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ABSTRACT 

The visual pigments of humans contain 11-cis retinal as the chromophore of light perception, 

and its photoisomerization to the all-trans form initiates visual excitation in our eyes. It is well 

known that three isomeric states of retinal (11-cis, all-trans, and 9-cis) are in photoequilibrium 

at very low temperatures such as 77 K. Here we report the lack of formation of the 9-cis form in 

monkey blue (MB) at 77 K, as revealed by light-induced difference FTIR spectroscopy. This 

indicates that the chromophore binding pocket of MB does not accommodate the 9-cis form, 

even though it accommodates the all-trans form by twisting the chromophore. Mutation of the 

blue-specific tyrosine at position 265 into tryptophan, which is highly conserved in other animal 

rhodopsins, led to formation of the 9-cis form in MB, suggesting that Y265 is one of the 

determinants of the unique photochemistry in blue pigments. We also found that 9-cis retinal 

does not bind to MB opsin, implying that the chromophore binding pocket does not 

accommodate the 9-cis form at physiological temperature. The unique property of MB is 

discussed based on the present results. 
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Humans have two kinds of vision: twilight vision mediated by rhodopsin in rod photoreceptor 

cells and color vision achieved by multiple color pigments in cone photoreceptor cells.1 Humans 

also possess three color pigments, red-, green-, and blue-sensitive proteins, that maximally 

absorb at 560, 530, and 425 nm, respectively.2 Rhodopsin and color pigments both contain a 

common chromophore molecule, 11-cis retinal, and different chromophore-protein interactions 

allow preferential absorption of different colors.3,4 Purified proteins are a prerequisite to 

understanding the mechanism of color tuning and the activation process by light. Studying 

rhodopsin is highly advantageous because large amounts of protein can be obtained from 

vertebrate and invertebrate native cells. Bovine rhodopsin is a standard protein, and its crystal 

structures have been reported for the unphotolyzed state,5 opsin,6 photobleaching 

intermediates,7,8 active state,9,10 and the active-state complexed with the C-terminus peptide of 

the  subunit of G-protein,10-12 or engineered mini-Go,13 and arrestin.14 These structures have 

provided insight into the mechanism of the chromophore-protein interaction and activation. 

On the other hand, structural studies of color pigments lag far behind those of rhodopsin. 

No color visual pigments have yet been crystallized. Under such circumstances, we started 

structural studies of primate color pigments by using low-temperature difference FTIR 

spectroscopy.15,16 To achieve this, monkey red- (MR), and monkey green- (MG)-sensitive color 

visual pigments were expressed in HEK cells, and light-induced difference FTIR spectra were 

measured at 77 K, where the photoproduct, batho-intermediate (Batho), was reverted to the initial 

state by light.17-21 Consequently, photoconversions from the initial state to Batho, and Batho to 

the initial state were repeated. This photochromic property has been highly advantageous to 

improve the signal-to-noise ratio of FTIR spectra. Although a lower expression level was 

reported for blue-sensitive pigments, we successfully obtained light-induced difference FTIR 

spectroscopy of MB from marmoset.22 

In the study of MR and MG, analysis of the 9-cis form was useful. In the study of bovine 

rhodopsin, it is well known that the 11-cis form (the unphotolyzed state), the all-trans form 
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(Batho), and the 9-cis form (also called isorhodopsin) are in photoequilibrium at 77 K,23,24 

indicating that the retinal binding pocket of bovine rhodopsin accommodates these three isomers. 

This is also the case for other visual pigments including MR and MG.17 In fact, a structural 

comparison between the 11-cis and 9-cis forms provided useful information of protein-bound 

water molecules in MR and MG. We reported that water O-D stretching vibrations in D2O are 

identical in both 11-cis and 9-cis forms for bovine rhodopsin,24 suggesting the same hydrogen-

bonding networks. In contrast, in MR and MG, we found different water O-D stretching 

vibrations between the 11-cis and 9-cis forms, leading to positional identification of these 

protein-bound water molecules.18 When we published the first paper on MB, we focused on the 

difference spectra between the 11-cis (unphotolyzed state) and all-trans (Batho) forms.22 

