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Abstract 22	

 23	

Human white matter is remarkably plastic. Yet it is challenging to infer the biological 24	

underpinnings of this plasticity using non-invasive measurements like diffusion MRI. Here 25	

we capitalize on metrics derived from diffusion kurtosis imaging (DKI) to interpret 26	

previously reported changes in mean diffusivity throughout the white matter during an 8-27	

week, intensive reading intervention. We then use an independent quantitative MRI 28	

measurement of R1 (1/T1 relaxation time) in the same white matter regions; since R1 29	

closely tracks variation in myelin content, it provides complementary information about 30	

white matter microstructure. Behavioral measures, multi-shell diffusion MRI data, and 31	

quantitative T1 data were collected at regular intervals during the intervention in a group 32	

of 33 children with reading difficulties (7-12 years old), and over the same period in an 33	

age-matched non-intervention control group. Changes in DKI parameters modeled over the 34	

intervention were consistent with increased hindrance in the extra-axonal space, rather than 35	

a large-scale change in axon density and/or myelination. Supporting this interpretation, 36	

analysis of R1 values did not suggest a change in myelin, although R1 estimates were 37	

correlated with individual differences in reading skill. Together, these results suggest that 38	

large-scale changes in diffusivity observed over a short timescale during an intensive 39	

educational experience are most likely to reflect changes occurring in the extra-axonal 40	

space, in line with recent work highlighting the role of glial cells in experience-dependent 41	

plasticity and learning. 42	

 43	

Keywords: Diffusion MRI; quantitative MRI; white matter modeling; plasticity; reading 44	

45	
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Introduction 46	

 47	

Experience can modify the microstructure of the white matter over remarkably short 48	

timescales (Taubert, Draganski et al. 2010, Blumenfeld-Katzir, Pasternak et al. 2011, 49	

Engvig, Fjell et al. 2012, Hofstetter, Tavor et al. 2013, Mamiya, Richards et al. 2016, Huber 50	

2018). The majority of past work examining white matter plasticity in humans has relied 51	

on diffusion MRI (dMRI) and metrics derived from the diffusion tensor model (DTI; 52	

Basser et al., 1996; Beaulieu 2002), which are sensitive to myriad features of the white 53	

matter, including the number, size and branching of glial cells, the density and caliber of 54	

axons, the abundance of myelin, and the spatial arrangement of fibers within an imaging 55	

voxel (Basser and Pierpaoli 1996, Alexander, Lee et al. 2007, Walhovd, Johansen-Berg et 56	

al. 2014). The diffusion kurtosis model (DKI; Jensen et al., 2005) offers increased 57	

sensitivity to microstructural variation and, potentially, increased specificity, by modeling 58	

variation in the diffusion signal that is not considered by the tensor model (Cheung et al., 59	

2009; Veraart et al., 2010; Steven et al., 2014), although DKI metrics (e.g., mean kurtosis, 60	

MK) are generally no more straightforward to interpret than those derived from DTI (e.g., 61	

mean diffusivity, MD). Thus, a challenge for diffusion MRI studies of white matter 62	

plasticity is to understand the neurobiological underpinnings of the observed changes in 63	

diffusion properties since a variety of distinct mechanisms could account for the data. 64	

 65	

Over the last decade, a host of modeling approaches have been developed to exploit 66	

biologically informed priors in pursuit of a more accurate and interpretable parcellation of 67	

the diffusion signal (Jelescu and Budde 2017, Alexander, Dyrby et al. 2019). For example, 68	
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the recent white matter tract integrity (WMTI) model (Fieremans, Novikov et al. 2010, 69	

Fieremans, Jensen et al. 2011) builds on DKI by defining separable axonal and extra-axonal 70	

contributions to the diffusion signal, which are explicitly modeled to provide metrics such 71	

as axonal water fraction (AWF) and extra-axonal diffusivity. These parameters have 72	

previously been shown to be sensitive to individual differences in white matter as a 73	

function of age (Chang, Owen et al. 2015, Jelescu, Veraart et al. 2015, Genc, Malpas et al. 74	

2017) and cognitive performance (Chung, Fieremans et al. 2018), as well as white matter 75	

pathology (Fieremans, Benitez et al. 2013, Benitez, Fieremans et al. 2014), including de-76	

myelination (Falangola, Guilfoyle et al. 2014, Jelescu, Veraart et al. 2015, Guglielmetti, 77	

