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Summary: Sleep plays a critical role in memory consolidation, although the exact mechanisms 

mediating this process are unknown. Combining computational and in vivo experimental 

approaches, we test the hypothesis that reduced cholinergic input to the hippocampus during 

non-rapid eye movement (NREM) sleep generates stable spike timing relationships between 

neurons. We find that the order of firing among neurons during a period of NREM sleep reflects 

their relative firing rates during prior wake, and changes as a function of prior learning. We show 

that learning-dependent pattern formation (e.g. “replay”) in the hippocampus during NREM, 

together with spike timing dependent plasticity (STDP), restructures network activity in a manner 

similar to that observed in brain circuits across periods of sleep. This suggests that sleep actively 

promotes memory consolidation by switching the network from rate-based to firing phase-based 

information encoding.  
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Introduction: 

How the brain binds various sensory features of events into a neural representation for 

memory storage is a long-standing question in neuroscience. Available data suggest that initial 

memory encoding is driven by increases in activity (rate coding) among a specific population of 

neurons, often referred to as “engram neurons” [1-4]. Over time, these mnemonic representations 

are incorporated into more widely distributed networks in a process referred to as systems 

memory consolidation [5]. Recent data suggest that engrams are initially formed from 

heterogeneous neuronal populations with log-normal distributions of firing rates ranging over 

several orders of magnitude [6, 7]. This heterogeneity may reflect populations encoding different 

aspects of experience [7-9], which likely exhibit different dynamics during memory consolidation. 

A critical unanswered question is how these heterogeneous populations, distributed across the 

brain over vast synaptic distances, cooperate in the process of long-term memory storage. 

Rate coding alone has limitations for long-term information storage in vivo. First, individual 

neurons have widely divergent baseline firing rates. This firing rate heterogeneity constitutes 

background “noise”, which could easily obscure firing rate changes in sparse populations of 

“signal” encoding neurons. Second, because individual neurons have a limited dynamic range 

over which their firing rates vary, rate coding has a limited capacity for integration over time. In 

other words, neurons’ peak firing rates would represent a ceiling, after which no additional 

information could be carried based on rate-coding alone. Third, changes in firing rate will alter 

spike timing-dependent plasticity (STDP) rules governing synaptic strengthening or weakening 

[10]. As neurons increase their firing rates, STDP will be either reduced overall (due to differences 

in firing rates between pre- and postsynaptic neurons), or biased toward potentiation [11]. Thus, 

the information-carrying capacity of STDP for the network is limited by firing rate increases. When 

these factors are taken together, it is clear that non-rate-based coding mechanisms must be 

invoked for long-term information storage (i.e., memory consolidation) in a heterogeneous 

neuronal network. 
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Oscillatory patterning of neuronal firing during sleep has been implicated in promoting 

synaptic plasticity and memory storage [12-19]. Network oscillations present in brain circuits 

during sleep have been implicated in promoting STDP by precisely timing the firing between pairs 

of neurons [14, 15]. Hypothetically, the transition to oscillatory dynamics between wake and sleep 

could constitute a switch between rate coding (useful during learning) and phase coding (which 

may promote consolidation). For the reasons outlined above, this switch from rate to phase coding 

(i.e. when neurons’ respective phase of firing on each cycle conveys the information about the 

network patterning) is essential for long-term information storage in brain networks. 

Here, we combine computational modeling of a highly reduced CA1 hippocampal network 

with analyses of in vivo recordings from CA1 to investigate how hippocampal network structure 

and dynamics are affected during contextual fear memory (CFM) consolidation following single-

trial contextual fear conditioning (CFC) [20]. CFM consolidation relies on ad lib sleep in the hours 

immediately following CFC [17, 21] – a process associated with enhanced delta- (0.5-4 Hz), theta- 

(4-12 Hz), and ripple-frequency (150-200 Hz) hippocampal activity in the hours following learning 

[22]. Recent in vivo work has shown CFM consolidation is disrupted when these oscillations are 

suppressed during post-CFC sleep deprivation [16, 17, 22]. Conversely, CFM can be rescued 

from disruption caused by experimental sleep deprivation when oscillations are driven 

optogenetically (via rhythmic activation of fast-spiking interneurons) in CA1 [17].  

We show that regulation of resonance properties in the CA1 network model, implemented 

via changes in acetylcholine (ACh) signaling analogous to those occurring in NREM sleep, 

recreates a number of experimentally-observed phenomena. Within the model network, memory 

consolidation is state-dependent (occurring in a state analogous to NREM sleep), associated with 

augmented post-learning network oscillations and stabilization of functional communication 

between neurons, and blocked by suppression of inhibitory interneuron activity. Memory storage 

is associated with a switch between rate coding (during a wake-like state) and phase coding 

(during a NREM-like state) in the network. NREM phase coding drives STDP between network 
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neurons which causes dramatic, differential changes in the strength of reciprocal connections 

between highly active vs. sparsely firing neuronal populations. These changes lead to differential 

changes in firing rate in the two populations – a finding consistent with experimental data from 

the CA1.  

Together, our results show that successful memory consolidation requires the brain to 

switch between information coding schemes – a transition which occurs naturally through the 

sleep-wake cycle. Through this switch, functional network structures associated with engrams 

become more stable and robust for long-term information storage.  

 

Results: 

Introducing a memory to the hippocampal network augments oscillatory dynamics and 

stabilizes functional connectivity patterns. 

We used hippocampal area CA1 following single-trial contextual fear conditioning (CFC) 

[23, 24] as a model system to investigate how network changes during memory encoding affects 

subsequent network dynamics. We analyzed both in vivo recordings and in silico model network 

recordings of CA1 neurons to determine how functional network dynamics were affected by de 

novo memory formation [20, 22].  

