pieri et al., 2018; Delp et al., 1990; Gritsenko et al., 2016; Horsman, 2007; Rajagopal 
et al., 2016; Saul et al., 2015b). The models are typically developed using minimalistic sets of 
parameters and with additional testing of model performance against experimental observations 
(Kirchner, 2006). The popular truism, “all models are wrong, but some are useful,” expressed by 
statistician George Box (Box, 1979), guides the best practice of developing models and their 
validation in ever more ambitious biomechanical analyses. However, the main limiting factor in 
model development is the sparseness of experimental structural and functional datasets. We have 
addressed here three common limitations of MS models that limit their robustness: 1) errors in 
simulated muscle path for experimentally observed postures; 2) errors in simulated muscle path 
for experimentally unobserved postures; 3) force scaling mismatch between muscle groups.  
In general, MS models are tested through either direct or indirect validation (Henninger et al., 
2010; Lund et al., 2012). Comparing simulated and measured muscle attributes like moment arms 
is an example of a direct morphological validation (Arnold et al., 2001, 2000; Delp et al., 1990; 
Holzbaur et al., 2005). In the indirect validation methods, the musculoskeletal attributes are 
initially assigned based on the experimental or computational data, but their validation is achieved 
through the demonstration of matching profiles in simulated and recorded muscle activity patterns 
or their forces (de Zee et al., 2007; Hamner et al., 2010). These signals are computed from the 
sequence of computations starting with inverse kinematics to compute joint angles. These are 
then passed through inverse dynamics to compute joint torques. The last step is the constrained 
computation for the ill-posed problem due to the muscle redundancy where the number of joint 
torques is exceeded by the number of muscle moments that contribute to these torques 
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(Crowninshield and Brand, 1981; Erdemir et al., 2007). A direct comparison is preferred; however, 
there is limited availability of moment arm data for different postures. Often, MS models rely on 
disparate data sources, i.e., measurements combined across cadavers and different studies that 
may use different methodologies. The combined models may inherit inter-subject variations based 
on measurements that are not correctly scaled and lead to unphysiological nonlinearities 
(Goislard De Monsabert et al., 2018). This problem necessitates the use of additional indirect 
validations that examine overall function. For example, scaling the forces of individual muscles 
by either changing their force generation parameters (Scovil and Ronsky, 2006) or their muscle 
moment arms (Nussbaum et al., 1995) to match observed torque measurements. 
In this study, we aimed to overcome structural and functional model inaccuracies by applying a 
novel direct structural validation method combined with an indirect validation of functional output. 
The main focus was to develop a validation method that can overcome the previous limitations in 
this model (Gritsenko et al., 2016; Saul et al., 2015a) with the sparseness and disparity of 
experimental measurements. We then quantified the contribution of nonlinear moment arm 
profiles to the generation of joint moments compared to those produced with constant moment 
arms to test the necessity for dynamic moment arm . 

Methods 
Overview 
The model validation process consisted of the following three steps: i) the creation of a meta 
dataset describing muscle moment arm values for a sparse selection of postures from published 
studies, ii) the selection of wrapping geometry to constrain muscle paths, and iii) the validation of 
structural and functional muscle properties.  

Model  
We used a model of an arm and hand developed by Saul et al. specifically as a platform for future 
development and benchmarking (Gritsenko et al., 2016; Saul et al., 2015a) in OpenSim (Delp et 
al., 2007). The model from Gritsenko et. al (Gritsenko et al., 2016) was modified to include 
separate digit segments representing an additional 16 degrees of freedom (DOFs). Here, we refer 
to the thumb as digit 1, index finder as digit 2, middle finger as digit 3, ring finger as digit 4, and 
little finger as digit 5. We did not include abduction (abd) / adduction (add) DOFs of the second to 
fifth digit metacarpophalangeal (MCP) and wrist joints. The resulting model simulated 18 DOFs in 
total (see Supplementary Tables). To improve the simulation of thumb movement, we added four 
thumb muscles, opponens pollicis, flexor pollicis brevis, abductor pollicis brevis, and adductor 
pollicis. Only a subset of muscles spanning the elbow, wrist, and hand joints were included in this 
validation, describing 33 musculotendon actuators representing 24 muscles of the distal arm and 
hand (Figure 1).  
Each musculotendon actuator in the model simulated active contractile and passive non-
contractile forces generated by the muscles. The length-tension muscle property based on the 
Hill-type model simulated the active force generation (Zajac, 1989). The maximum active force 
for each actuator (𝐹!"#) was set based on published physiological cross-section area (PCSA) 
(Chao et al., 1989) and muscle-specific tension (𝜎) = 35.4 (Arkin, 1941; Brand et al., 1981), so 
that 𝐹!"# = 𝜎 ⋅ 𝑃𝐶𝑆𝐴. All PCSA values originated from the same study (Chao et al., 1989) with 
the exception of biceps, which was not included in that study, so its parameters were derived from 
another study (Happee and Van der Helm, 1995). The maximum passive force component in the 
muscle model was empirically set to be 10% of the maximal force (𝐹!"#). The simulated muscle 
properties were important for the functional validation of joint torques and the testing of constant 
moment arm assumptions described below. 
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Figure 1: OpenSim upper-limb model of human muscles spanning distal arm and hand. The muscle 
paths (red) were defined relative to the skeletal landmarks and wrapping geometry. 