Veraart et al. 2016, Jelescu, Zurek et al. 2016, Kelm, West et al. 2016). With appropriate 78	

pre-processing, AWF and extra-axonal diffusivity are highly reliable, even given the 79	

constraints associated with data collection in young children (Huber 2018). 80	

 81	

Microstructural modeling of the diffusion signal thus holds promise for illuminating the 82	

biological underpinnings of white matter development, pathology, and plasticity. However, 83	

even the most sophisticated models incorporate simplifying assumptions about the 84	

underlying tissue, and many require that the user to set constraints, such as the absolute or 85	

relative expected diffusivity of individual tissue compartments (Jelescu, Veraart et al. 86	

2015). Although it is often possible to make principled choices, in some cases, the most 87	

appropriate set of model assumptions is still up for debate: For example, while the WMTI 88	

model has previously been validated under the assumption that extra-axonal diffusivity is 89	

greater than intra-axonal diffusivity (Guglielmetti, Veraart et al. 2016, Jelescu, Zurek et al. 90	

2016), recent work suggests that the opposite assumption may be more appropriate (intra-91	
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axonal greater than extra-axonal diffusivity: (Jespersen, Olesen et al. 2018, Kunz, da Silva 92	

et al. 2018). Thus, even state-of-the-art modeling techniques may be open to multiple 93	

interpretations and, while model parameters can be used to inform new linking hypotheses, 94	

it is not possible to directly link changes in any one parameter to a specific change in tissue 95	

biology.  96	

 97	

Multi-modal studies that combine microstructural modeling with complementary 98	

measurements, such as quantitative T1 mapping, can provide critical insight beyond what 99	

can be gleaned from diffusion alone (Cercignani and Bouyagoub 2018, Filo, Shtangel et 100	

al. 2019, Takemura, Ogawa et al. 2019, Travis, Castro et al. 2019). For example, in a large 101	

cross-sectional study, complementary DTI and quantitative T1 relaxation measurements 102	

showed distinct trajectories over the lifespan (Yeatman et al., 2014). Quantitative T1 103	

measurements capture the interaction between tissue density and the chemical composition 104	

of that tissue (Mezer, Yeatman et al. 2013, Stuber, Morawski et al. 2014, Filo, Shtangel et 105	

al. 2019), such that T1 values are more attenuated in highly myelination regions, while 106	

diffusion measurements are influenced by any cell membrane capable of hindering the 107	

diffusion process(Le Bihan 1995). Thus, the authors reasoned that the discrepancy between 108	

measures could reflect changes in various non-neuronal cell types (microglia, 109	

oligodendrocyte precursor cells (OPC), and/or astrocytes). Such changes are presumed to 110	

occur alongside changes in myelination, but with distinct dynamics over the lifespan. 111	

 112	

Experience-dependent plasticity in the white matter likely depends on processes no less 113	

complex than those unfolding over maturation and aging. Learning related changes in white 114	
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matter diffusivity could theoretically reflect a number of distinct biological phenomena, 115	

such as activity-dependent changes in myelination or glial cell proliferation (Blumenfeld-116	

Katzir, Pasternak et al. 2011, Lerch, Yiu et al. 2011, Sagi, Tavor et al. 2012, Sampaio-117	

Baptista, Khrapitchev et al. 2013, Gibson, Purger et al. 2014). In animal models, short-term 118	

learning has been associated both with remodeling of myelin and proliferation of glial cells 119	

in the gray and white matter (Blumenfeld-Katzir, Pasternak et al. 2011, Lerch, Yiu et al. 120	

2011, Sagi, Tavor et al. 2012, Sampaio-Baptista, Khrapitchev et al. 2013). In the white 121	

matter, the size of non-axonal effects can even exceed subsequent changes in myelination 122	

(Gibson, Purger et al. 2014), which has been interpreted as reflecting an initial over-123	

production of glial cells associated with the early stages of the learning process. Although 124	

non-invasive MRI measurements cannot directly specify the exact cellular changes that are 125	

occurring, they can be used to reason about the underlying biology of plasticity measured 126	

in the human brain, and they provide a vital link between the literature on human learning 127	

and invasive studies examining plasticity in other species. 128	

 129	

We previously reported that 8 weeks of intensive reading instruction prompts widespread 130	

changes in white matter diffusion properties, which track the learning process (Huber 131	