To investigate mechanisms involved in sleep-dependent aspects of memory 

consolidation, we simulated a reduced CA1 network model composed of excitatory principal 

neurons and inhibitory interneurons. For cells in the model, we used a conductance-based 

formalism (see Methods) incorporating a slow-varying potassium current which acts as a control 

parameter for neural spiking dynamics [25]. In the brain, this conductance is regulated by 

muscarinic ACh receptors [26]. During wake, high ACh blocks this current in excitatory neurons, 

which increases firing frequency responses to excitatory input and decreases firing synchrony 

with rhythmic input (i.e., type 1 excitability). Thus, during wake, neurons behave as integrators to 

the incoming stimuli, responding to changes in input by modulating their firing frequency. Low 
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ACh during NREM sleep allows slow potassium current to play a larger role in membrane 

excitability, leading to spike frequency adaptation, reduced spike frequency response gain, and 

increased synchronization capacity (i.e., type 2 excitability) [25]. In this case, the neurons tend to 

spike with similar frequency across wider range of inputs, and lock to intrinsic or extrinsic 

oscillatory drive, especially if the oscillatory drive occurs at a resonant frequency.  

In our model, sleep/wake dynamics are mimicked by switching excitatory neurons from 

type 2 membrane excitability (NREM sleep) to type 1 excitability (wake), resulting in neuronal 

excitability change from integrator type response during wake, into resonator type response 

during NREM sleep. Since the muscarinic response of interneurons to ACh is complex and 

heterogeneous [27, 28], we set inhibitory interneurons in the model to exhibit consistent type 1 

dynamics (although permitting type 2 dynamics in interneurons yielded similar results).  

Within the model we divided information storage into two phases. In the first, activation of 

engram neurons by external input results in strengthening of connections between them — a 

process we refer to as “learning” hereafter. In the second phase, off-line network reorganization 

is driven by STDP in a NREM-like state — which we refer to as “memory consolidation”. Within 

this framework, we first investigated how strengthening excitatory synaptic connections between 

a limited subset of neurons, an event analogous to initial learning, affects network activity patterns 

during subsequent sleep.  

Comparing raster plots (Figure 1A-B top) and simulated local field potentials (LFPs; 

Figure 1A-B bottom) for the network when excitatory neurons exhibit type 2 (NREM) dynamics, 

before vs. after introduction of learning, reveals the emergence of well-defined oscillations (which 

are evident in periodic firing patterns of both excitatory and inhibitory neurons in the network). 

Learning also lead to an increase in network-wide low frequency spectral power (Figure 1C), 

consistent with previous in vivo work [17, 22] (effects of CFC on CA1 LFP activity during NREM 

sleep are shown in Figure 1D). We hypothesized that this enhancement of coherent network 
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oscillations (which has been widely reported in both human subjects and animal models following 

learning [15]) could drive STDP-based information storage in the network. 

 

 

 

 

 

  

Figure 1: Model networks respond to sparse strengthening of excitatiory synapses through 
emergance of low-frequency rhythms and phase-locking. A-B) SIMULATED DATA: Raster plots 

(top) and cumulative signal (bottom) generated by inibitory (blue), and excitatory (black) neurons in a 

NREM-like (low-Ach) state before (A) and after (B) learning (i.e. 20 fold strengthening of synapses 

between pairs of excitatory engram neurons). Rasters in black and blue (below and above the red, 

dashed line) are excitatory and inhibitory neurons, respectively. C) Fourier transform of the excitatory 

network signal reveals an increase in spectral power at low frequencies; black line marks baseline; red 
line – spectral power after synaptic strenghtening. D) EXPERIMENTAL DATA: Fourier transform of CA1 

LFP recordings during NREM sleep; spectral power is averaged over the first 6 h of baseline recording 

(black) and the first 6 h post-CFC (red). 
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NREM hippocampal network stabilization in vivo predicts successful memory 

consolidation. 

To investigate how the emergent oscillations affects neurons’ firing relationships, we calculated 

the stability of functional connectivity between neurons, using the functional network stability 

metric (FuNS; see Methods) [29]. First, in silico, we simulated networks with differential exposure 

to learning (i.e. strengthening reciprocal excitatory connections among engram neurons as 

described above) and varying between type 1 and type 2 (wake and NREM sleep-like) network 

states. To model effects of post-learning sleep deprivation (SD), excitatory neurons were set to 

type 1 excitability in the presence of an implanted memory. To model interactions between 

learning and subsequent sleep, NREM was mimicked by setting excitatory neurons to type 2 

excitability, in the presence or absence of an engram (Learning and Sham, respectively). When 

the engram was present in networks with type 2 excitability, the network exhibited more stable 

network dynamics over time (Figure 2A). Conversely, type 2 sham networks without an engram 

and type 1 networks with an engram showed no change in stability, even in the context of network 

STDP.  

 To investigate how the magnitude of synaptic strength changes during initial learning 

subsequently affects FuNS and network oscillations during sleep, we measured these two 

quantities as a function of strength of connections between engram neurons. With increasing 

memory strength, we observed a positive linear relationship for increases in both FuNS and 

oscillatory power in the model network (Figure 2B). This suggests that learning in the network 

directly augmented both network oscillations and stabilization of functional connectivity patterns 

in subsequent NREM sleep.  

We next tested how these features are affected during sleep-dependent consolidation of 

CFM in vivo. Mice either underwent single-trial CFC (placement into a novel environmental 

context, followed 2.5 min later by a 2-s, 0.75 mA foot shock; n = 5 mice), sham conditioning 

(placement in a novel context without foot shock; Sham; n = 3 mice), or CFC followed by 6 h of 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.123356doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.123356


9 
 

sleep deprivation (SD; a manipulation known to disrupt fear memory consolidation [17, 21, 30]; n 

= 5 mice). We measured changes in FuNS in these recordings after each manipulation by 

quantifying FuNS on a minute-by-minute basis over the entire pre- and post-training 24-h intervals 

and calculating their respective difference within each animal. Consistent with previous findings 

[20], we observed a significant increase in FuNS over the 24 h following CFC during NREM sleep 

(Figure 2C). In contrast, no change in NREM FuNS was seen in Sham mice or following CFC 

(during recovery NREM sleep, which is insufficient for CFM consolidation) in SD mice.  