In the present study, we attempted to stabilize the 9-cis form of MB at 77 K. Initially UV-

visible spectroscopy was used to study the photoequilibrium mixture at liquid air or nitrogen 

temperatures.23,25-28 However, vibrational spectroscopy such as resonance Raman and IR 

spectroscopy is more suitable for this aim, as isomer-specific vibrations appear in the 1250-1150 

cm-1 region, and since each isomer can be easily distinguished.24,29-35 Interestingly, when we 

illuminated MB at various wavelengths of light in this study, we could not observe the 9-cis form 

of MB at 77 K. This indicates that the chromophore binding pocket of MB does not accommodate 

the 9-cis form, even though it does accommodate the all-trans form (Batho). Mutation of the 

blue-specific tyrosine at position 265 into tryptophan, which is highly conserved in other animal 

rhodopsins, led to formation of the 9-cis form in MB, suggesting that Y265 is the determinant of 

the unique photochemistry in blue pigments. We also found that 9-cis retinal did not bind to MB 

opsin, implying that the chromophore binding pocket does not accommodate the 9-cis form. The 

unique property of MB is discussed based on the present results. 

 

MATERIALS AND METHODS 
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Sample Preparation. MB cDNA was tagged with the Rho1D4 epitope sequence and 

introduced into the pcDNA3.1 expression vector. This construct was expressed in the HEK cell 

line and regenerated with 11-cis-retinal.22 MRh was prepared similarly.22 Site-directed 

mutagenesis was performed using the QuikChange Multisite-Directed Mutagenesis Kit (Agilent 

Technologies, Inc., Santa Clara, CA, USA).22 The regenerated sample was solubilized with a 

buffer containing 2% (w/v) n-dodecyl--D-maltoside (DDM) (final concentration was 1% (w/v)), 

50 mM HEPES, 140 mM NaCl, and 3 mM MgCl2 (pH 7.0) and purified by adsorption on an 

antibody-conjugated column and eluted with a buffer containing 0.10 mg/mL 1D4 peptide, 

0.02% DDM, 50 mM HEPES, 140 mM NaCl, and 3 mM MgCl2 (pH 7.0). 

 

Low-Temperature FTIR Spectroscopy. For FTIR spectroscopy, MB and MRh samples in 

detergent were reconstituted into phosphatidylcholine (PC) liposomes with a protein-to-lipid 

molar ratio of 1:30 by dialysis to remove DDM. The reconstituted sample was suspended in a 

buffer containing 2 mM phosphate and 10 mM NaCl (pH 7.25), placed onto a BaF2 window and 

dried with an aspirator. Low-temperature FTIR spectroscopy was applied to the films hydrated 

with H2O at 77 K, as described previously.17,18,22 

The MB samples were illuminated with 400 nm light (by using an interference filter) for 5 

min at 77 K, followed by illumination with >520 nm light (by using a VO54 cut-off filter) for 5 

min at 77 K.22 The former and latter illuminations convert MB to Batho, and Batho to MB, 

respectively, from which Batho (all-trans) minus MB (11-cis) difference FTIR spectra were 

obtained. To examine the 9-cis form, Batho was illuminated by using various cut-off filters such 

as VY47 (>450 nm light), VY46 (>440 nm light), and VY45 (>430 nm light). For each 

measurement, 128 interferograms were accumulated, and 40 recordings were averaged. FTIR 

spectra were recorded with a 2 cm-1 resolution. 
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Hydroxylamine Bleach. HEK cells expressing each protein were divided into two, to which 

either 11-cis or 9-cis retinal was added and incubated for 1 hour. Then, the regenerated sample 

was solubilized with a buffer containing 2% (w/v) DDM (final concentration was 1% (w/v)), 50 

mM HEPES, 140 mM NaCl, and 3 mM MgCl2 (pH 7.0). The DDM-solubilized proteins in the 

presence of 10 mM hydroxylamine were kept for 30 min in the dark at 4°C, and then illuminated 

with >400 nm (the wild-type and mutant MB) or >480 nm (the wild-type and mutant MRh) light 

for 1.5 min, respectively. 