2018). Given that these effects occurred rapidly, and were distributed throughout the white 132	

matter, we speculated that the changes in diffusivity might reflect an initial stage of the 133	

learning process (e.g., large-scale glial cell proliferation), rather than changes to signal 134	

conduction properties of functionally relevant axons via changes in myelination or axon 135	

caliber. Here, we first confirmed that the previously reported finding of spatially distributed 136	

intervention-driven changes in diffusivity holds in a larger sample of subjects (n=33). We 137	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2020. ; https://doi.org/10.1101/2020.05.28.122499doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.122499
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

then fit the WMTI model to these data to test for intervention-driven changes in the 138	

estimated axonal water fraction (AWF). Although we observed changes in diffusivity 139	

within the extra-axonal space, we failed to detect changes in AWF. We next explored how 140	

changing certain model assumptions affects the pattern of results in these data. Finally, we 141	

used an independent quantitative MRI measurement of R1 (1/T1 relaxation time) to 142	

examine the same white matter regions. Although R1 estimates were correlated with 143	

individual differences in reading skill, analysis of R1 values did not suggest a change in 144	

myelin content over the 8-week intervention period. Together, these results highlight the 145	

value of multi-modal MRI data for constraining inferences about underlying white matter 146	

biology, while pointing to the potential importance of non-neuronal cell types during the 147	

early stages of learning.  148	

 149	

Materials and Methods 150	

 151	

Participants 152	

  153	

A total of 149 behavioral and MRI sessions were conducted with a group of 33 children 154	

ranging in age from 7 to 12 years, who participated in an intensive summer reading 155	

intervention program. Of these subjects, 24 were included in a previous manuscript (Huber 156	

2018). Members of the intervention group were recruited based on parent report of reading 157	

difficulties and/or a clinical diagnosis of dyslexia. Multi-shell diffusion MRI and 158	

behavioral data were collected before the intervention (baseline), after 3.62 (+/- 0.16) 159	

weeks of intervention, after 6.71 (+/- 0.16) weeks of intervention, and at the end of the 8-160	
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week intervention period. An additional 78 behavioral and MRI sessions were conducted 161	

with 29 participants, who were matched for age but not reading level. These subjects were 162	

recruited as a control group to assess the stability of our measurements over the repeated 163	

sessions. Control subjects participated in the same experimental sessions but did not 164	

receive the reading intervention. Some families of control group subjects were reluctant to 165	

commit to all four sessions, given that their children were not receiving an educational 166	

intervention. These families were given an opportunity to participate in 2 sessions. The 167	

interval for the two sessions was chosen in order to have balanced numbers of 168	

measurements at equivalent time points to the intervention group. In the intervention group, 169	

5 subjects were unable to complete either the third of the fourth imaging session, and 170	

therefore participated in 3 sessions, total. The distribution of testing sessions for the 171	

intervention and control groups is summarized in Table 1. 172	

 173	

 Baseline (0 days) 11-38 33-77 49-100 
Intervention 33 33 (mean 25.36, 

std 6.70) 
31 (mean 47.00, 

std 6.23) 
30 (mean 72.70, 

std 10.91) 
Control 29 20 (mean 22.25, 

std 6.51) 
16 (mean 44.38, 

std 10.01) 
12 (mean 58.33, 

std 5.31) 
 174	

Table 1. Testing schedule for intervention and control groups. Experimental sessions were evenly spaced 175	

for each subject, with a baseline prior to the start of intervention, a second session within 11-38 days 176	

since the start of intervention (column 2), a third session within 33-77 days (column 3), and a fourth 177	

session within 49-100 days (column 4). Each cell gives the number of subjects sampled at each time bin. 178	

In the intervention group, some data sets are missing due to scheduling or data quality issues, while in 179	

the intervention group some subjects elected to complete only 2 sessions (see Methods for details). The 180	

mean number of days and standard deviation for each time bin are given in parenthesis.   181	

 182	
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All participants were native English speakers with normal or corrected-to-normal vision 183	

and no history of neurological damage or psychiatric disorder. Subjects were screened 184	

using a mock scanner to assess comfort and ability to hold still during the MRI sessions. 185	