Datasets 
Three datasets were created for the structural and functional validation of the MS model: 1) 
published muscle moment arm measurements; 2) published torque measurements in maximal 
voluntary contraction (MVC) tasks; 3) simulated muscle moment arm values. The muscle moment 
arm measurements (Dataset 1) were used as a gold standard for the comparison with the 
simulated data (Dataset 3). The error between these datasets was reduced through the recurrent 
path adjustments described below (see Validation Process). Published torque data (Dataset 2) 
were used to validate ensemble force output from multiple agonist-antagonist muscles spanning 
the same joint. The goal here was to collect representative values, not to conduct a meta-analysis 
study. 

Dataset 1. Experimental Moment Arm Measurements  
The experimental dataset of moment arm measurements was compared to the simulated 
relationships in Dataset 3 (below). We reviewed publications on moment arm measurements in 
human upper-limb and extracted their relationships with posture; however, these measurements 
were not of uniform quality. We selected sources with measurements in cadavers over other 
methods, e.g., simulated relationships, because these measurements were likely more reliable. 
If there were duplicate sources with similar methodologies, we selected the source with the most 
extensive information. Only seven sources were chosen to reduce the potential problems from 
combining multiple observations (Goislard De Monsabert et al., 2018). Then, the high-quality 
scans of published figures plotting muscle moment arms at the corresponding joint angle were 
digitized using specialized software (Rohatgi, 2018). The values of published moment arm and 
the corresponding DOF angle, termed muscle-DOF relationships, were expressed in SI units. Our 
search has not identified any moment arm measurements for muscles spanning the proximal and 
distal interphalangeal joints (PIP & DIP) of digits 3-5. The profiles of these muscle-DOF 
relationships were estimated using the published moment arms for the 2nd digit. First, the ratios 
of moment arms at the 2nd MCP joint and the 3rd – 5th MCP joints of homologous muscles were 
calculated. Second, these ratios were used to estimate the moment arms at the 3rd – 5th PIP and 
DIP joints from the 2nd PIP and DIP moment arms of homologous muscles. For example, extensor 
digitorum moment arm profiles about the PIP joint of the middle finger (ED3) were copied from 
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the index finger (ED2) and scaled by the ratio of moment arms for these muscles measured at 
the 2nd and 3rd MCP joints. Table 1 summarizes meta information for the included 81 muscle-DOF 
relationships (see Supplementary Materials for each muscle-DOF relationship and its source 
publication).  
Table 1: List of sources with meta information that was included in the moment arm database. 

Source Age (range), year # Subjects  Measurement Method 

(Haugstvedt et al., 2001) 65 (41-90) 8 (8M) cadaver  

(Bremer et al., 2006) NP 1 (1M) cadaver and reconstructed 
molded model  

(Loren et al., 1996) NP 5 cadaver  

(Koh et al., 2006) 71 (50-90) 11 (6M, 5F) cadaver  

(Fowler et al., 2001)* 29 1 (1F) MRI Scan 

(Smutz et al., 1998) 77 (72-84) 7 (4M, 2F, 1 
NP) cadaver  

(Gonzalez et al., 1997) NP NP 
computer model (included 
for muscles without other 
data sources) 

* Source indicated subject height 171.5 cm and weight 63.5 kg, M and F indicate male and 
female respectively, NP stands for not provided; MRI stands for magnetic resonance imaging. 

 
Dataset 2. Experimental Torque Measurements  
Through a literature search, we found documentation of  joint torques during maximum voluntary 
contraction tasks for 8 DOFs representing 6 hand joints. We used these experimental 
measurements to scale the maximum isometric force (𝐹!"#) parameter in the Hill-type muscle 
model (Yakovenko et al., 2004; Zajac, 1989). This information was determined through the 
examination of a subset of all available studies from which four were selected based on the 
required experimental measurements at each DOF (Table 2). Critically, each isometric 
measurement was performed at a specific limb posture, which is expected to affect maximum 
force generation via muscle force-length relationship. We used an indirect estimate of MCP torque 
measurements based on the reported measurements of digit end-point forces and estimated 
moment arms (Shim et al., 2007). The estimated moment arms were different for each digit based 
on the placement of force sensor relative to the MCP joint in the experimental posture (7.5 cm 
digit 2, 8.0 cm digit 3, 7.5 cm digit 4, and 6.5 cm digit 5). These computed joint torques are marked 
with an asterisk in Table 2. Table 2 shows the summary of recorded values and the corresponding 
meta-information. These torque values are meant to be representative of an average person in 
their twenties. 
Table 2: List of sources for torque measurements during maximum voluntary contraction tasks.  