 

RESULTS 

No Formation of the 9-cis Form in MB at 77 K.  The dotted lines in Figure 2a show light-

minus-dark difference FTIR spectra upon formation of Batho from MB, MRh, MG, and MR, 

where positive and negative signals correspond to all-trans and 11-cis retinal, respectively. In 

these cases, Batho was formed by illumination of a monochromatic light from an interference 

filter (400 nm for MB, 501 nm for MRh and MG, and 543 nm for MR).22 On the other hand, 

photo-reversion was possible by illumination with light at longer wavelengths derived from a 

cut-off filter (>520 nm for MB, >610 nm for MRh and MG, and >660 nm for MR), which was 

evidenced by mirror-imaged difference spectra in the UV-visible or IR regions.22 

While the dotted lines in Figure 2a originate only from all-trans and 11-cis forms, 

illumination of Batho with different wavelengths yields formation of the 9-cis form. For instance, 

the solid black line in Figure 2a represents the all-trans (Batho) minus 9-cis spectrum for MRh 

in which Batho was formed by illumination at 501 nm, whereas the illumination of Batho with 

>540-nm light accumulated the 9-cis form. The reason is that the 9-cis form has the most blue-

shifted absorption, and its marker band is a peak at 1207 cm-1.24,30,35 The black spectrum in Figure 

2b is the double difference of the black dotted and solid spectra in Figure 2a, where positive and 

negative signals correspond to 9-cis and 11-cis retinal, respectively. This is also the case for the 

reported color visual pigments. To accumulate the 9-cis form, we established illumination 
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wavelengths as >540 nm and >580 nm for MG and MR, respectively,18 and the 9-cis-specific 

vibrational band at 1207 cm-1 (1208 cm-1 for MR) was used to optimize the experimental 

conditions. 

When converting wavelengths from Batho into 9-cis and 11-cis forms, the difference was 

70 nm for MRh and MG, and 80 nm for MR. In the present study, we attempted to accumulate 

the 9-cis form for MB similarly at 77 K. However, we found an unusual photochemical property 

for MB. The solid blue line in Figure 2a is the difference FTIR spectrum obtained by illuminating 

Batho at >430 nm for MB, which coincides with the spectrum obtained by illuminating Batho at 

>520 nm for MB. This unique property of MB can be easily seen in Figure 2b, where the 9-cis-

specific 1207 cm-1 bands were seen for MRh, MG, and MR, but not for MB. 

 

Y265 is Responsible for the Absence of the 9-cis Form in MB at 77 K.  Animal rhodopsins 

generally exhibit photoequilibria of the 11-cis, all-trans, and 9-cis forms at 77 K.3 In contrast, 

the 9-cis form did not form in MB at 77 K, suggesting a unique chromophore binding pocket in 

MB. Figure 3 compares the 19 amino acids surrounding the retinal chromophore among MB, 

MG, MR, and MRh, based on the structure of bovine rhodopsin.5 It should be noted that W265 

is highly conserved in animal rhodopsins including long (L group) and middle (M group) 

wavelength sensitive color visual pigments.3,4 In contrast, the corresponding residue of W265 is 

tyrosine in short wavelength sensitive color visual pigments (S group). Therefore, in this study, 

we mutated Y265 of MB into tryptophan, and W265 of MRh into tyrosine. 

Figure 4a clearly shows the dependence of illumination wavelength on Y265W MB, where 

dotted (400 nm and >520 nm lights) and solid (400 nm and >430 nm lights) lines differ 

significantly. The double difference spectrum in Figure 4b possesses a positive peak at 1201 cm-

1, which has a different frequency from the 9-cis-specific band at 1207 cm-1 (Figure 3). Therefore, 

this is not a direct indication of the formation of the 9-cis state. Nevertheless, the present results 

clearly indicate a photoequilibrium of the three states, and it is reasonable to consider the 9-cis 
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form as the third state in addition to the 11-cis (unphotolyzed) and all-trans (Batho) states. In 

this case, the peak frequency at 1201 cm-1 suggests that the 9-cis chromophore is not in a relaxed 

conformation. Another possibility is that the third state contains the 11-cis chromophore, whose 

absorption is blue-shifted from the fully relaxed 11-cis form. From the present observation, we 

conclude that the residue at position 265 contributes to the unique property of MB. 