We obtained written consent from parents, and verbal assent from all child participants. 186	

All procedures, including recruitment, consent, and testing, followed the guidelines of the 187	

University of Washington Human Subjects Division and were reviewed and approved by 188	

the UW Institutional Review Board. Subject demographics are given in Table 2. 189	

 190	

 WJ-BRS TOWRE WJ-RF WJ-CALC WJ-MFF Age 
(months) 

Intervention 80.30/14.27 72.42/13.33 72.42/18.51 85.68/13.48 83.10/16.11 112.58/	
20.58 

Control 96.55/19.59 86.74/22.31 91.74/22.33 97.45/13.72 92.67/18.00 117.03/	
14.38 

 191	

Table 2. Demographic data for the intervention and non-intervention control groups. Each cell contains 192	

the group mean and standard deviation for a given item. Subject groups were matched in age but not 193	

reading skill. The first three columns give mean and standard deviation (mean / standard deviation) 194	

within each group for three standard reading measures: The Basic Reading Skill composite from the 195	

Woodcock Johnson Tests of Achievement (WJ-BRS), the Test of Word Reading Efficiency index 196	

(TOWRE), and The Reading Fluency subtest of the Woodcock Johnson Tests of Achievement (WJ-RF).  197	

Columns 4-5 give standard scores for the Woodcock Johnson Tests of Achievement Calculation (WJ-198	

CALC) and Math Facts Fluency (WJ-MFF), which measure efficiency and accuracy of math related 199	

skills.  200	

 201	

Reading intervention 202	

  203	
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Intervention subjects were enrolled in 8 weeks of the Seeing Stars: Symbol Imagery for 204	

Fluency, Orthography, Sight Words, and Spelling (Bell 2007) program at three different 205	

Lindamood-Bell Learning Centers in the Seattle area. The intervention program consists 206	

of directed, one-on-one training in phonological and orthographic processing skills, lasting 207	

four hours each day, five days a week. The curriculum uses an incremental approach, 208	

building from letters and syllables to words and connected texts, emphasizing phonological 209	

decoding skills as a foundation for spelling and comprehension. A hallmark of this 210	

intervention program is the intensity of the training protocol (4 hours a day, 5 days a week) 211	

and the personalized approach that comes with one-on-one instruction.  212	

 213	

To test for longitudinal change in reading and non-reading (Calculation and Math Facts 214	

Fluency subtests of the Woodcock Johnson Tests of Achievement) measures, we fit a linear 215	

mixed effects model with a fixed effect of intervention time, in days (for control subjects, 216	

this corresponds to days since the baseline session), and a random effect of subject. The 217	

intervention group showed significant gains for all reading measures (p < 0.05 for WJ-218	

BRS; p < 0.0001 for TOWRE and WJ-RF). We found no significant growth in the non-219	

reading measures over the same time period. In a subset of reading-matched controls, who 220	

theoretically have as much room to improve on the reading measures as the intervention 221	

subjects (i.e., they are not approaching ceiling on the tests), we found no significant growth 222	

in any reading measure. Within this group, the math fluency (WJ-MFF) did improve with 223	

repeated testing (p < 0.001), presumably due to practice on the timed-test. Within the full 224	

control sample (including typical and highly skilled readers), performance on timed tests 225	
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(TOWRE, WJ-RF, and WJ-MFF) improved with repeated testing (p < 0.01), although 226	

reading accuracy (WJ-BRS) and calculation (WJ-CALC) showed no significant change.  227	

 228	

Magnetic resonance imaging (MRI) acquisition protocol 229	

  230	

All imaging data were acquired using a 3T Phillips Achieva scanner (Philips, Eindhoven, 231	

Netherlands) at the University of Washington Diagnostic Imaging Sciences Center (DISC) 232	

using a 32-channel head coil. An inflatable cap minimized head motion, and participants 233	

were continuously monitored through a closed-circuit camera system.  234	

 235	

Diffusion-weighted magnetic resonance imaging (dMRI) data were acquired at 2.0mm3 236	

spatial resolution with full brain coverage. Each session consisted of 3 DWI scans, one 237	

with 32 non-collinear directions (b-value=800 s/mm2), and a second with 64 non-collinear 238	

directions (b-value=2,000 s/mm2). Each of the DWI scans included 4 volumes without 239	

diffusion weighting (b-value=0). We also collected one scan with 6 non-diffusion-240	

weighted volumes and a reversed phase encoding direction (posterior-anterior) to correct 241	

for EPI distortions due to inhomogeneities in the magnetic field using FSL’s topup tool 242	