Group differences in NREM FuNS were reflected in the behavior of the mice 24 h post-

training, when context-specific fear memory was assessed (inset Figure 2D, inset). Mice allowed 

ad lib sleep following CFC showed significantly greater freezing behavior when returned to the 

conditioned context than did Sham or SD mice. Moreover, CFC-induced changes in NREM-

specific FuNS for individual mice predicted context-specific freezing during memory assessment 

24 h later (Figure 2D). Thus, successful consolidation of a behaviorally-accessible memory trace 

in vivo is accompanied by increased NREM FuNS in the CA1 network. 

Together, these results led us to hypothesize that oscillatory patterning could promote 

successful STDP-based consolidation of a hippocampal memory trace. We focus on this 

phenomenon in the following sections. 
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Figure 2: Functional network stability predicts future level of memory consolidation. A) SIMULATED 
DATA: Model predictions for the change in FuNS in each simulation group: Sham (NREM states without 

learning; n = 5) and SD (Wake states with learning; n = 5) show only marginal changes in FuNS whereas CFC 

(NREM states with learning; n = 5) show a maximal increase in FuNS. All error bars represent the standard 
error of the mean. B) SIMULATED DATA: Change in FuNS as a function of the change in spectral power 

density for 4-12 Hz band, for increasing the strength of those selected synaptic connections reveals a linear 

releationship. The color bar represents the magnitude of synaptic strength change from baseline. C) 
EXPERIMENTAL DATA: FuNS analysis of CA1 recordings following CFC or Sham conditioning (Sham 

conditioned — black [n = 3] , CFC + SD — blue [n = 5], CFC + sleep – yellow [n = 5]). Ad lib sleep post 

conditioning leads to the  greatest increase in FuNS. D) EXPERIMENTAL DATA: Change in FuNS for each 

mouse after CFC predicted its memory performance 24 h later (% freezing; raw values shown as inset). Line 

indicates best fit to data with R2 = 0.54.  
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Temporal organization of firing in network oscillations is a predictor of sleep-dependent 

firing rate reorganization. 

A series of recent studies have demonstrated that neuronal firing rates are renormalized 

across a period of sleep, with highly active neurons in a circuit reducing their firing rates, and 

sparsely firing neurons increasing their firing rates [6, 7, 31]. Sleep is essential for these firing rate 

changes, which do not occur across a period of experimental sleep deprivation [7]. We 

hypothesized that this phenomenon results from STDP driven by neurons phase-locking their 

firing to NREM sleep oscillations. Specifically, we predict that neurons that are highly active during 

wake will fire at an earlier phase within an oscillation than neurons with sparser firing. To test this, 

we first calculated phase of firing of every neuron with respect to LFP oscillations in silico (see 

Figure 3A and Methods). Figure 3B illustrates the relationship between model neurons’ phase 

of firing calculated during type 2 dynamics before learning as a function of the normalized 

frequency during type 1 dynamics. We observed that the fastest firing neurons during waking 

(type 1) fire earlier in the phase of the excitatory network oscillation during NREM sleep (type 2). 

This suggests that neurons take on a phase-based, temporal coding strategy during NREM 

network oscillations which reflects differences in firing rate present during wake.  

To investigate whether this phase-locking phenomenon can be observed experimentally, 

we compared in silico and in vivo network dynamics as a function of learning and sleep. We 

developed a metric to measure frequency-dependent phase-of-firing relationships between pairs 

of CA1 neurons by quantifying their spike timing asymmetry within bursts of activity (for a full 

description, see Methods). Briefly, in CFC and Sham hippocampal recordings, we first detected 

network bursts of firing across CA1 during NREM sleep. Within these bursts, we calculated the 

frequency dependent spiking asymmetry between neurons – i.e. whether, statistically, neurons 

which fire faster during wake also lead spiking during NREM sleep. For each recording, we 

defined an asymmetry matrix A, an 𝑁 × 𝑁 matrix whose rows and columns were ordered by the 

relative firing rate of neurons during wake (Figure 3C).  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.123356doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.123356


12 
 

 

Figure 3: Mapping relative spiking frequency during wake onto phase relationships during NREM sleep. A) 
SIMULATED DATA: Calculation of mean phase of spiking relative to oscillatory signal exhibited by inhibitory 

population; peaks in the inhibitory signal are used as the starting points of the phase calculation. B) SIMULATED 
DATA: Normalized phase of firing in NREM versus normalized wake frequency of excitatory neurons reveals that 

the neurons firing with the highest frequency align with an earlier phase of the excitatory network population 

whereas slower firing neurons align with later phases. C-F) Analysis of NREM spiking asymmetry reveals enhanced 

wake frequency dependent temporal relationships between firing neurons after CFC. C) SIMULATED DATA AND 
EXPERIMENTS: Formation of pairwise spiking asymmetry matrix, A. Example: recorded activity from 
representative CFC mouse during NREM; rows and columns have been arranged by wake frequency; color denotes 

pairwise spiking asymmetry as defined in the methods section. D) SIMULATED DATA: Weighted average of 

differences in distributions (see inset for a representative example scenario; black—baseline, red—post) of pairwise 

Z-scores for models with type 2 dynamics and learning(yellow) and for models with type 2 dynamics and no learning 

(black). E) EXPERIMENTAL DATA: Weighted average of differences in distributions (see inset for example of 

representative mouse; black—baseline, red—post) of pairwise Z-scores for CFC mice (yellow) and Sham mice 

(black).  F) EXPERIMENTAL DATA: significance (Z-score) of global NREM network asymmetry vs that of global 

wake asymmetry calculated for individual CFC (yellow) and sham (black) mice. Strong asymmetry is observed in 

NREM sleep but not in wake. Red dashed lines in (D, E) represent the significance cutoff of  |𝑍| ≥ 2. 
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We determined the significance, 𝑍'(, of asymmetry for every pair, 𝐴'(, and compared the 

normalized histograms of 𝑍'( (see representative examples from simulated data, Figure 3D inset) 

when learning was implemented in the model (i.e. an initial engram was present, Figure 1B) and 

when it was not (Figure 1A). Figure 3D shows the differences between baseline and post-

learning distributions of these two cases, showing that distributions after learning are more 

skewed (with respect to baseline) towards positive Z values than in a non-learning condition 

(Figure 3D). We compared these results to the asymmetry significance distributions observed 

during NREM for CA1 recordings from experimental CFC and Sham groups, and found similar 

results (Figure 3E; inset shows representative distributions before and after CFC for a 

representative mouse). These results show that consolidation after learning significantly 

increases the number of neuron pairs with consistently asymmetric firing patterns during NREM. 