Reference Joint Direction 
Maximum 
Torque, 
Nm 

Mean 
Height, 
m 

Mean 
Age, 
year 

Age 
Range, 
year 

Weight, 
kg Sex 

(Decostre 
et al., 
2015) 

Wrist 
Flex 14.5 

1.77 25 20-29 74.9 27 M Ext 11.4 
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(Gordon et 
al., 2004) 

Pro 4.64 NP 30.2 23.9-36.5 NP 11 M 
3 F Sup 4.38 

(Bourbonn
ais and 
Duval, 
1991) 

1st 
CMC 

Flex / Add 4.2 

NP 23.4 21-25 NP 12 F Ext / Add 3.4 
Flex / Abd 2 
Ext / Abd 1.6 

(Shim et 
al., 2007) 

2nd  
MCP 

Flex 3.15* 

NP 22.5 20.5-24.5 NP 13 M 
12 F 

Ext 0.78* 
3rd  
MCP 

Flex 3.36* 
Ext 0.70* 

4th  
MCP 

Flex 2.1* 
Ext 0.58* 

5th  
MCP 

Flex 1.59* 
Ext 0.48* 

* estimated joint torque values; Flex = Flexion, Ext = Extension, Pro = Pronation, Sup = 
Supination, Add = Adduction, Abd = Abduction; NP = Not Provided, M = Male, F = Female. 
 

Dataset 3. Simulated Muscle Moment Measurements 
The simulated muscle moment arm and length values were acquired from the OpenSim model in 
a uniform grid with 9 points spanning the maximal range of each DOF (Sobinov et al., 2019). This 
created 9d unique postures per muscle, where d is the number of DOFs a muscle spans. The 
dataset contained muscle moment arms and length for all these postures. A muscle can span 
multiple DOFs (on average, 3), creating d moment arms per posture, d*9d total moment arm 
values per muscle. There was only one value of muscle length for a given posture, creating 9d 

length values per muscle. Then, the total number of values for each muscle was 9d(2d+1), e.g., 
an average muscle with d=3 was described by the sum of the following terms corresponding to 
3*93 postures with 3*93 moment arms and 93 muscle lengths for a total of 5,103 values. Figure 2 
illustrates the dramatic increase in the number of postures for more complex muscles. The left 
panel shows a case for a single dimension with measured (grey) and some unmeasured (black) 
values within the physiological range. The middle panel is a typical representation of the two-
dimensional case where a muscle spans two DOFs. The measurements are much sparser, rarely 
taken when both DOFs are manipulated. This problem of missing measurements worsens in the 
three-dimensional case, as in the right panel. Only a subset of postures in the three-dimensional 
domain contains measurements (no measurements are shown in this illustration). The most 
complex muscle is extensor pollicis longus (EPL) with d=6 , which was described with 6,908,733 
values.  
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Figure 2: The problem of sparseness for musculoskeletal measurements. Several postures (~9) per 
DOF (x) are required to capture the profiles of muscle length and moment arm relationships (r). The number 
of values needed to be measured increase with additional dimensions actuated by each muscle, as 
illustrated by the increasing number of points from left to right panel. The vertices in the grid demonstrate 
the required measurements, and gray lines illustrate the typical data measured experimentally. The typical 
hand muscle spans over 3 DOFs requiring more than 729 independent measurements (right panel). 

Validation Process 
We have identified three main types of errors in MS models: 1) errors in simulated muscle path 
for experimentally observed postures; 2) errors in simulated muscle path for experimentally 
unobserved postures; 3) force scaling mismatch between agonist-antagonist muscle groups. To 
mitigate these errors, we used a three-step process where the muscle paths were validated 
iteratively in the first two steps (see below), and then their ensemble behavior was validated in 
the third step. 