(Andersson, Skare et al. 2003). Additional pre-processing is carried out using tools in FSL 243	

for motion and eddy current correction (Andersson and Sotiropoulos 2016). Data were 244	

manually checked for imaging artifacts and excessive dropped volumes. Given that subject 245	

motion can be especially problematic for the interpretation of group differences in DWI 246	

data (Yendiki, Koldewyn et al. 2014), data sets with mean slice-by-slice displacement > 247	

3mm are excluded from further analysis.  248	
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For quantitative T1 mapping, we followed protocol developed by (Mezer, Yeatman et al. 249	

2013). We acquired 4 spoiled gradient echo recalled images using two different flip angles 250	

(2 scans with 4° and 2 scans with 20°, all with TR = 14ms, TE = 2.3ms, and resolution of 251	

1 mm3). To correct the transmit coil inhomogeneity, we collected 4 spin echo inversion 252	

recovery scans with EPI read-out (SEIR-EPI), with TR 6500, TE 6.46, inversion times of 253	

50, 400, 1200, 2400 ms, and 2mm2 inplane resolution with a slice thickness of 4 mm. We 254	

then compared T1 fits estimated using the spoiled gradient echo images to fits estimated 255	

using the unbiased (Barral, Gudmundson et al. 2010, Mezer, Yeatman et al. 2013, Mezer, 256	

Rokem et al. 2016) SEIR-EPI images to characterize the inhomogeneity field and apply an 257	

appropriate correction to the biased, high resolution spoiled gradient echo recalled images. 258	

 259	

Modeling white matter tissue properties 260	

 261	

All diffusion and quantitative T1 data were aligned to a common anatomical reference in 262	

each subject’s native, ACPC aligned space. Axonal water fraction and extra-axonal 263	

diffusivities were modeled using the white matter tract integrity (WMTI) model 264	

(Fieremans, Novikov et al. 2010, Fieremans, Jensen et al. 2011), after fitting the diffusion 265	

kurtosis model (Jensen, Helpern et al. 2005). WMTI and DKI fitting was implemented in 266	

DIPY (Garyfallidis, Brett et al. 2014). R1 maps were calculated by taking 1/T1 (seconds) 267	

for each voxel.  268	

 269	

All values were then mapped onto fiber tracts identified for each subject using the 270	

Automated Fiber Quantification software package (Yeatman, Dougherty et al. 2012), after 271	
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initial generation of a whole-brain connectome using probabilistic tractography (MRtrix 272	

3.0 (Tournier, Calamante et al. 2004)). Since the white matter tract integrity (WMTI) 273	

assumes that fibers are relatively well aligned (Fieremans, Jensen et al. 2011), we followed 274	

recommendations from previous work and restricted our analysis to voxels with fractional 275	

anisotropy values greater than 0.3 (Jensen, Stickley et al. 2017, Jensen, McKinnon et al. 276	

2017, Chung, Fieremans et al. 2018). Specifically, voxels with fractional anisotropy below 277	

0.3 were removed and WMTI metrics were interpolated at each point on each fiber, and 278	

then values were summarized along the fiber-tract core based on computing the median 279	

value across fiber nodes. Our previous work has demonstrated that summarizing values 280	

based on the median, rather than the mean, of WMTI metrics substantially increases the 281	

reliability of an individual’s data (Huber 2018). Data with outlying values (greater than 4 282	

standard deviations from the sample mean) in the white matter for any of the fitted metrics 283	

was excluded from further analysis. After excluding both outliers and individuals with 284	

excessive motion (>3mm, see above), the final data set included 109 sessions from 32 285	

intervention subjects and 66 sessions from 27 non-intervention control subjects. 286	