This indicates the presence of a phase-coding mechanism during NREM sleep, which is sensitive 

to network changes caused by prior learning.  

Finally, to further confirm that the shift in pairwise Z-score distributions is not simply a 

reflection of frequency differences between the spiking neurons in NREM, we measured global 

asymmetry across the network during NREM as a function of firing frequency during wake, for 

every animal separately. To do this we calculated a mean asymmetry score by subtracting the 

mean asymmetry of the upper triangle and lower triangle of the asymmetry matrix (Figure 3C). 

We then subjected the result to bootstrapping to estimate its significance. We reversed the 

calculation and repeated the asymmetry calculation for bursts detected during wake, as a function 

of firing frequency during NREM. These results are depicted in Figure 3F, where we plot the 

significance of the of the NREM asymmetry vs. wake asymmetry. We observe that following CFC 

(but not Sham conditioning), all animals have higher significances for NREM asymmetry as 

compared to wake asymmetry. 
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Based on this relationship, we hypothesized that due to these firing phase differences, 

STDP during NREM would cause: 1) excitatory connections from high-firing to low-firing neurons 

to be strengthened, and 2) connections from low-firing to high-firing neurons to be weakened.  

 

Network oscillations promote temporal coding during NREM sleep.   

We hypothesize that network oscillations which are naturally augmented during post-

learning NREM sleep play a vital role in driving memory consolidation, via STDP. To test this, we 

next investigated how disruptions of network oscillations affect phase-coding mechanisms. To 

this end, we prevented inhibitory neurons from firing in the simulated network after learning. 

Compared to oscillating firing patterns of type 2 networks following learning in the unperturbed 

condition (Figure 4A), this manipulation reduced the oscillatory patterning of excitatory neurons 

in the network (Figure 4B). We compared the effect that this disruption has on post-learning 

spiking asymmetry (Figure 4C). The unperturbed model exhibited stronger positive, significant 

spiking asymmetry among firing patterns as compared to the one with blocked inhibitory neurons, 

indicating that oscillations are vital for phase-coding. We also analyzed the spiking asymmetry of 

CA1 recordings from mice expressing the inhibitory DREADD (Designer Receptor Exclusively 

Activated by Designer Drugs) hM4Di in parvalbumin-expressing (PV+) interneurons. These mice 

were treated with either a vehicle (DMSO) or the hM4Di activator clozapine-N-oxide (CNO, to 

activate hM4Di and suppress PV+ interneuron activity) immediately following CFC. Previous work 

has shown that CA1 network-wide oscillations and CFM consolidation are disrupted in these mice 

when CNO is administered after CFC [17, 22]. We found that disruption of PV+ interneuron activity 

with CNO reduced firing rate-associated spiking asymmetries during post-CFC NREM sleep 

network bursts relative to DMSO-treated mice, which have normal CA1 oscillations and CFM 

consolidation (Figure 4D). Thus, for both network models in a type 2 regime and the CA1 network 

during NREM sleep in vivo, disruption of oscillations driven by interneurons impairs temporal 

coding. 
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Frequency-dependent NREM firing asymmetry effects network reorganization through 

STDP. 

We next examined whether firing rate reorganization occurs during NREM sleep via STDP 

in the context of firing asymmetries. In our network model, we compared firing rate reorganization 

between type 2 excitatory networks with and without firing in inhibitory neurons, when synaptic 

Figure 4: Disruptions to network oscillations lead to diminished temporal relationships between firing 

neurons.  A, B) SIMULATED DATA: Simulated raster-plots; A) NREM dynamics with learning and before 

consolidation - full network, and B) the same but excitatory cells only with blocked inhibitory cell activity. C) 

Weighted sum of differences in model asymmetry significance distributions after consolidation (unperturbed 

model in (A) minus model without inhibition in (B)). D) EXPERIMENTAL DATA: Difference in experimental 

asymmetry significance distributions for CA1 recordings for mice expressing the inhibitory DREADD hM4Di in 

PV+ interneurons, treated with either DMSO (analogous to the full model network) or CNO (reduced network 

inhibition). 
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strength was allowed to evolve over time using an STDP-like plasticity rule. We examined the 

changes in wake neuronal firing frequencies after an interval in these two scenarios. In the model 

with normal inhibitory neuron firing, STDP-based synaptic changes in a type 2 (NREM) regime 

led to a simultaneous increase in the firing rates of principal neurons with the lowest baseline 

activity and decrease in the firing rates for the most active neurons (Figure 5A). We color-coded 

neurons based on their relative change in frequency across sleep. As shown in Figure 5A (inset), 

neurons which fire faster (vs. slower) at baseline also fire earlier (vs. later) in the oscillation during 

type 2 dynamics (consistent with Figure 3), and experience a decrease (vs. increase) in firing 

rate due to STDP. Some neurons did not fire during NREM and so did not show a firing frequency 

change due to STDP (black points in Figure 5A). Disruption of network oscillations via inhibitory 

neuron silencing disrupted the relationship between firing rate changes across the type 2 regime 

and baseline firing rates for principal neurons (Figure 5B). We compared these results with data 

recorded from the hippocampus of mice with and without DREADD-mediated disruption of PV+ 

interneuron activity [17, 22]. We measured changes in firing frequency across a six-hour time 

interval at the start of the rest phase (i.e., starting at lights on), either at baseline (i.e., the day 

before CFC) or in the hours following CFC. Firing rate changes for each neuron were calculated 

for mice treated with either DMSO or CNO as a function of their baseline firing rate. The resulting 

best-fit lines reveal that while CA1 neurons show a relatively low degree of firing rate 

reorganization across baseline rest, following CFC reorganization is more dramatic. The greatest 

degree of reorganization is seen after CFC in the control (DMSO) condition, with less-dramatic 

firing rate changes seen in mice with disrupted CA1 PV+ interneuron activity (CNO) (Figure 5C).  