Step 1. Structural Validation for Experimentally Observed Postures 
We evaluated the anatomical validity of musculotendon paths by comparing them to experimental 
measurements from Dataset 1. For each muscle, we initially set the origin and insertion points 
using a standard anatomical reference (Netter, 2011). The musculotendon paths were then 
repeatedly fine-tuned and checked to match the experimental and simulated moment arm values 
(Fig. 3a). This process involved manual adjustments of the wrapping objects and via-points of 
each muscle in OpenSim and comparing the changed moment arms to the Dataset 1. This dataset 
was updated every time a muscle path in the model was adjusted. For computational 
convenience, we used an accurate polynomial approximation of this dataset with low errors 
(<1%). The experimental and computed values were compared during structural validation and 
used in the estimation of forces (Step 3). 
We used root mean square error (RMSE) and the correlation coefficient (r) between simulated 
and experimental values to determine the ‘good enough’ quality of moment arm profiles. ‘Good 
enough’ profiles had r > 0.7 and either RMSE < 1 mm or RMSE normalized to the range of 
experimental moment arm measurements < 0.4. The custom metric based on RMSE and r values 
expressed the operational definition of acceptable quality within our model. These values were 
chosen subjectively based on the examination of quality within the published model (Gritsenko et 
al., 2016; Saul et al., 2015a), and its performance in real-time decoding of motor intent (Boots et 
al., 2016; Mansouri et al., 2018). When these metrics were not met, indicating the low quality of 
simulated muscle paths, we interactively adjusted the muscle’s geometric constraints, via points 
and wrapping geometry, in OpenSim (Fig. 3a). The experimental data measured in human 
cadaver hands (Fowler et al., 2001) is closely represented by the simulated muscle-DOF 
relationship after validation (Fig. 3b). For example. to achieve this matched relationship for ED2 
at the MCP joint, we moved incrementally a cylindrical wrapper off from the center of rotation for 
this DOF improving the path accuracy (Fig. 3b, gray to black). While this type of adjustment is 
straight-forward for simple DOFs, this process becomes time-consuming and challenging for 
muscles with interactions between several DOFs, e.g., extensor pollicis longus described by six-
dimensional transformation. Many multidimensional muscle-DOF relationships have not been 
experimentally recorded and required additional error checks described in step 2. 
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Figure 3: The process of structural validation using experimental data. A. Flow chart of moment arm 
validation. B. Example of simulated (before = gray, after = red) and experimental (black) moment arm 
profiles for the index finger extensor digitorum (ED2) muscle about the 2nd MCP joint flex/ext DOF.  
Step 2. Structural Validation for Experimentally Unobserved Postures 
The goal of using biomechanical models for fundamental transformations of muscle activity into 
generated joint torques and valid limb motion requires data-driven model development. This task 
is challenging because experimental data for the description of moment arms in physiological 
postures is sparse. Moreover, the subjective examination of muscle characteristics in the high-
dimensional space (d>3) of limb postures is limited. The following analyses were devised to 
resolve potential model failures, i.e., structural and functional discontinuities, in the posture space 
without experimental measurements: 
Zero-Crossing Error. This analysis identified the functional discontinuity corresponding to a flip in 
the direction of muscle torque, which was indicated by the zero-crossing event in its moment arm 
profile. This type of failure could arise from the unaccounted interactions with wrapping objects in 
muscles spanning multiple DOFs. The testing for these crossing events was performed on each 
muscle-DOF relationship in Dataset 1. Zero-crossings occur when the global maximum and 
minimum have opposite signs for one or more DOFs that the muscle spans. Figure 4 shows an 
example with opposite signs of maximum and minimum values for extensor carpi ulnaris (ECU) 
in the original model. The superimposed profiles indicate changes in ECU wrist flexion-extension 
moment arms as a function of wrist flexion-extension angle in 9 wrist pronation-supination 
postures. The validated model had the extrema with the same sign after ECU was corrected from 
slipping off the geometric wrapper in the extreme wrist extension. All muscles were tested, and 
all zero-crossing events found were then examined in OpenSim for potential structural errors.  
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Figure 4: Example of structure validation for experimentally unobserved postures. ECU moment 
arm profiles for wrist flex/ext postures is shown for the original (left) and validated (right) models. 
The ECU muscle spans wrist flex/ext and wrist pro/sup DOFs, and its moment arm value depends on both 
joint angles, which is evident from the shown multiple profiles for varying pro/sup angle. The presence of 
an unexpected zero-crossing event when wrist was flexed from -50º indicated a potential error where 
muscle action flipped from extension to flexion moments in the original model. Zero-crossing events were 
examined and fixed through structural validation, as in the model shown in the right panel.  

Moment Arm Evaluation in Postural Extrema. The goal of this analysis was to review the profile 
of moment arms for agonist-antagonist muscle groups at the postural extremes, i.e., postures 
corresponding to 0% and 100% of full physiological range of motion (ROM) for each DOF. The 
additional examination of moment arm dynamics in these postures was important because these 
locations often corresponded to failures in muscle wrapping geometry that, in addition to causing 
flipping in the sign of moment arms, could also lock the joint. This happened because of the 
imbalance between antagonistic muscles defined by the opposite signs of their moment arms in 
these postures. The imbalance was identified by the two-fold differences between the averages 
of peak-to-peak values for antagonistic muscle groups with moments around a particular DOF. 
These profiles were further scrutinized in OpenSim editor for the evidence of structural problems. 