 287	

Statistical Analysis 288	

 289	

Statistical analysis was carried out using software written in Matlab (draft code link: 290	

https://github.com/yeatmanlab/BioBasis.git). To assess change over the course of 291	

intervention, we first averaged the middle 80% of each tract to create a single estimate of 292	

each property for each subject and tract. We selected the middle portion to eliminate the 293	

influence of crossing fibers near cortical terminations, and to avoid potential partial volume 294	
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effects at the white matter / gray matter border. Mean tract values were then entered into a 295	

linear mixed effects model, with fixed effects of intervention time and a random effect of 296	

subject. For quantifying intervention effects, we prefer to use ‘hours of intervention’, since 297	

this variable directly reflects the intervention ‘dose’. For analyses including the control 298	

subjects, who did not participate in an intervention of any kind, we substitute ‘session’ for 299	

‘hours’. Since sessions were held at regular intervals, the two variables were highly 300	

correlated (Pearson’s r = 0.98, p < 0.001). 301	

 302	

Results 303	

 304	

Diffusion MRI 305	

 306	

Significant changes in mean diffusivity (MD) were apparent throughout the white matter 307	

in the intervention group (Figure 1a-b; tracts showing significant changes qFDR < 0.05). 308	

In a group of age-matched control subjects who attended school as usual, we found no 309	

significant changes in white matter diffusivity over the same time frame, and growth 310	

estimates for the 16 pathways were distributed around zero (Figure 1c). A group 311	

(intervention vs. non-intervention) by time (session number) interaction was significant (p 312	

< 0.05, uncorrected) for the left arcuate and left inferior frontal-occipital fasciculus.  313	

 314	
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 315	

 316	

Figure 1.  (A) White matter tracts are shown in two views (left hemisphere, right hemisphere) for 317	

an example subject. Color-coding is based on the coefficient from mean a linear mixed effects model 318	

predicting mean diffusivity (MD) values as a function of intervention hours at each location along 319	

each tract. Numeric labels correspond to the tract names listed at right. (B) Coefficients from a 320	

model (+/- 1 SE) substituting ‘session’ for ‘hours of intervention’, for the intervention group. Darker 321	

shaded bars reflect significant change (qFDR < 0.05). (C) Results for the control subjects, using the 322	

same statistical model as in (B). In the control group, growth estimates were distributed around zero 323	

with none of the tracts showing a significant change in MD over an 8-week period.  324	

 325	

Although mean diffusivity is a highly sensitive measure (De Santis, Drakesmith et al. 2014, 326	

Huber 2018), it is not biologically specific. We next examined the effects of intervention 327	

on parameters estimated from the WMTI model: axonal water fraction (AWF) and extra-328	

axonal mean diffusivity. As shown in Figure 2, intervention effects were limited to 329	

parameters associated with the extra-axonal space: Extra-axonal MD effects mirror the MD 330	

effects shown above. We saw no change in estimates of AWF over the intervention period.  331	
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 332	

Figure 2.  Microstructural modeling of white matter plasticity. (A) Illustration of two scenarios in 333	

which mean diffusivity would decline in a voxel: proliferation of glial cells within the extra axonal 334	

space (top) or increasing axon caliber and myelination (bottom). (B, C) Plots show coefficients from 335	

a linear mixed effects model predicting extra-axonal mean diffusivity and axon water fraction 336	

(AWF) from intervention time (in hours; random effect of subjects). Tracts showing significant 337	

change (qFDR < 0.05) are shaded.  338	

 339	

We next examined how assumptions implemented in the WMTI model affect the results. 340	

Typically, the WMTI model assumes higher diffusivity within the extra-axonal space 341	

versus the intra-axonal space. This assumption is required for the model to converge on a 342	

single solution (Fieremans, Jensen et al. 2011). However, recent work has called this 343	

assumption into question (Jespersen, Olesen et al. 2018, Kunz, da Silva et al. 2018). Thus, 344	

to examine how this choice might affect our interpretation of the data, we perform a 345	

supplementary analysis in which we invert the assumed relationship between diffusivities 346	

(intra- greater than extra-axonal). Inverting the assumed relationship between diffusivities 347	

produced effects in intra-axonal diffusivity for the right IFOF and ILF, the left and right 348	

SLF, and the right Arcuate (p < 0.05, uncorrected) and rendered the remaining effects non-349	

significant. Importantly, this change to the model does not affect our calculation of AWF 350	
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(Fieremans, Jensen et al. 2011), and so these results are the same under either set of 351	

assumptions: We find no detectable difference in AWF over the course of the intervention. 352	