Comparing the slopes of firing rate vs. firing rate change relationships (Figure 5D) for 

post-CFC recordings, we found significantly weaker reorganization of firing rates in CNO-treated 

mice relative to DMSO-treated mice. This reorganization of firing rates across the network is an 

important prediction of the model, as it suggests a possible universal network-level correlate of 

sleep-based memory consolidation in vivo. 
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Figure 5: Memory consolidation during sleep differentially affects frequency of firing neurons – model 
prediction and experiment. SIMULATED DATA: A) Changes in individual neurons’ firing frequency (normalized to 

baseline) across post-learning NREM sleep as a function of normalized baseline firing frequency (top). Conditions 

comparable to Figure 4A. Inset: Snapshot of the corresponding raster plot in NREM sleep at the onset of 

consolidation. Neurons are color-coded based on their change in frequency from baseline and the color is conserved 

in the raster plot. Black data points (top) are for neurons which did not fire during NREM sleep. Of the neurons that 

are consistently active, those with initially lower frequency increase their frequency whereas neurons with initially 

higher frequency decrease their frequency. B) Change in firing frequency (normalized to baseline) as a function of 
normalized baseline firing frequency in the absence of inhibition. Conditions comparable to Figure 4B. Unlike the 

full-network condition (with inhibition), firing frequency changes homogenously across baseline firing rates. 

EXPERIMENTAL DATA: C) Best fit lines of the change in log firing rates vs the initial log firing rate, comparing 

baseline recordings (solid lines; composite n = 11) to post recordings (dashed lines) for the first 6 hours post CFC 

for mice expressing the inhibitory DREADD hM4Di in PV+ interneurons, treated with either DMSO (Yellow; n = 3; 

analogous to the full model network) or CNO (Teal; n = 3; analogous to reduced network inhibition), and wild type 

mice with post-CFC SD (Blue; n = 5). D) Slope comparison of change in log firing rates for DMSO, CNO, and SD 

baseline and post-CFC recordings. Analysis of covariation revealed statistically significant slope differences between 
DMSO and CNO (*, p = 0.0114), and DMSO and Baseline (**, p < 0.0001). 
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Discussion: 

Sleep is vital for successful memory consolidation across organisms and different types of 

memories (e.g., those mediated by network activity in hippocampus vs. sensory cortex [15]). 

Similarly, recent experimental advances have shown that oscillatory dynamics in neural circuits 

play a vital role in memory consolidation [22, 32, 33]. Here, we argue that temporal organization 

of neuronal firing by network oscillations expressed during NREM sleep promotes feed-forward 

synaptic plasticity (i.e., STDP) from highly active neurons to less active ones. This process in turn 

promotes recruitment of additional neurons into the engram – the “systems consolidation” 

underlying long-term memory storage. 

Our model demonstrates that the initial encoding of memories in a network (e.g. in the 

CA1 network during CFC) augments low frequency network oscillations (Figure 1, 2D). The 

augmentation of these oscillations occurs in a NREM sleep-like, low-ACh, type 2 network state. 

In this state, neurons are less responsive to input (i.e. the input-frequency curve flattens [14]), 

and they exhibit higher propensity to synchronize to periodic input (i.e., network oscillations). This 

locking to network oscillations leads to more stable firing relationships between neurons. We 

observe this increase in stability (i.e. increase in FuNS) both in our hippocampal network model 

after introduction of a synaptically-encoded memory, and in the mouse hippocampus in vivo 

following single-trial CFC (Figure 2).  

Our prior work has shown that sleep-associated FuNS changes recorded in the CA1 

network following CFC is a salient feature of network-wide dynamics that accompanies successful 

memory consolidation (Figures 2-5) [7, 17, 20, 22]. We find that increased FuNS is associated 

with stronger low-frequency oscillatory patterning of the network, and predicts which experimental 

conditions will support, disrupt, or rescue fear memory consolidation (Figure 2C). This increased 

stability in turn mediates mapping between firing rates during wake and relative phase-of-firing 

during NREM sleep (Figure 3A, B) – such that firing of neurons with higher baseline firing 

frequency leads those with lower baseline firing frequency. We showed that this frequency/timing 
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relationship is also detected in experimental data from CA1 during NREM sleep (Figure 3C, E, 

F). Moreover, when network oscillations are abolished by inhibitory neuron activity (Figure 4) the 

frequency/timing relationship is disrupted, indicating that oscillations do play central role in this 

process. 

Finally, when synaptic strength in the model is allowed to evolve through STDP, we 

observe reorganization of firing rates across NREM sleep - with sparsely firing neurons increasing 

their firing rate substantially, and highly active neurons decreasing their firing rate. These results 

are also observed in CA1 during sleep-dependent CFM consolidation (Figure 5). We again 

observed a disruption of these effects when the oscillatory network activity is reduced via 

manipulations of interneurons. Similar sleep-associated firing rate changes have been reported 

in neurons recorded from various neural circuits [6, 7, 34]. 

Taken together, our results suggest a universal mesoscopic network mechanism 

underlying what is commonly referred to as systems memory consolidation. They also provide 

support for the hypothesis that while the brain may use a firing rate-based code during waking 

experience, firing phase-based information coding in the context of network oscillations in sleep 

could play an instructive role for memory storage. This mechanism would mitigate the 

aforementioned limitations of rate-based information coding in the brain.  