In the case of MRh, the W265Y mutant exhibited similar spectral features to those of the 

wild-type protein (Figure 4a). In fact, a clear positive peak appeared at 1209 cm-1 in the double 

difference spectrum (Figure 4b). No conversion of MRh to the MB-specific property by this 

mutation suggests that the amino acid at position 265 is not the only determinant to produce the 

9-cis form. 

 

No Pigment Formation from 9-cis Retinal and MB Opsin.  The lack of formation of the 9-

cis pigment at 77 K raised another issue, whether pigment could form from 9-cis retinal and MB 

opsin at room temperature. To clarify this, we divided HEK cells expressing MB into two, to 

which either 11-cis or 9-cis retinal was added. Then, the regenerated sample was solubilized by 

1% DDM and illuminated in the presence of 10 mM hydroxylamine. Figure 5 shows the results 

of hydroxylamine bleach for the wild-type proteins of MB (a) and MRh (b), where dotted and 

solid lines represent the results for 11-cis and 9-cis retinal, respectively. When 11-cis retinal 

(dotted lines) was added, MB and MRh formed, and their absorption maxima are located at 430 

and 499 nm, respectively. On the other hand, the 9-cis pigment did not form for MB (a), whereas 

9-cis rhodopsin (isorhodopsin) formed for MRh, whose absorption maximum is located at 485 

nm. The present results imply that the retinal binding pocket of MB does not accommodate 9-

cis retinal, unlike other visual pigments. 

We also applied similar experiments to Y265W MB and W265Y MRh. These results, which 

are shown in Figure 6, were identical to the wild-type. Namely, retinal binding was observed for 

the 11-cis form of MB (dotted line in Figure 6a), and the 11-cis (dotted line in Figure 6b) and 9-
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cis (solid line in Figure 6b) forms of MRh, but not for 9-cis in MB (solid line in Figure 6a). 

Therefore, the Y265W mutation was not sufficient for pigment formation from 9-cis retinal and 

MB. 

 

DISCUSSION 

The retinal binding pocket is unique for visual pigments. In general, 11-cis retinal is not 

thermally stable and easily isomerizes into the all-trans form. On the other hand, 11-cis retinal 

is very stable in animal rhodopsins, indicating that the retinal binding pocket optimally 

accommodates the 11-cis form. Nevertheless, the 11-cis to all-trans photoisomerization takes 

places even at 77 K,23,24 where the protein environment is frozen. This is consistent with ultrafast 

retinal photoisomerization36-40 during which there is no time for the protein environment to 

change its structure. Note that the shapes of 11-cis and all-trans retinals differ, as shown in Figure 

1. Therefore, the mechanism of retinal photoisomerization has been a long-standing issue in the 

study of vision.3,41,42 

It is well known that the retinal binding pocket accommodates the 9-cis form in addition to 

the 11-cis and all-trans forms at 77 K. This is also the case for other visual pigments including 

MR and MG.18 However, the present study clearly demonstrates that the 9-cis form was not 

produced by illuminating 11-cis and all-trans forms in MB. It should be noted that the 9-cis form 

was produced for chicken blue-sensitive pigment at 77 K.28 Whereas chicken blue belongs to the 

M1-group, and chicken violet-sensitive pigment is in the S-group.43 A previous resonance 

Raman study attempted to answer the question “why are blue visual pigments blue?”, in which 

the 9-cis form was produced for the 440-nm absorbing pigment of the toad (Bufo marinus) at 77 

K,44 although this pigment is not in the S-group. Thus we suggest that this property is unique to 

visual pigments in the S-group. 

In the present study, we also showed that 9-cis retinal was not bound to MB opsin, which is 

also in striking contrast to other visual pigments. The lack of pigment formation from 9-cis 
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retinal and human blue opsin was already reported in 1999, even though no data was shown.45 

Therefore, it is likely that the unique retinal binding pocket is common for the S-group. 

Interestingly, it was revealed that 11-cis-locked 6-membered-ring retinal can be bound for human 

blue opsin, but neither for human green nor red opsin.46 These results also emphasize the 

uniqueness of the S-group. 