Step 3. Functional Validation of Torque Generation 
Data collation from multiple sources was expected to introduce incongruency between the 
measurements across multiple muscles, even though each muscle was consistent with a 
published observation (Goislard De Monsabert et al., 2018). To mitigate this problem across 
muscle groups, we validated joint torque generation relative to the torque in maximum voluntary 
contractions (MVC) at specific postures (see above, Dataset 2 Torque Measurements). We 
simulated the torque measurements in MVC trials by locking the model in the experimental 
posture and supplying the maximum activation to all muscles with the same sign of moment arms 
around the DOF of interest, i.e., agonists. The force generation was posture dependent and 
determined by a Hill-type muscle model (Hill, 1938; Yakovenko et al., 2004; Zajac, 1989).  
The joint MVC torque was computed as the sum of all cross-products between muscle moment 
arms and forces (  

 
Figure 5). The goal was to compute the scaling constant (𝐶$) between experimental and simulated 
torques to adjust force generation across all muscles: 𝐹)!"# = 𝐶$𝐹!"#. The adjusted 𝐹)!"# values 
were computed iteratively from distal to proximal DOFs. This approach locked the previous 
solutions for muscles with actions at distal DOFs and adjusted only the values of new (unlocked) 
muscles for each DOF. A single constant was assumed to scale parameters across all ‘unlocked’ 
agonists. For example, only flexor digitorum, extensor digitorum, extensor indicis, and digiti minimi 
muscles span MCP joints. Therefore, their 𝐹)!"# values were adjusted only based on toques about 
the phalangeal joints and remained the same (locked) during the validation of torques originating 
from more proximal muscles spanning wrist DOFs, i.e., flexion/extension and 
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pronation/supination. For the wrist DOFs, only the 𝐹)!"# values of the muscles that do not span 
the phalangeal joints were adjusted to match wrist MVC, i.e. extensor carpi ulnaris (ECU), flexor 
carpi radialis (FCR), flexor carpi ulnaris (FCU), and palmaris longus (PL).  

 
Figure 5: The process of scaling muscle force output. The torques at maximal voluntary activation (a) 
= 1 depend on joint posture (θ). θ were used to compute muscle length (L) and moment arms (R). Muscle 
force (F) was calculated from a and L using a muscle model for isometric conditions. The simulated torque 
(t) was then calculated by summing the muscle force cross products with their moment arms (R) about 
each DOF. The scaling coefficient (CF) was computed using the simulated (t) and the inverse of 
experimental torques (t*-1). The θ and t* values came from Dataset 2. 

To validate the adjusted joint torques, we calculated the specific tension (𝜎) from the scaled model 
as 𝜎 = 𝐹)!"#′/𝑃𝐶𝑆𝐴 and compared it to experimental measurements and parameters in previous 
models. The experimental specific tension measures were obtained from human cadavers (Arkin, 
1941; Brand et al., 1981; Haxton, 1944; Narici et al., 1988; Weijs and Hillen, 1985). The simulated 
specific tension values were obtained from (Buchanan, 1995) based on 4 musculoskeletal models 
(Amis et al., 1979; An et al., 1981; Edgerton et al., 1990; Murray et al., 1995). 

Statistical Analyses 
All statistical measures used a significance value of a=0.05. The specific tension comparisons 
between simulated and experimental observations were performed by a one-way analysis of 
variance (ANOVA) with a Tukey post hoc test to determine which groups were different. The 
predictions of differences between constant and dynamic moment arms at postural extrema were 
tested with one-tailed t-tests with Bonferroni correction.  
The comparison of dynamic relationships between moment arms was performed using hierarchal 
clustering of correlation matrix (Gritsenko et al., 2016). First, a correlation matrix was computed 
between the moment arm relationships across all muscles per DOF. Then it was transformed into 
the heterogeneous variance explained (HVE) metric defined as 1-r2 for r>0 and 1+r2 for r<0. This 
metric assigned short distances close to 0 to positively correlated moment arm profiles and 
distances close to 2 to negatively correlated moment arm profiles, weak correlations were 
assigned an intermediate distance close to 1. We then used hierarchal clustering of HVE to define 
muscle groups based on their moment arm profiles. We used this grouping to further evaluate the 
magnitude of errors that may be caused by the assumption of constant moment arm profiles.  
With the development of ever more challenging complex musculoskeletal models the use of 
constant moment arms across all postures is a convenient approach that partially mitigates 
structural errors. However, the trade-off related to the error in the estimation of torque due to the 
coordination of musculoskeletal relationships remains unclear. We will test the following specific 
predictions about the coordination of wrist muscles to evaluate the importance of non-linear 
changes in the moment arm profiles: 
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1) The dynamic moment arms are smaller than the constant moment arms when the muscle 
length is long. 
2) The dynamic moment arms are larger than the constant moment arms when the muscle length 
is short. 
 