 353	

Quantitative T1 354	

 355	

The effects observed in the diffusion MRI data set suggest that learning related changes in 356	

the white matter reflect increased hindrance of diffusion within the extra-axonal space, 357	

rather than an increase in the total volume of myelin. We next test this idea using using a 358	

separate qMRI data set. R1 measurements reflect both the total volume of tissue in a region, 359	

and the molecular composition, such as lipid and iron, of that tissue (Mezer, Yeatman et 360	

al. 2013, Stuber, Morawski et al. 2014, Filo, Shtangel et al. 2019). A decrease in the volume 361	

of myelinated tissue (or, an increase in water) within a voxel would be associated with 362	

lower measured R1 values, while an increase in myelinated tissue would be associated with 363	

elevated R1 measurements. Consistent with the interpretation suggested by the DKI and 364	

WMTI fits, we see no measureable change in R1 over the course of the intervention period 365	

in either group (qFDR < 0.05, Figure 3a-b), even when using a more lenient statistical 366	

threshold (p < 0.05, uncorrected). Meanwhile, tract-average R1 values measured at 367	

baseline in the anterior callosal tract, left arcuate, and left and right ILF correlate with 368	

individual differences in reading skill prior to the start of the intervention (p < 0.05, 369	

uncorrected, Figure 3c), confirming that R1 is sensitive to behaviorally relevant properties 370	

of the white matter. 371	

 372	
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 373	

 374	

Figure 3.  Quantitative R1 values do not show significant change over the intervention period in the 375	

intervention group (A), or the non-intervention control group (B). Bar plots show coefficients from 376	

a linear mixed effects model predicting R1 from intervention time (session; random effect of 377	

subject). (C) Baseline R1 values correlate pre-intervention reading performance. Color coding 378	

reflects the coefficient from a linear model predicting tract-average R1 values from (age-379	

standardized) pre-intervention reading scores. Regions without a significant (p < 0.05) relationship 380	

to behavior are colored gray. 381	

 382	

Discussion 383	

 384	

Here we use diffusion MRI and a model derived from diffusion kurtosis imaging 385	

(Fieremans, Jensen et al. 2011), alongside quantitative R1 (1/T1 relaxation time) 386	

measurements, to examine whether microstructural changes during a successful reading 387	

intervention are best interpreted as rapid, experience-dependent changes in the volume of 388	

axons and myelin, or as changes in diffusivity within the extra- and/or intra-axonal space. 389	

Our results support the latter interpretation. While we observed systematic changes in 390	

diffusivity during the intervention, we failed to detect a longitudinal change in restricted 391	

fraction of the diffusion signal (interpreted as axonal water fraction, AWF), which would 392	
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be expected to arise from a sufficiently large change in myelination (Jelescu, Zurek et al. 393	

2016), or a change in axon caliber. Although we interpret this null result cautiously, we 394	

have previously demonstrated that AWF can be estimated reliably in this age group, and 395	

that AWF is highly sensitive to maturational changes that occur over the timescale of years 396	

(Huber 2018). Consistent with the diffusion MRI results, we did not observe a change in 397	

quantitative R1 values over the intervention period. However, in the same individuals (both 398	

intervention and non-intervention control subjects), we found that R1 was correlated with 399	

pre-intervention reading skill. This argues that R1 measurements capture behaviorally 400	

relevant variation in white matter microstructure that are distinct from the biological 401	

mechanisms associated with short-term plasticity and learning during an intensive 402	

intervention.  403	

 404	

We previously (Huber 2018) reported changes in mean diffusivity alongside growth in 405	

reading skills during an intensive reading intervention. If these effects indeed reflect 406	

properties of the extra-axonal space, what is the link to behavior? A systematic reduction 407	

in extra-axonal diffusivity, without corresponding changes in axonal water fraction or 408	

quantitative R1, could result from an increase in cell membranes hindering diffusion within 409	

the extra-axonal space, without a corresponding change in the total volume of that space. 410	

This might reflect proliferation of oligodendrocyte precursor cells (OPC), as seen in 411	

previous animal work (Gibson, Purger et al. 2014), although extra-axonal diffusivity 412	

estimates could also be influenced by changes in the size or distribution of astrocytes 413	