These unique properties of the S-group originate from the amino acids that surround the 

retinal chromophore. The residues around the retinal chromophore based on the structure of 

bovine rhodopsin are shown in Figure 3, from which Y265 was found to play an important role 

in photoequilibrium at 77 K (Figure 4). A previous study with 11-cis-locked 6-membered-ring 

retinal also concluded that Y265 contributes significantly.46 The crystal structures of bovine 

rhodopsin5 and 9-cis rhodopsin47 in Figure 7 depict the unique position of W265, which is located 

at the bending region of the retinal chromophore. While the important role of position 265 is not 

in doubt, the present study also elucidated the contributions of positions other than position 265. 

Further experimental and theoretical studies are needed to clarify the unique chromophore-

protein interaction in the S-group. 
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FIGURE LEGENDS 

Figure 1: 

Schematic drawing of the photoequilibria in MR, MG, MB, and MRh. The unphotolyzed state 

contains the 11-cis form, while illumination leads to photoequilibria mainly containing the all-

trans form (Batho-intermediate) or the 9-cis form. Illumination wavelengths were established 

for MR MG, and MRh. On the other hand, photoequilibria were only investigated between the 

11-cis and all-trans forms for MB.22 

 

Figure 2: 

(a) Light-minus-dark difference FTIR spectra in the 1300-1100 cm-1 region for MB, MRh, MG, 

and MR at 77 K. Dotted lines were obtained by the repeated illuminations of 400 nm and >520 

nm lights for MB (blue line), 501 nm and >610 nm lights for MRh (black line) and MG (green 

line), and 543 nm and >660 nm lights for MR (red line). Solid lines were obtained by the repeated 

illuminations of 400 nm and >430 nm lights for MB (blue line), 501 nm and >540 nm lights for 

MRh (black line) and MG (green line), and 543 nm and >580 nm lights for MR (red line). In the 

case of MRh, MG, and MR, dotted and solid lines correspond to the all-trans minus 11-cis, and 

all-trans minus 9-cis difference spectra, respectively. (b) Double difference spectra in (a), where 

the solid line was subtracted from the dotted line. In the case of MRh, MG, and MR, this 

corresponds to the 9-cis minus 11-cis difference spectra. 

 

Figure 3: 

The amino acid residues surrounding the retinal chromophore in bovine rhodopsin (<4 A, PDB: 

1U19),5 and the corresponding residues in MB, MG, MR and monkey rhodopsin. 

 

Figure 4: 
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(a) Light-minus-dark difference FTIR spectra in the 1300-1100 cm-1 region for MB, Y265W MB, 

W265Y MRh, and MRh at 77 K. Repeated illumination conditions for dotted lines are 400 nm 

and >520 nm lights for MB and Y265W MB (blue line), and 501 nm and >610 nm lights for 

W265Y MRh and MRh (black line). Repeated illumination conditions for solid lines are 400 nm 

and >430 nm lights for MB and Y265W MB (blue line), and 501 nm and >540 nm lights for 

W265Y MRh and MRh (black line). (b) Double difference spectra in (a), where the solid line 

was subtracted from the dotted line. 

 

Figure 5: 

Difference UV-visible spectra of MB (blue line) and MRh (black line) by hydroxylamine bleach, 

where positive and negative absorption spectra originate from the unphotolyzed state and retinal 

oxime, respectively. Dotted and solid lines represent the results for 11-cis and 9-cis retinal, 

respectively. The DDM (final conc.: 1%)-solubilized proteins in the presence of 10 mM 

hydroxylamine were kept for 30 min in the dark at 4°C, and then illuminated with >400 nm (MB) 

or >480 nm (MRh) light for 1.5 min. 

 

Figure 6: 

Difference UV-visible spectra of the mutant of position 265 for MB (Y265W MB; blue line) and 

MRh (W265Y MRh; black line) by hydroxylamine bleach, where positive and negative 

absorption spectra originate from the unphotolyzed state and retinal oxime, respectively. Dotted 

and solid lines represent the results for 11-cis and 9-cis retinal, respectively. The DDM (final 

conc.: 1%)-solubilized proteins in the presence of 10 mM hydroxylamine were kept for 30 min 

in the dark at 4°C, and then illuminated with >400 nm (Y265W MB) or >460 nm (W265Y MRh) 

light for 1.5 min. 

 

Figure 7: 
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Structure of the chromophore and W265 in bovine rhodopsin containing 11-cis retinal (green; 

PDB: 1U19),5 and 9-cis retinal (red; PDB: 2PED). 
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