Results 
In this study, we developed a validation process for the structure and function of a detailed arm 
and hand musculoskeletal model. We used a combination of quantitative and qualitative metrics 
to correct anatomical errors during the process of adjusting muscle paths relative to the skeletal 
landmarks to fit available experimental relationships. Then, we applied our quantitative analysis 
to identify two possible muscle path errors in the absence of experimental observations: i) the 
zero-crossing error due to the flipping of moment arm sign changing muscle function, ii) 
inadequate force generation in extreme postures. Each instance of tentative errors identified with 
these methods was examined and manually corrected, if necessary. These structural corrections 
were followed by the adjustment of balance in force generation between agonistic muscle groups 
using experimental MVC measurements. We used the adjusted model to compare experimental 
and simulated muscle-specific tension values and to evaluate the potential discrepancies in 
torque calculations with the assumptions of constant or variable muscle moment arms at multiple 
wrist postures.  

Validation Process 
The structural quality of the MS arm model increased after muscle path validation. We assessed 
five types of errors in muscle paths for 33-musculotendon actuators controlling 18 DOFs of the 
arm and hand (Figure 1). Each muscle spans on average 3 to 4 DOFs with EPL spanning the 
maximum of 6 DOFs in this model, as shown in columns of original (left) and validated (right) 
panels with categorical representations. The five categories describe dynamic and static profile 
errors ranging from the worst (red) to the best (green, Figure 1B). The ‘good’ category (green) 
was associated with the least amount of error between the experimental (Dataset 1) and 
simulated (Dataset 3) moment arm measurements.  
The highest quality (green) category was assigned to muscles with the high correlation between 
experimental and simulated profiles of moment arms (r>0.72), with an average of r=0.92±0.07 
(s.d.) after validation, and with the minimal static offset that was less than 5% of the range from 
minimum to maximum. The yellow category included profiles with the high offset error. The pink, 
orange, and yellow categories represent errors that do not include the zero-crossing error, which 
identifies the red category. Errors in the original model from Gritsenko et al. (Gritsenko et al., 
2016; Saul et al., 2015a) had multiple failures represented by the flipping sign of moment arms 
(red category). Moreover, the number of muscles in the top category increased from only 8.6% in 
the original model to 73.5% in the validated model, and the majority of profiles showing the 
incorrect zero-crossing locations (red category) were corrected (Fig. 6C). Although not all moment 
arm profiles were assigned to the top category, all of them were improved through the validation 
process. The overall improvement of model quality was quantified with a metric that assigns 
progressive scores to each color (red=1, pink=2, orange=3, yellow=4, and green=5). The total 
score was calculated only for muscles present in both models. The original model score was 277, 
and it was 418 for the validated model, which indicates 1.51 times improvement on this ordinal 
scale.  
The validation procedure did not fully correct some profile errors in 8 thumb and 5 wrist muscles. 
These high dimensional relationships were difficult to correct manually using the iterative process 
described in Step 1 and may require an automated optimization in the future work.  
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Figure 1: The comparison of structural quality between models with and without structural 
validation. A. Categorical errors in the original model from Gritsenko et al. (Gritsenko et al., 2016; Saul et 
al., 2015a) for all DOFs (column labels) and all muscles (row labels). Missing values in the grid represent 
DOFs that a given muscle does not span. F/E indicated flexion/extension; Pro/Sup indicates 
pronation/supination; Ab/Ad indicates abduction/adduction. B. Examples of errors in each category. C. 
Categorical errors in the validated model after the manual path validation. 

The experimental dataset sparsely represented all the muscle-DOF relationships. The 
unobserved domain was examined for possible zero-crossing errors. We found that the original 
model had multiple zero-crossing instances. The zero-crossing instances were distributed 
uniformly within ROM (Fig. 7A). Each instance of zero-crossing in the original model was 
examined and iteratively corrected only if the crossing occurred due to problems with wrapping 
geometry. The flip of function in muscles spanning wrist pronation/supination and CMC 
flexion/extension DOFs was supported by the published experimental profiles included into our 
dataset (Fig. 7B).  
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Figure 2: Histograms of muscle moment arm zero-crossing events as a function of position. The 
colors represent the DOFs (described in the legend) where the crossing takes place. s-p indicates 
supination/pronation; e-f indicates extension/ flexion; ab/ad indicates abduction/adduction. The distributions 
are shown for original (A) and validated (B) models. 