While the present study is focused on varying parameters of computational models to 

predict data from the CA1 network during CFM consolidation, we believe that the mechanisms 

outlined here may be universally true. For example, sleep, and sleep-associated network 

oscillations, are required for consolidation of experience-dependent sensory plasticity in the visual 

cortex [18, 33, 35], and disruption of other hippocampal oscillations during sleep disrupts 

consolidation of other forms of memory [12]. Moreover, similar frequency-dependent changes in 

neuronal firing rates are also observed across periods of sleep in the visual cortex [7] and frontal 

cortex [6]. Based on these and other recent data linking network oscillations in sleep to many 

forms of memory consolidation, this suggests a unifying principle for sleep effects on cognitive 
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function, and one that could reconcile discrepant findings on how sleep affects synaptic strength 

[15]. It also provides an expanded and possibly alternative explanation of the role of sleep in 

memory management than what is often proposed [36]. Here we show that NREM sleep facilitates 

both increases and decreases in neuronal firing rates in the context of network reorganization, 

while at the same time recruiting heterogeneous neuronal populations during systems memory 

consolidation.  
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STAR Methods: 

Lead Contact and Materials Availability: 

Further information and requests for data or code should be directed to, and will be fulfilled by, 

the Lead Contact, Michal Zochowski (michalz@umich.edu). 

 

Experimental Model and Subject Details: 

Hippocampal recordings, fear conditioning, and sleep deprivation  

All procedures were approved by the University of Michigan Animal Care and Use 

Committee. Male C57BL/6J mice between 2 and 6 months were implanted using methods 

described previously [35, 37]. Recording implants (described in more detail in [20]) consisted of 

custom built driveable headstages with two bundles of stereotrodes implanted in bilateral CA1 

and three EMG electrodes to monitor nuchal muscle activity. The signals from the stereotrodes 

were split into local field potential (0.5-200 Hz) and spike data (200 Hz-8 kHz).  

Following post-operative recovery, mice either underwent CFC (placement into a novel 

environmental context, followed 2.5 min later by a 2-s, 0.75 mA foot shock; n = 5 mice), Sham 

conditioning (placement in a novel context without foot shock; Sham; n = 3 mice), or CFC followed 

by 6 h of sleep deprivation by gentle handling (a manipulation known to disrupt fear memory 

consolidation [17, 20, 21, 30] ; SD; n = 5 mice). Spike data from individual neurons was 

discriminated offline using standard methods (consistent waveform shape and amplitude on the 

two stereotrode wires, relative cluster position of spike waveforms in principle component space, 

ISI ≥ 1 ms) [7, 17, 20, 22, 33]. Only neurons that were stably recorded and reliably discriminated 

throughout the entire baseline and post-conditioning period were included in subsequent analyses 

of network dynamics. 

 24 h following CFC or Sham conditioning, freezing behavior upon return to the conditioning 

context was measured to evaluate CFM.  
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Pharmacogenetic inhibition of interneurons 

2-3-month-old male Pvalb-IRES-CRE mice were bilaterally injected with either the 

inhibitory receptor hM4Di (rAAV2/Ef1A-DIo-hM4Di-mCherry; UNC Vector Core: Lot #AV4,708) or 

a control mCherry reporter (raav2/Ef1A-DIo-mCherry; UNC Vector Core: Lot #AV4375FA) 

(methods further elaborated in [17]). Using the same implant procedures described above, the 

animals were implanted with stereotrode bundles.  

After allowing 4 weeks for viral expression, the animals underwent contextual fear 

conditioning (as described above). Post-shock, mice were either given an i.p. injection of either 

0.3 mg/kg clozapine-N-oxide (CNO) dissolved in DMSO (to activate the DREADD) or DMSO 

alone (as a control) [22]. 

 

Methods Details: 

Mixed excitatory-inhibitory conductance-based neuronal networks 

 Conductance-based neuronal networks containing both excitatory and inhibitory neurons 

were modeled using a modified Hodgkin-Huxley formalism [25, 38]. The time-dependent voltage 

𝑉' of a single neuron is given by 

𝐶,
𝑑
𝑑𝑡
𝑉' = −𝐼23 − 𝐼4 − 𝐼45 − 𝐼6738 + 𝐼7:; − 𝐼<=>3?;'@  

where 𝐶, is the membrane capacitance, 𝐼7:;  is the fixed external input used to elicit spiking, 

𝐼6738 = 0.02(𝑉' + 60) is the leakage current, and 𝐼<=>3?;'@ = F∑ 𝑔IJK(∈I:@';3;MN= 𝑆'(PF𝑉' −

𝑉I:@';3;MN=P +	F∑ 𝑔RJK(∈R>S'T';MN= 𝑆'(PF𝑉' − 𝑉R>S'T';MN=P is the total summed synaptic input received 

by a neuron from its pre-synaptic partners and 𝑔RJK and 𝑔IJK represent the synaptic conductance 

for connections from inhibitory and excitatory neurons to their post synaptic targets X (values 

provided below). The synaptic reversal potentials are 𝑉I:@';3;MN= = 0	𝑚𝑉 and 𝑉R>S'T';MN= =

−75	𝑚𝑉. Here, 𝑆'( = 𝑒𝑥𝑝 [−
∆;]^

5_`

a5
b − 𝑒𝑥𝑝 [−

∆;]^
5_`

ac
b represents the shape of the synaptic current, 
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given the difference in spike timing between the post-synaptic neuron 𝑖 and the recently fired pre-

synaptic neuron 𝑗, (∆𝑡('
f?8), with  𝜏h = 5	𝑚𝑠 and 𝜏f = 250	𝑚𝑠 or 𝜏f = 30	𝑚𝑠 for excitatory synaptic 

currents and inhibitory synaptic currents, respectively.  

 The ionic currents are 𝐼23, 𝐼4, 𝑎𝑛𝑑	𝐼45, representing sodium (Na), potassium (K), and 

muscarinic slow potassium (Ks), respectively. More specifically: 𝐼23 =	𝑔23𝑚n
o ℎ(𝑉' − 𝑉23), with 

𝑚n = (1 + 𝑒𝑥𝑝 rJs^Jot
u.v

w)Jx being the activation of the channel and where ℎ, the inactivation, is 

given by the solution to y
y;
ℎ = (ℎn − ℎ)/𝜏S, with ℎn = (1 + 𝑒𝑥𝑝 rs^{vo

|
w)Jx and 𝜏S = 0.37 +

2.78(1 + 𝑒𝑥𝑝 rs^{~t.v
�

w)Jx; 𝐼4 = 𝑔4𝑛~(𝑉' − 𝑉4) with y
y;
𝑛 = (𝑛n − 𝑛)/𝜏> where 𝑛n = (1 +

𝑒𝑥𝑝 rJs^Jot
xt

w)Jx and 𝜏> = 0.37 + 1.85(1 + 𝑒𝑥𝑝 rs^{�|
xv

w)Jx; and 𝐼45 = 𝑔4𝑠(𝑉' − 𝑉4) with y
y;
𝑠 = (𝑠n −

𝑠)/75 where 𝑠n = (1 + 𝑒𝑥𝑝 rJs^Jou
v

w)Jx. The reversal potentials are 𝑉23 = 55	𝑚𝑉 and 𝑉4 =

−90	𝑚𝑉 and the maximal conductances are 𝑔23 = 24	 ,<
@,�, 𝑔4 = 3.0	 ,<

@,�. 