(Sampaio-Baptista and Johansen-Berg 2017, Sepehrband, Cabeen et al. 2018).  414	

 415	
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The relationship between higher-level cognitive function, axonal, glial and vascular 416	

properties is likely to be complex, and the process of maintaining and optimizing signaling 417	

properties involves a number of distinct biological phenomena that operate over different 418	

time scales. However, it is increasingly clear that activation and proliferation of glial cells 419	

and their precursors is vital not only for maintenance of active connections within a circuit, 420	

but also for the optimization of signaling properties. For example, oligodendrocytes 421	

participate in myelin maintenance, repair, and use-related plasticity throughout the lifespan 422	

(reviewed in (Nave 2010)), and have been shown to regulate axon caliber directly, 423	

independent of myelination (Sanchez, Hassinger et al. 1996). This mechanism could 424	

theoretically support fast, activity-dependent changes in signaling efficiency and 425	

coordination. Neural activity, in turn, appears to promote oligodendrocyte precursor 426	

proliferation (Barres and Raff 1993), perhaps increasing the potential malleability of highly 427	

active circuits. Although the link between these biological phenomena and learning is not 428	

yet well understood, animal models have demonstrated a critical role of glia for brain 429	

function in health, and their dysfunction in disease states (Barres 2008). Studies employing 430	

longitudinal measurements, coupled with increasingly sophisticated imaging and modeling 431	

techniques, hold promise for revealing the interplay among distinct biological processes 432	

that support learning and cognition. Our findings highlight the importance of considering 433	

the often-ignored contribution of glial cells to diffusion measurements and associated 434	

cognitive functions in humans across the lifespan.  435	

 436	

Linking the diffusion process to tissue biology requires making certain assumptions about 437	

the factors that contribute to measured diffusion signals (Novikov, Kiselev et al. 2018). 438	
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The WMTI model used here assumes well-aligned fibers as its inputs (Fieremans, Novikov 439	

et al. 2010). We have tried to assure that this assumption is met in our analysis by sampling 440	

voxels with fractional anisotropy values that fall within a range for which the model has 441	

been validated (Jensen, McKinnon et al. 2017, Chung, Fieremans et al. 2018). In order to 442	

fit the WMTI model with a single solution, one must further assume a higher rate of 443	

diffusivity within either the intra-axonal or extra-axonal space for a given region of interest. 444	

Previous work has validated the assumption of higher intrinsic diffusivity within the extra-445	

axonal-space (Guglielmetti, Veraart et al. 2016, Jelescu, Zurek et al. 2016), although recent 446	

work has called this assumption into question (i.e., intra-axonal diffusivity may be greater 447	

than extra-axonal diffusivity; (Jespersen, Olesen et al. 2018, Kunz, da Silva et al. 2018)). 448	

Importantly, our calculation of AWF is robust, and does not depend on this assumption; 449	

thus, our main finding of stable AWF does not depend how the relative diffusivities are 450	

constrained. However, this choice does determine whether intervention-driven changes in 451	

diffusivity are attributed to the intra- versus extra-axonal space, in some cases. Although it 452	

is less clear what mechanism would alter the intrinsic diffusivity of the intra-axonal space 453	

over the timescales considered here, it is important to note that we cannot differentiate 454	

between these scenarios based solely on the WMTI model. Thus, our modeling results 455	

should not be interpreted as conclusive evidence for any specific biological mechanism. 456	

 457	

Maturational differences in diffusion within the white matter reflect pruning of connections 458	

and changes in myelination that occur over the timescale of years (Chang, Owen et al. 459	

2015, Jelescu, Veraart et al. 2015), which may in turn influence reading outcomes 460	

(Yeatman, Dougherty et al. 2012). The current data support the notion that short-term 461	
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changes in diffusion properties reflect an initial stage of the learning process, but the 462	

connection between rapid changes and long-term remodeling of axons and myelin is 463	

currently unknown. Resolving the relationship between learning and plasticity at temporal 464	

scales ranging from hours (Sagi, Tavor et al. 2012, Hofstetter, Tavor et al. , Hofstetter, 465	

Friedmann et al.), to days (Huber 2018), to years (Yeatman, Dougherty et al. 2012, Wang, 466	

Mauer et al. 2017), will require research aimed at forging a tighter link between education 467	

and neuroscience.  468	

 469	

  470	
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