Next, we validated the model force generation using the MVC values (Dataset 2, Table 2) for digit 
and wrist DOFs. The values for the Fmax parameter in the Hill-type muscle model were adjusted 
in isometric simulations for specific postures corresponding to Dataset 2, as described in Step 3. 
We used the distal-to-proximal parameter adjustment method to minimize errors across multiple 
joints. The original estimates of Fmax values from the published models produced high errors in 
the wrist muscle torques (

Fig. 3A, red circles). The functional validation scaled down the Fmax of finger muscles, which then, 
in turn, led to the adjustment of the Fmax for wrist muscles to account for the force being produced 
by the finger muscles at the wrist. This process generated a physiologically relevant maximum 
torque at the wrist and 2nd – 5th digits (Fig. 8A, blue circles). The moment arms of complex thumb 
muscles were not fully corrected (shown in Figure 1C) and that limited the validation of torques 
for thumb joints. 
To test the validity of scaling the maximum force values to the experimentally observed maximal 
joint torque values, we calculated the muscle specific tension values that emerge after the 
functional validation. ANOVA showed that the experimental and simulated muscle specific tension 
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values are different (Main Effect of Group: f=6.54, p=0.032). Tukey post-hoc tests showed that 
the adjusted muscle specific tension values in our validated model were not significantly different 
from the experimentally measured values, while  the simulated values from the “other models” 
were significantly higher than both the experimental values and our simulated values (

Fig. 3B). 
 

Fig. 3: Functional validation of joint torques and muscle forces. A. The torque profiles were 
reconstructed for eight arm and hand DOFs. The black squares are the published maximum torque values, 
the red circles are the torque values simulated with a Hill-type muscle model using the original muscle 
paths, and the blue circles are the torque values after muscle path validation. B. Muscle-specific tension 
values. The published experimental data (Experimental), data simulated with the validated model (Our 
Model), and other simulated published data (Other Models listed in the legend) were compared. The 
asterisk marks significant differences identified by post-hoc tests. 

Constant vs. Dynamical Moment Arms  
We evaluated the error that could arise from the use of constant moment arm assumption for 
muscles actuating the wrist. In general, The moment arm profiles potentiate wrist torque 
generation. For example, flexor carpi radialis (FCR) wrist flexor moment arm increases with the 
increase in wrist flexion (Fig. 4A). Similarly, the moment arm of wrist extensor carpi radialis longus 
(ECRL) increases with the increase in wrist extension. As muscles shorten their ability to generate 
force decreases, but the increase in their moment arms maintains similar capacity for torque 
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generation. These general relationships were homologous across wrist flexors and extensors, as 
shown by the correlation analysis of moment arms in Fig. 4B&C. The hierarchal clustering 
analysis showed close similarities in muscle-DOF relationships among flexors and among 
extensors while separating the flexors from extensors (mean HVE»1.6, Fig. 4B). Next, we 
compared the differences of moment arm averages in extreme postural quartiles (dynamic 
condition, the solid line in Fig. 4A) against the averages across the full ROM (constant condition, 
dashed line in Fig. 4A). We found that the dynamic moment arms are significantly smaller than 
the static moment arms by mean 15.0 ± 14.8% (s.d. across DOFs) when the muscles are long 
and vice versa by 19.9 ± 14.2% when the muscles are short (p<0.0001 for both tests). Thus, 
substituting dynamic moment arm profiles with constants would result in a mean decrease of 
34.9% in the amplitude of wrist torque generated for a full range of motion movement. 

 
Fig. 4: The comparison of constant and dynamics moment arms. A. Example wrist flexor (blue) and 
extensor (red) moment arm profiles around wrist flexion/extension DOF. B. The dendrogram produced by 
the hierarchal cluster analysis of HVE obtained from the correlation matrix in (C). C. The correlation matrix 
of r-values between pairs of muscle moment arm profiles for a wrist flexion/extension DOF.  