The slow potassium conductance 

𝑔45 = �
0	
𝑚𝑆
𝑐𝑚� 								𝑖𝑓	𝐴𝐶ℎ	𝑖𝑠	ℎ𝑖𝑔ℎ	

1.5	
𝑚𝑆
𝑐𝑚� 			𝑖𝑓	𝐴𝐶ℎ	𝑖𝑠	𝑙𝑜𝑤

 

Controls the level of ACh, e.g. during wakefulness (high ACh) or NREM sleep (low ACh). The 

values thus control the excitability type, where low gKs (high ACh) yields Type 1 excitability and 

high gKs (low ACh) yields type 2 excitability. Type 1 excitability is characterized by arbitrarily low 

firing frequencies, high frequency gain as a function of constant input, and a constant advance in 

the phase response curve whereas type 2 has a threshold in firing frequency onset, a shallow 

frequency gain function, and a biphasic phase response curve. See Stiefel,  Gutkin, and 

Sejnowski [25].  

Each simulation was completed using the RK4 integration method with a step size of h = 

0.05 ms. 
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Network properties 

The network used in these studies consists of N=1000 neurons, with 𝑁7 = 800 excitatory 

neurons and 𝑁R = 	200 inhibitory neurons. Connections form a random network with different 

levels of connectivity dependent on the pairwise pre- and post-synaptic neuron identity: Inhibitory 

neurons project to 50% of the inhibitory neurons and 30% to the excitatory neurons whereas 

excitatory neurons project to just 6% of both the inhibitory and excitatory neurons, with self-

connections being forbidden in all cases. The initial synaptic weights are 𝑔RJR = 0.0013	𝑚𝑆/𝑐𝑚2, 

𝑔RJI = 0.0005	𝑚𝑆/𝑐𝑚2, 𝑔IJR = 0.00046 ,<
@,�

, and 𝑔IJI = 0.00003	𝑚𝑆/𝑐𝑚2 in Figures 1 and 2, but 

with 𝑔IJI = 0.00001	𝑚𝑆/𝑐𝑚2 in Figures 3-5. For initial engram formation, reciprocal connections 

among a random subset of 250 excitatory neurons increase their 𝑔IJI conductances, constituting 

the strength of the memory. The effect of the degree of increase in this synaptic strength is 

investigated in Figure 2 and elsewhere is kept at 10x.  

 

Implementing STDP in the network 

Neural correlates of memory are thought to emerge due to the strengthening and 

weakening of synaptic strengths in an activity-based manner. Here, we use a symmetric learning 

rule that uniformly increases or decreases synaptic weights based on the time-ordering of pre- 

and postsynaptic pair firings, only in excitatory-to-excitatory connections. If a presynaptic neuron 

fires before its postsynaptic partner, the conductance increases by an amount  𝜌	𝐸𝑥𝑝 [−
;_��
5_`J;_�5�

5_`

xt
b 

. Similarly, a weakening of synaptic strength occurs by an amount 𝜌	𝐸𝑥𝑝 [−
;_�5�
5_` J;_��

5_`

xt
b when a 

postsynaptic neuron fires before its presynaptic partner. In both cases, if the time difference 

between spike pairs is too great, the change in synaptic strength will approach zero. On the other 

hand, highly coincident spike pairs will have a maximal change given by the learning rate 𝜌 =

10Jo. It should be noted that while the synaptic weight is prohibited from becoming negative, there 
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is no upper-bound set on the synaptic strength, though previous work has shown saturation of 

synaptic weights given sufficient time [14]. 

 

Analysis of functional network structures through AMD and FuNS 

Average Minimal Distance (AMD) [39] was applied to network spiking data to determine 

functional connectivity. AMD calculates the mean value of the smallest temporal difference 

between all spikes in one neuron and all spikes in another neuron. Analytical calculations of the 

expected mean and standard deviation of minimal distance is then used to rapidly determine the 

significance of pairwise minimal distance [29]. Specifically, the first and second raw moments of 

minimal distance for each node are calculated: 𝜇x� =
�
~
 and 𝜇�� =

��

x�
 , where L is the temporal length 

of the interspike interval and we have assumed that (looking both forward and backward in time) 

the maximum temporal distance between spikes is 𝑳
𝟐
. Over the entire recording interval T, the 

probability of observing an inter-spike interval of length L is simply 𝑝(𝐿) =	 �
�
. Then, the first and 

second moments of minimal distance considering the full recording interval are given as 𝜇x =

x
~�
∑ 𝐿��  and 𝜇� =

x
x��

∑ 𝐿o� . Finally, the calculated statistical moments give rise to the expected 

mean and standard deviation, 𝜇 =	 𝜇xand 𝜎 = 	�𝜇� − 𝜇x�, which are used to determine the Z-score 

significance of pairwise connectivity: 𝑍 = 	���^]J�^
�^

. Values of 𝑍'( ≥ 2 represent significant 

functional connections between node pairs. 

Functional Network Stability (FuNS) tracks global changes in network functional 

connectivity by quantifying similarities in AMD matrices over a recording interval. The procedure 

is as follows: first, a recording interval is split into n partitions of equal temporal length. Each 

partition is subjected to AMD functional connectivity analysis, resulting in n functional connectivity 

matrices Z. Similarity between time-adjacent functional networks is determined using the 

normalized dot product after matrix vectorization. FuNS is then determined by taking the mean of 
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these cosine similarities over the recording interval: 𝐹𝑢𝑁𝑆 =	 x
>Jx

∑ � �| �¡¢£
¤| �|¤|| �¡¢||

>Jx
;¥x . Thus, not only 

does FuNS yield insight into how functional connectivity changes over time, it can also shed light 

on how behavior affects the underlying functional network, e.g. by quantifying the difference 

between FuNS calculated before and after a learning task.  

 

Spectral analysis, spike-field coherence, and phase relationships 

Histograms of neuronal spiking per unit time were used to calculate the network 

characteristic frequency, spike-field coherence, and phase relationships of individual neurons to 

the network signal. First, spike timings were converted into binary spike vectors and then summed 

to give a network spike vector. Then, the spike vector was convolved with a Gaussian distribution 

with zero mean and a standard deviation of ~2 ms, giving a continuous network signal. The 

spectral power was measured by taking the Fourier transform of the excitatory, non-engram signal 

(i.e. no neurons with artificially strengthened connections were used; Figure 1). Then, the change 

in spectral power (e.g., in Figure 2) was calculated by integrating the frequency-domain signals 

and taking the relevant percent difference.  

 Finally, phase relationships of excitatory neuronal spiking compared to inhibitory local field 

potentials was calculated (please see Figure 3A). Peaks in the inhibitory signal acted as the start 

and end of a given phase and excitatory spike times were used as place-markers of phase 

between an individual neuron and the signal. The phase of spike occurrence was normalized to 

give values between 0 and 1. 

 

Burst detection 

We analyzed bursts of activity for spiking asymmetry between active neurons. First, recordings of 

a given interval of length L were segmented into smaller windows of length x (25 ms in CFC, 50 

ms in CNO/DMSO, and 100ms in model simulations; with times chosen to maximize number of 
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pairwise co-activations occurring) with windows overlapping by 12.5 ms to increase the sampling 

of the interval L and to reduce effects of windows onset. Then, the total number of active 

neurons, in each window is determined and used to define a burst-detection threshold: a burst 

occurs if the activity in a window is significantly greater than the mean background activity, 

averaged over all intervals of a given vigilance state. Specifically, if a window 𝒘𝒊 has a 

corresponding number of active neurons 𝒌𝒊, then the set of windows representing bursts over all 

intervals is given as 𝑩	 = {𝒘𝒊|𝒌𝒊 ≥ 𝝁𝒌 + 𝟐𝝈𝒌}, where 𝝁𝒌 and 𝝈𝒌 are the mean and standard 

deviation across all w. 

 

Spiking asymmetry calculation 

Next, the pairwise spiking asymmetry A is calculated across all bursts, where A is an 𝑁 × 𝑁 matrix 

with entries 𝑨,,> > 0 if the spikes of neuron m occur before the spikes of neuron n on average, 

and 𝑨,,> < 0 in the opposite case. The exact value of an entry 𝑨,,> is given as the normalized 

sum of fractional differences between the number of spikes of neuron n occurring after and before 

each spike of neuron m, across all detected bursts B:  

𝑨,,> = [
𝟏

𝑩𝒎,𝒏
b´´

(𝑇>£, − 𝑇>�,)
(𝑇>£, + 𝑇>�,)	

, 

Where 𝑇>£, represents the number of spikes of neuron n occurring after a given spike of neuron 

m, the inner sum is over the number of spikes of neuron m within a given burst, the outer sum is 

over all bursts, and the normalization factor is the total number of bursts where neurons n and m 

are coactive.  

 

Relating spiking asymmetry to phase coding of activation frequency 

The rows and columns of A are sorted by neuron spiking rate measured within a given vigilance 

state (i.e. wake or NREM). After sorting, spiking asymmetry of slow firing rate neurons compared 

to high firing rate neurons will (a) compose the lower triangular matrix of A and (b) will be more 
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positive than the upper triangular matrix of A if faster firing neurons lead slower firing neurons. 

We thus compared each pairwise entry of 𝐴,,> in the lower triangular matrix with its reciprocal 

𝐴>,, in the upper triangular, 

𝐴¶,,> = 𝐴,,> − 𝐴>,,. 

If 𝐴¶,,> > 0, then the faster firing neuron leads the slower firing neuron on average.  

We next determined the significance of each 𝐴¶,,> by randomizing the timing of each 

neuron’s spikes within each burst, 100 times. The value of significance is then given by the Z-

score,  

𝑍F𝐴¶𝒎,𝒏P =
𝐴¶,,> − 𝜇(𝐴¶,,>)N3>yM,'·7y

𝜎(𝐴¶,,>)N3>yM,'·7y
, 

Where 𝜇(𝐴¶,,>)N3>yM,'·7y  and 𝜎(𝐴¶,,>)N3>yM,'·7y  are the mean and standard deviation of the 

randomized distributions and with 𝑍F𝐴¶𝒎,𝒏P ≥ 2 indicating that neuron m leads neuron n in a 

significant way. In all, we obtain a distribution with x
�
𝑁(𝑁 − 1) elements, where N is number of 

detected neurons. 

Finally, we compare the changes distributions of 𝑍F𝐴¶𝒎,𝒏P for the investigated cases 

(Figure 3 and Figure 4). A positive difference at 𝑍F𝐴¶𝒎,𝒏P ≥ 2	indicates an increase in fast firing 

neurons leading slow firing neurons within a burst of activity.  

Alternatively, instead of calculating the individual pairwise differences in asymmetry, 𝐴¶,,>, 

a global assessment of asymmetry is achieved by first averaging all the individual asymmetry 

values below the m=n diagonal (i.e. 〈𝐴,,>〉, where 𝑚 < 𝑛) and subtracting the average value from 

above the m=n diagonal (i.e. 〈𝐴,,>〉, where 𝑚 > 𝑛). Bootstrapping of spike times within bursts can 

then be used to determine significance of this difference, with positive values greater than or equal 

to a value of 2 indicating a significant global increase in fast firing neurons leading slow firing 

neurons within the network (Figure 3F).  
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