Discussion 
In this study, we developed a novel model validation method that improves the anatomical and 
functional accuracy of MS models. The process improves the structural path accuracy across the 
full range of all 18 DOFs using the multidimensional database of experimental measurements, 
skeletal landmarks, and the detection of potential structural errors. The functional validation 
process then relies on the corrected muscle moment arms to scale muscle forces to match the 
maximum torques recorded in the literature (see Datasets). Scaling the forces was vital because 
it adjusted the torque values of the model to stay within the biological boundaries of torque output. 
As a result of this validation process, we have improved the accuracy of the previous 
musculoskeletal model and tested the importance of nonlinearities in moment arm profiles.  
We found that the assumption of constant moment arms for wrist and digit muscles can lead to 
about 35% error in the estimation of wrist flexion-extension joint torque. The moment arms near 
the extremes (Figure 2A grey shaded regions) varied, on average, approximately 17±14% from 
the constant moment arm values. These values are supported by the previous demonstration of 
force generation in different wrist postures (Gonzalez et al., 1997). This means that the model 
with constant moment arms will grossly underestimate the muscle forces produced at postural 
extrema for a given level of muscle recruitment (Crouch and Huang, 2016); however, model 
simplifications and the use of lumped parameter assumptions may outperform other applications 
using inaccurate models. We provide further computational evidence for the importance of 
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musculoskeletal organization in the estimation of forces with the use of improved models with the 
high-dimensional validation described in this study. The dynamic moment arm profiles were 
crucial for reproducing the measured maximal isometric torque in different postures of the human 
hand. Similarly, we expect that these structural details will be important in the decoding of motor 
intent from EMG in prosthetic or orthotic applications where MS properties contribute to the 
estimation of state-space variables for the control system (Menegaldo, 2017).  
Musculoskeletal models are growing in complexity from low-dimensional, yet insightful, models 
(Blickhan, 1988; Full and Koditschek, 1999) to much more complex and detailed (Seth et al., 
2018). Accurate implementation is ever more challenging partly because the appropriate data is 
extremely sparse. Consequently, the validation of model parameters across the physiological 
domain of postures or explicit limitations are difficult to evaluate and describe (Thacker et al., 
2004). The typical validation domain spans measurements in a limited range of postures, usually 
not exceeding single-DOF variations and not often covering the full ROM of the joints a muscle 
actuates. Fig. 2B illustrates conceptually the sparseness of experimental data for a single muscle 
relative to the domain of interest. This constitutes a major limitation for the current models, 
including this work.  To improve the accuracy of our model, we collected a large dataset of muscle-
DOF relationships. However, the published data had two major limitations. The first limitation was 
that moment arms were measured using different methodologies for subsets of several muscles 
from people of different ages and genders causing discrepancies in the measurements. The 
second limitation was that the moment arms were, by necessity, measured for a subset of 
physiological postures and DOFs. To overcome these limitations, we developed a validation 
process that evaluated the moment arm values in all possible postures and found anomalies that 
could jeopardize model performance. These anomalies tended to occur at the extremes of ROM, 
because these postures were associated with sharp angles between bones, where wrapping 
objects were often unable to constrain appropriately the muscle paths (example in Figure 4). All 
the structural anomalies in muscle-DOF relationships ranging from inaccurate offset to sign 
flipping were identified by our validation process and corrected, with the exception of the 
opponens pollicis (OP) moment arm about the CMC abd/add DOF (Fig. 6). The validation of the 
moment arms about the thumb posed the biggest challenge due to the complexity of movement 
of the two-DOF CMC joint and the anatomical complexity of all thumb muscles spanning multiple 
joints. The validation process successfully identified the limitations of moment arm simulation 
about the CMC joint, so that is will be possible to overcome them in the future.  
The functional validation process was crucial for enabling the physiologically relevant 
performance of the model by ensuring that the joint torques do not exceed physiological values. 
This process overcame two main limitations of sparse published data: 1) inconsistencies in the 
measured moment arm dataset and 2) inaccuracies due to the simplified simulation of muscle 
properties. In particular, inaccurate estimates of the maximum force (𝐹!"#) a given muscle could 
lead to unphysiological solutions for muscle-specific tension. The muscle-specific tension in the 
validated model was in general agreement with published experimental values and significantly 
improved relative to in previous models (
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Fig. 3B). These results further support our conclusions that the structural validation followed by 
functional validation improves the physiological accuracy of MS models.  
As an outcome of the validation process, we have developed a generic arm model that is suitable 
for use in biomimetic control applications and for the biomechanical analysis of multiple types of 
arm movement. The model was validated to represent an average young adult by having its torque 
output and muscle paths match published average data. The model can be scaled to individual 
body size by scaling the size and mass of each segment to anatomical proportions based on 
individual height and weight (Winter, 2009). However, functional validation will need to be 
repeated to account for any changes in the muscle model parameters, such as 𝐹!"# values, 
pennation angles, or 𝑃𝐶𝑆𝐴 values. The moment arm and muscle length values from the validated 
model can also be extracted for real-time applications (Sobinov et al., 2019), which provides a 
valuable resource for human-machine interfaces.  

Conclusions 
In conclusion, we developed a validation process that can be used to create robust and 
physiologically accurate MS models. We applied this process and validated an MS model of the 
human forearm. We have also evaluated the impact on torque generation for the common 
computational assumption of constant moment arms for muscles actuating wrist joint. These 
results came from our validation of both the anatomical structure of the model and the functional 
torque output. Therefore, both structural and functional validation procedures are important for 
the development of generalizable models.  

Supplementary Material 
The supplementary materials include PDFs of all the muscle-DOF profiles from experimental and 
simulated datasets that were used to create Figure 1. It also includes an Excel file for each 
muscle-DOF describing the experimental data profile and its source. 
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